2
0
mirror of https://gitlab.com/apparmor/apparmor synced 2025-08-22 01:57:43 +00:00

Split out parsing and expression trees from regexp.y

Start of splitting regexp.y into logical components instead of the mess
it is today.  Split out the expr-tree and parsing components from regexp.y
int expr-tree.x and parse.y and since regexp.y no longer does parsing
rename it to hfa.cc

Some code cleanups snuck their way into this patch and since I am to
lazy to redo it, I have left them in.

Signed-off-by: John Johansen <john.johansen@canonical.com>
Acked-By: Steve Beattie <sbeattie@ubuntu.com>
This commit is contained in:
John Johansen 2011-03-13 05:46:29 -07:00
parent 50760ef05b
commit 846cee5066
8 changed files with 1538 additions and 1370 deletions

View File

@ -12,14 +12,20 @@ BISON := bison
all : ${TARGET}
libapparmor_re.a: regexp.o
libapparmor_re.a: parse.o expr-tree.o hfa.o
ar ${ARFLAGS} $@ $^
regexp.o : regexp.cc apparmor_re.h
expr-tree.o: expr-tree.cc expr-tree.h
$(LINK.cc) $< -c -o $@
regexp.cc : regexp.y flex-tables.h ../immunix.h
hfa.o: hfa.cc apparmor_re.h
$(LINK.cc) $< -c -o $@
parse.o : parse.cc apparmor_re.h expr-tree.h
$(LINK.cc) $< -c -o $@
parse.cc : parse.y flex-tables.h ../immunix.h
${BISON} -o $@ $<
clean:
rm -f regexp.o regexp.cc regexp.so regexp.a regexp ${TARGET}
rm -f *.o parse.cc ${TARGET}

View File

@ -10,6 +10,8 @@
#ifndef APPARMOR_RE_H
#define APPARMOR_RE_H
#include <stdint.h>
typedef enum dfaflags {
DFA_CONTROL_EQUIV = 1 << 0,
DFA_CONTROL_TREE_NORMAL = 1 << 1,

View File

@ -0,0 +1,576 @@
/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2010 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Functions to create/manipulate an expression tree for regular expressions
* that have been parsed.
*
* The expression tree can be used directly after the parse creates it, or
* it can be factored so that the set of important nodes is smaller.
* Having a reduced set of important nodes generally results in a dfa that
* is closer to minimum (fewer redundant states are created). It also
* results in fewer important nodes in a the state set during subset
* construction resulting in less memory used to create a dfa.
*
* Generally it is worth doing expression tree simplification before dfa
* construction, if the regular expression tree contains any alternations.
* Even if the regular expression doesn't simplification should be fast
* enough that it can be used with minimal overhead.
*/
#include <stdio.h>
#include <string.h>
#include "expr-tree.h"
#include "apparmor_re.h"
/* Use a single static EpsNode as it carries no node specific information */
EpsNode epsnode;
ostream& operator<<(ostream& os, uchar c)
{
const char *search = "\a\033\f\n\r\t|*+[](). ",
*replace = "aefnrt|*+[](). ", *s;
if ((s = strchr(search, c)) && *s != '\0')
os << '\\' << replace[s - search];
else if (c < 32 || c >= 127)
os << '\\' << '0' << char('0' + (c >> 6))
<< char('0' + ((c >> 3) & 7)) << char('0' + (c & 7));
else
os << (char)c;
return os;
}
/**
* Text-dump a state (for debugging).
*/
ostream& operator<<(ostream& os, const NodeSet& state)
{
os << '{';
if (!state.empty()) {
NodeSet::iterator i = state.begin();
for(;;) {
os << (*i)->label;
if (++i == state.end())
break;
os << ',';
}
}
os << '}';
return os;
}
ostream& operator<<(ostream& os, Node& node)
{
node.dump(os);
return os;
}
/**
* hash_NodeSet - generate a hash for the Nodes in the set
*/
unsigned long hash_NodeSet(NodeSet *ns)
{
unsigned long hash = 5381;
for (NodeSet::iterator i = ns->begin(); i != ns->end(); i++) {
hash = ((hash << 5) + hash) + (unsigned long) *i;
}
return hash;
}
/**
* label_nodes - label the node positions for pretty-printing debug output
*
* TODO: separate - node labels should be separate and optional, if not
* present pretty printing should use Node address
*/
void label_nodes(Node *root)
{
int nodes = 1;
for (depth_first_traversal i(root); i; i++)
i->label = nodes++;
}
/**
* Text-dump the syntax tree (for debugging).
*/
void Node::dump_syntax_tree(ostream& os)
{
for (depth_first_traversal i(this); i; i++) {
os << i->label << '\t';
if ((*i)->child[0] == 0)
os << **i << '\t' << (*i)->followpos << endl;
else {
if ((*i)->child[1] == 0)
os << (*i)->child[0]->label << **i;
else
os << (*i)->child[0]->label << **i
<< (*i)->child[1]->label;
os << '\t' << (*i)->firstpos
<< (*i)->lastpos << endl;
}
}
os << endl;
}
/*
* Normalize the regex parse tree for factoring and cancelations. Normalization
* reorganizes internal (alt and cat) nodes into a fixed "normalized" form that
* simplifies factoring code, in that it produces a canonicalized form for
* the direction being normalized so that the factoring code does not have
* to consider as many cases.
*
* left normalization (dir == 0) uses these rules
* (E | a) -> (a | E)
* (a | b) | c -> a | (b | c)
* (ab)c -> a(bc)
*
* right normalization (dir == 1) uses the same rules but reversed
* (a | E) -> (E | a)
* a | (b | c) -> (a | b) | c
* a(bc) -> (ab)c
*
* Note: This is written iteratively for a given node (the top node stays
* fixed and the children are rotated) instead of recursively.
* For a given node under examination rotate over nodes from
* dir to !dir. Until no dir direction node meets the criterial.
* Then recurse to the children (which will have a different node type)
* to make sure they are normalized.
* Normalization of a child node is guarenteed to not affect the
* normalization of the parent.
*
* For cat nodes the depth first traverse order is guarenteed to be
* maintained. This is not necessary for altnodes.
*
* Eg. For left normalization
*
* |1 |1
* / \ / \
* |2 T -> a |2
* / \ / \
* |3 c b |3
* / \ / \
* a b c T
*
*/
static void rotate_node(Node *t, int dir) {
// (a | b) | c -> a | (b | c)
// (ab)c -> a(bc)
Node *left = t->child[dir];
t->child[dir] = left->child[dir];
left->child[dir] = left->child[!dir];
left->child[!dir] = t->child[!dir];
t->child[!dir] = left;
}
void normalize_tree(Node *t, int dir)
{
if (dynamic_cast<LeafNode *>(t))
return;
for (;;) {
if ((&epsnode == t->child[dir]) &&
(&epsnode != t->child[!dir]) &&
dynamic_cast<TwoChildNode *>(t)) {
// (E | a) -> (a | E)
// Ea -> aE
Node *c = t->child[dir];
t->child[dir] = t->child[!dir];
t->child[!dir] = c;
// Don't break here as 'a' may be a tree that
// can be pulled up.
} else if ((dynamic_cast<AltNode *>(t) &&
dynamic_cast<AltNode *>(t->child[dir])) ||
(dynamic_cast<CatNode *>(t) &&
dynamic_cast<CatNode *>(t->child[dir]))) {
// (a | b) | c -> a | (b | c)
// (ab)c -> a(bc)
rotate_node(t, dir);
} else if (dynamic_cast<AltNode *>(t) &&
dynamic_cast<CharSetNode *>(t->child[dir]) &&
dynamic_cast<CharNode *>(t->child[!dir])) {
// [a] | b -> b | [a]
Node *c = t->child[dir];
t->child[dir] = t->child[!dir];
t->child[!dir] = c;
} else {
break;
}
}
if (t->child[dir])
normalize_tree(t->child[dir], dir);
if (t->child[!dir])
normalize_tree(t->child[!dir], dir);
}
//charset conversion is disabled for now,
//it hinders tree optimization in some cases, so it need to be either
//done post optimization, or have extra factoring rules added
#if 0
static Node *merge_charset(Node *a, Node *b)
{
if (dynamic_cast<CharNode *>(a) &&
dynamic_cast<CharNode *>(b)) {
Chars chars;
chars.insert(dynamic_cast<CharNode *>(a)->c);
chars.insert(dynamic_cast<CharNode *>(b)->c);
CharSetNode *n = new CharSetNode(chars);
return n;
} else if (dynamic_cast<CharNode *>(a) &&
dynamic_cast<CharSetNode *>(b)) {
Chars *chars = &dynamic_cast<CharSetNode *>(b)->chars;
chars->insert(dynamic_cast<CharNode *>(a)->c);
return b;
} else if (dynamic_cast<CharSetNode *>(a) &&
dynamic_cast<CharSetNode *>(b)) {
Chars *from = &dynamic_cast<CharSetNode *>(a)->chars;
Chars *to = &dynamic_cast<CharSetNode *>(b)->chars;
for (Chars::iterator i = from->begin(); i != from->end(); i++)
to->insert(*i);
return b;
}
//return ???;
}
static Node *alt_to_charsets(Node *t, int dir)
{
/*
Node *first = NULL;
Node *p = t;
Node *i = t;
for (;dynamic_cast<AltNode *>(i);) {
if (dynamic_cast<CharNode *>(i->child[dir]) ||
dynamic_cast<CharNodeSet *>(i->child[dir])) {
if (!first) {
first = i;
p = i;
i = i->child[!dir];
} else {
first->child[dir] = merge_charset(first->child[dir],
i->child[dir]);
p->child[!dir] = i->child[!dir];
Node *tmp = i;
i = tmp->child[!dir];
tmp->child[!dir] = NULL;
tmp->release();
}
} else {
p = i;
i = i->child[!dir];
}
}
// last altnode of chain check other dir as well
if (first && (dynamic_cast<charNode *>(i) ||
dynamic_cast<charNodeSet *>(i))) {
}
*/
/*
if (dynamic_cast<CharNode *>(t->child[dir]) ||
dynamic_cast<CharSetNode *>(t->child[dir]))
char_test = true;
(char_test &&
(dynamic_cast<CharNode *>(i->child[dir]) ||
dynamic_cast<CharSetNode *>(i->child[dir])))) {
*/
return t;
}
#endif
static Node *basic_alt_factor(Node *t, int dir)
{
if (!dynamic_cast<AltNode *>(t))
return t;
if (t->child[dir]->eq(t->child[!dir])) {
// (a | a) -> a
Node *tmp = t->child[dir];
t->child[dir] = NULL;
t->release();
return tmp;
}
// (ab) | (ac) -> a(b|c)
if (dynamic_cast<CatNode *>(t->child[dir]) &&
dynamic_cast<CatNode *>(t->child[!dir]) &&
t->child[dir]->child[dir]->eq(t->child[!dir]->child[dir])) {
// (ab) | (ac) -> a(b|c)
Node *left = t->child[dir];
Node *right = t->child[!dir];
t->child[dir] = left->child[!dir];
t->child[!dir] = right->child[!dir];
right->child[!dir] = NULL;
right->release();
left->child[!dir] = t;
return left;
}
// a | (ab) -> a (E | b) -> a (b | E)
if (dynamic_cast<CatNode *>(t->child[!dir]) &&
t->child[dir]->eq(t->child[!dir]->child[dir])) {
Node *c = t->child[!dir];
t->child[dir]->release();
t->child[dir] = c->child[!dir];
t->child[!dir] = &epsnode;
c->child[!dir] = t;
return c;
}
// ab | (a) -> a (b | E)
if (dynamic_cast<CatNode *>(t->child[dir]) &&
t->child[dir]->child[dir]->eq(t->child[!dir])) {
Node *c = t->child[dir];
t->child[!dir]->release();
t->child[dir] = c->child[!dir];
t->child[!dir] = &epsnode;
c->child[!dir] = t;
return c;
}
return t;
}
static Node *basic_simplify(Node *t, int dir)
{
if (dynamic_cast<CatNode *>(t) &&
&epsnode == t->child[!dir]) {
// aE -> a
Node *tmp = t->child[dir];
t->child[dir] = NULL;
t->release();
return tmp;
}
return basic_alt_factor(t, dir);
}
/*
* assumes a normalized tree. reductions shown for left normalization
* aE -> a
* (a | a) -> a
** factoring patterns
* a | (a | b) -> (a | b)
* a | (ab) -> a (E | b) -> a (b | E)
* (ab) | (ac) -> a(b|c)
*
* returns t - if no simplifications were made
* a new root node - if simplifications were made
*/
Node *simplify_tree_base(Node *t, int dir, bool &mod)
{
if (dynamic_cast<ImportantNode *>(t))
return t;
for (int i=0; i < 2; i++) {
if (t->child[i]) {
Node *c = simplify_tree_base(t->child[i], dir, mod);
if (c != t->child[i]) {
t->child[i] = c;
mod = true;
}
}
}
// only iterate on loop if modification made
for (;; mod = true) {
Node *tmp = basic_simplify(t, dir);
if (tmp != t) {
t = tmp;
continue;
}
/* all tests after this must meet 2 alt node condition */
if (!dynamic_cast<AltNode *>(t) ||
!dynamic_cast<AltNode *>(t->child[!dir]))
break;
// a | (a | b) -> (a | b)
// a | (b | (c | a)) -> (b | (c | a))
Node *p = t;
Node *i = t->child[!dir];
for (;dynamic_cast<AltNode *>(i); p = i, i = i->child[!dir]) {
if (t->child[dir]->eq(i->child[dir])) {
Node *tmp = t->child[!dir];
t->child[!dir] = NULL;
t->release();
t = tmp;
continue;
}
}
// last altnode of chain check other dir as well
if (t->child[dir]->eq(p->child[!dir])) {
Node *tmp = t->child[!dir];
t->child[!dir] = NULL;
t->release();
t = tmp;
continue;
}
//exact match didn't work, try factoring front
//a | (ac | (ad | () -> (a (E | c)) | (...)
//ab | (ac | (...)) -> (a (b | c)) | (...)
//ab | (a | (...)) -> (a (b | E)) | (...)
Node *pp;
int count = 0;
Node *subject = t->child[dir];
Node *a = subject;
if (dynamic_cast<CatNode *>(subject))
a = subject->child[dir];
for (pp = p = t, i = t->child[!dir];
dynamic_cast<AltNode *>(i); ) {
if ((dynamic_cast<CatNode *>(i->child[dir]) &&
a->eq(i->child[dir]->child[dir])) ||
(a->eq(i->child[dir]))) {
// extract matching alt node
p->child[!dir] = i->child[!dir];
i->child[!dir] = subject;
subject = basic_simplify(i, dir);
if (dynamic_cast<CatNode *>(subject))
a = subject->child[dir];
else
a = subject;
i = p->child[!dir];
count++;
} else {
pp = p; p = i; i = i->child[!dir];
}
}
// last altnode in chain check other dir as well
if ((dynamic_cast<CatNode *>(i) &&
a->eq(i->child[dir])) ||
(a->eq(i))) {
count++;
if (t == p) {
t->child[dir] = subject;
t = basic_simplify(t, dir);
} else {
t->child[dir] = p->child[dir];
p->child[dir] = subject;
pp->child[!dir] = basic_simplify(p, dir);
}
} else {
t->child[dir] = i;
p->child[!dir] = subject;
}
if (count == 0)
break;
}
return t;
}
int debug_tree(Node *t)
{
int nodes = 1;
if (!dynamic_cast<ImportantNode *>(t)) {
if (t->child[0])
nodes += debug_tree(t->child[0]);
if (t->child[1])
nodes += debug_tree(t->child[1]);
}
return nodes;
}
static void count_tree_nodes(Node *t, struct node_counts *counts)
{
if (dynamic_cast<AltNode *>(t)) {
counts->alt++;
count_tree_nodes(t->child[0], counts);
count_tree_nodes(t->child[1], counts);
} else if (dynamic_cast<CatNode *>(t)) {
counts->cat++;
count_tree_nodes(t->child[0], counts);
count_tree_nodes(t->child[1], counts);
} else if (dynamic_cast<PlusNode *>(t)) {
counts->plus++;
count_tree_nodes(t->child[0], counts);
} else if (dynamic_cast<StarNode *>(t)) {
counts->star++;
count_tree_nodes(t->child[0], counts);
} else if (dynamic_cast<CharNode *>(t)) {
counts->charnode++;
} else if (dynamic_cast<AnyCharNode *>(t)) {
counts->any++;
} else if (dynamic_cast<CharSetNode *>(t)) {
counts->charset++;
} else if (dynamic_cast<NotCharSetNode *>(t)) {
counts->notcharset++;
}
}
#include "stdio.h"
#include "stdint.h"
#include "apparmor_re.h"
Node *simplify_tree(Node *t, dfaflags_t flags)
{
bool update;
if (flags & DFA_DUMP_TREE_STATS) {
struct node_counts counts = { 0, 0, 0, 0, 0, 0, 0, 0 };
count_tree_nodes(t, &counts);
fprintf(stderr, "expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
}
do {
update = false;
//default to right normalize first as this reduces the number
//of trailing nodes which might follow an internal *
//or **, which is where state explosion can happen
//eg. in one test this makes the difference between
// the dfa having about 7 thousands states,
// and it having about 1.25 million states
int dir = 1;
if (flags & DFA_CONTROL_TREE_LEFT)
dir = 0;
for (int count = 0; count < 2; count++) {
bool modified;
do {
modified = false;
if (flags & DFA_CONTROL_TREE_NORMAL)
normalize_tree(t, dir);
t = simplify_tree_base(t, dir, modified);
if (modified)
update = true;
} while (modified);
if (flags & DFA_CONTROL_TREE_LEFT)
dir++;
else
dir--;
}
} while(update);
if (flags & DFA_DUMP_TREE_STATS) {
struct node_counts counts = { 0, 0, 0, 0, 0, 0, 0, 0 };
count_tree_nodes(t, &counts);
fprintf(stderr, "simplified expr tree: c %d, [] %d, [^] %d, | %d, + %d, * %d, . %d, cat %d\n", counts.charnode, counts.charset, counts.notcharset, counts.alt, counts.plus, counts.star, counts.any, counts.cat);
}
return t;
}

View File

@ -0,0 +1,627 @@
/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2010 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Functions to create/manipulate an expression tree for regular expressions
* that have been parsed.
*
* The expression tree can be used directly after the parse creates it, or
* it can be factored so that the set of important nodes is smaller.
* Having a reduced set of important nodes generally results in a dfa that
* is closer to minimum (fewer redundant states are created). It also
* results in fewer important nodes in a the state set during subset
* construction resulting in less memory used to create a dfa.
*
* Generally it is worth doing expression tree simplification before dfa
* construction, if the regular expression tree contains any alternations.
* Even if the regular expression doesn't simplification should be fast
* enough that it can be used with minimal overhead.
*/
#ifndef __LIBAA_RE_EXPR_H
#define __LIBAA_RE_EXPR_H
#include <map>
#include <set>
#include <stack>
#include <ostream>
#include "apparmor_re.h"
using namespace std;
typedef unsigned char uchar;
typedef set<uchar> Chars;
ostream& operator<<(ostream& os, uchar c);
/* Compute the union of two sets. */
template<class T>
set<T> operator+(const set<T>& a, const set<T>& b)
{
set<T> c(a);
c.insert(b.begin(), b.end());
return c;
}
/**
* When creating DFAs from regex trees, a DFA state is constructed from
* a set of important nodes in the syntax tree. This includes AcceptNodes,
* which indicate that when a match ends in a particular state, the
* regular expressions that the AcceptNode belongs to match.
*/
class Node;
class ImportantNode;
typedef set <ImportantNode *> NodeSet;
/**
* Text-dump a state (for debugging).
*/
ostream& operator<<(ostream& os, const NodeSet& state);
/**
* Out-edges from a state to another: we store the follow-set of Nodes
* for each input character that is not a default match in
* cases (i.e., following a CharNode or CharSetNode), and default
* matches in otherwise as well as in all matching explicit cases
* (i.e., following an AnyCharNode or NotCharSetNode). This avoids
* enumerating all the explicit tranitions for default matches.
*/
typedef struct NodeCases {
typedef map<uchar, NodeSet *>::iterator iterator;
iterator begin() { return cases.begin(); }
iterator end() { return cases.end(); }
NodeCases() : otherwise(0) { }
map<uchar, NodeSet *> cases;
NodeSet *otherwise;
} NodeCases;
ostream& operator<<(ostream& os, Node& node);
/* An abstract node in the syntax tree. */
class Node {
public:
Node() :
nullable(false) { child[0] = child[1] = 0; }
Node(Node *left) :
nullable(false) { child[0] = left; child[1] = 0; }
Node(Node *left, Node *right) :
nullable(false) { child[0] = left; child[1] = right; }
virtual ~Node()
{
if (child[0])
child[0]->release();
if (child[1])
child[1]->release();
}
/**
* See the "Dragon Book" for an explanation of nullable, firstpos,
* lastpos, and followpos.
*/
virtual void compute_nullable() { }
virtual void compute_firstpos() = 0;
virtual void compute_lastpos() = 0;
virtual void compute_followpos() { }
virtual int eq(Node *other) = 0;
virtual ostream& dump(ostream& os) = 0;
void dump_syntax_tree(ostream& os);
bool nullable;
NodeSet firstpos, lastpos, followpos;
/* child 0 is left, child 1 is right */
Node *child[2];
unsigned int label; /* unique number for debug etc */
/**
* We indirectly release Nodes through a virtual function because
* accept and Eps Nodes are shared, and must be treated specially.
* We could use full reference counting here but the indirect release
* is sufficient and has less overhead
*/
virtual void release(void) { delete this; }
};
class InnerNode : public Node {
public:
InnerNode() : Node() { };
InnerNode(Node *left) : Node(left) {};
InnerNode(Node *left, Node *right) : Node(left, right) { };
};
class OneChildNode : public InnerNode {
public:
OneChildNode(Node *left) : InnerNode(left) { };
};
class TwoChildNode : public InnerNode {
public:
TwoChildNode(Node *left, Node *right) : InnerNode(left, right) { };
};
class LeafNode : public Node {
public:
LeafNode() : Node() { };
};
/* Match nothing (//). */
class EpsNode : public LeafNode {
public:
EpsNode() : LeafNode()
{
nullable = true;
label = 0;
}
void release(void)
{
/* don't delete Eps nodes because there is a single static
* instance shared by all trees. Look for epsnode in the code
*/
}
void compute_firstpos() { }
void compute_lastpos() { }
int eq(Node *other)
{
if (dynamic_cast<EpsNode *>(other))
return 1;
return 0;
}
ostream& dump(ostream& os)
{
return os << "[]";
}
};
/**
* Leaf nodes in the syntax tree are important to us: they describe the
* characters that the regular expression matches. We also consider
* AcceptNodes import: they indicate when a regular expression matches.
*/
class ImportantNode : public LeafNode {
public:
ImportantNode() : LeafNode() { }
void compute_firstpos()
{
firstpos.insert(this);
}
void compute_lastpos() {
lastpos.insert(this);
}
virtual void follow(NodeCases& cases) = 0;
};
/* common base class for all the different classes that contain
* character information.
*/
class CNode : public ImportantNode {
public:
CNode() : ImportantNode() { }
};
/* Match one specific character (/c/). */
class CharNode : public CNode {
public:
CharNode(uchar c) : c(c) { }
void follow(NodeCases& cases)
{
NodeSet **x = &cases.cases[c];
if (!*x) {
if (cases.otherwise)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
CharNode *o = dynamic_cast<CharNode *>(other);
if (o) {
return c == o->c;
}
return 0;
}
ostream& dump(ostream& os)
{
return os << c;
}
uchar c;
};
/* Match a set of characters (/[abc]/). */
class CharSetNode : public CNode {
public:
CharSetNode(Chars& chars) : chars(chars) { }
void follow(NodeCases& cases)
{
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
NodeSet **x = &cases.cases[*i];
if (!*x) {
if (cases.otherwise)
*x = new NodeSet(*cases.otherwise);
else
*x = new NodeSet;
}
(*x)->insert(followpos.begin(), followpos.end());
}
}
int eq(Node *other)
{
CharSetNode *o = dynamic_cast<CharSetNode *>(other);
if (!o || chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end();
i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream& dump(ostream& os)
{
os << '[';
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
Chars chars;
};
/* Match all except one character (/[^abc]/). */
class NotCharSetNode : public CNode {
public:
NotCharSetNode(Chars& chars) : chars(chars) { }
void follow(NodeCases& cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
NodeSet **x = &cases.cases[*j];
if (!*x)
*x = new NodeSet(*cases.otherwise);
}
/* Note: Add to the nonmatching characters after copying away
* the old otherwise state for the matching characters.
*/
cases.otherwise->insert(followpos.begin(), followpos.end());
for (NodeCases::iterator i = cases.begin(); i != cases.end();
i++) {
if (chars.find(i->first) == chars.end())
i->second->insert(followpos.begin(),
followpos.end());
}
}
int eq(Node *other)
{
NotCharSetNode *o = dynamic_cast<NotCharSetNode *>(other);
if (!o || chars.size() != o->chars.size())
return 0;
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
i != chars.end() && j != o->chars.end();
i++, j++) {
if (*i != *j)
return 0;
}
return 1;
}
ostream& dump(ostream& os)
{
os << "[^";
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
os << *i;
return os << ']';
}
Chars chars;
};
/* Match any character (/./). */
class AnyCharNode : public CNode {
public:
AnyCharNode() { }
void follow(NodeCases& cases)
{
if (!cases.otherwise)
cases.otherwise = new NodeSet;
cases.otherwise->insert(followpos.begin(), followpos.end());
for (NodeCases::iterator i = cases.begin(); i != cases.end();
i++)
i->second->insert(followpos.begin(), followpos.end());
}
int eq(Node *other)
{
if (dynamic_cast<AnyCharNode *>(other))
return 1;
return 0;
}
ostream& dump(ostream& os) {
return os << ".";
}
};
/**
* Indicate that a regular expression matches. An AcceptNode itself
* doesn't match anything, so it will never generate any transitions.
*/
class AcceptNode : public ImportantNode {
public:
AcceptNode() {}
void release(void)
{
/* don't delete AcceptNode via release as they are shared, and
* will be deleted when the table the are stored in is deleted
*/
}
void follow(NodeCases& cases __attribute__((unused)))
{
/* Nothing to follow. */
}
/* requires accept nodes to be common by pointer */
int eq(Node *other)
{
if (dynamic_cast<AcceptNode *>(other))
return (this == other);
return 0;
}
};
/* Match a node zero or more times. (This is a unary operator.) */
class StarNode : public OneChildNode {
public:
StarNode(Node *left) : OneChildNode(left)
{
nullable = true;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos;
}
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (dynamic_cast<StarNode *>(other))
return child[0]->eq(other->child[0]);
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
return os << ")*";
}
};
/* Match a node one or more times. (This is a unary operator.) */
class PlusNode : public OneChildNode {
public:
PlusNode(Node *left) : OneChildNode(left) { }
void compute_nullable()
{
nullable = child[0]->nullable;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos;
}
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other)
{
if (dynamic_cast<PlusNode *>(other))
return child[0]->eq(other->child[0]);
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
return os << ")+";
}
};
/* Match a pair of consecutive nodes. */
class CatNode : public TwoChildNode {
public:
CatNode(Node *left, Node *right) : TwoChildNode(left, right) { }
void compute_nullable()
{
nullable = child[0]->nullable && child[1]->nullable;
}
void compute_firstpos()
{
if (child[0]->nullable)
firstpos = child[0]->firstpos + child[1]->firstpos;
else
firstpos = child[0]->firstpos;
}
void compute_lastpos()
{
if (child[1]->nullable)
lastpos = child[0]->lastpos + child[1]->lastpos;
else
lastpos = child[1]->lastpos;
}
void compute_followpos()
{
NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
for(NodeSet::iterator i = from.begin(); i != from.end(); i++) {
(*i)->followpos.insert(to.begin(), to.end());
}
}
int eq(Node *other) {
if (dynamic_cast<CatNode *>(other)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream& dump(ostream& os)
{
child[0]->dump(os);
child[1]->dump(os);
return os;
}
};
/* Match one of two alternative nodes. */
class AltNode : public TwoChildNode {
public:
AltNode(Node *left, Node *right) : TwoChildNode(left, right) { }
void compute_nullable()
{
nullable = child[0]->nullable || child[1]->nullable;
}
void compute_lastpos()
{
lastpos = child[0]->lastpos + child[1]->lastpos;
}
void compute_firstpos()
{
firstpos = child[0]->firstpos + child[1]->firstpos;
}
int eq(Node *other) {
if (dynamic_cast<AltNode *>(other)) {
if (!child[0]->eq(other->child[0]))
return 0;
return child[1]->eq(other->child[1]);
}
return 0;
}
ostream& dump(ostream& os)
{
os << '(';
child[0]->dump(os);
os << '|';
child[1]->dump(os);
os << ')';
return os;
}
};
/* Traverse the syntax tree depth-first in an iterator-like manner. */
class depth_first_traversal {
stack<Node *> pos;
void push_left(Node *node)
{
pos.push(node);
while (dynamic_cast<InnerNode *>(node)) {
pos.push(node->child[0]);
node = node->child[0];
}
}
public:
depth_first_traversal(Node *node)
{
push_left(node);
}
Node *operator*()
{
return pos.top();
}
Node* operator->()
{
return pos.top();
}
operator bool()
{
return !pos.empty();
}
void operator++(int)
{
Node *last = pos.top();
pos.pop();
if (!pos.empty()) {
/* no need to dynamic cast, as we just popped a node so
* the top node must be an inner node */
InnerNode *node = (InnerNode *)(pos.top());
if (node->child[1] && node->child[1] != last) {
push_left(node->child[1]);
}
}
}
};
struct node_counts {
int charnode;
int charset;
int notcharset;
int alt;
int plus;
int star;
int any;
int cat;
};
extern EpsNode epsnode;
int debug_tree(Node *t);
Node *simplify_tree(Node *t, dfaflags_t flags);
void label_nodes(Node *root);
unsigned long hash_NodeSet(NodeSet *ns);
/* Comparison operator for sets of <NodeSet *>.
* Compare set hashes, and if the sets have the same hash
* do compare pointer comparison on set of <Node *>, the pointer comparison
* allows us to determine which Sets of <Node *> we have seen already from
* new ones when constructing the DFA.
*/
struct deref_less_than {
bool operator()(pair <unsigned long, NodeSet *> const & lhs,
pair <unsigned long, NodeSet *> const & rhs) const
{
if (lhs.first == rhs.first)
return *(lhs.second) < *(rhs.second);
else
return lhs.first < rhs.first;
}
};
#endif /* __LIBAA_RE_EXPR */

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,27 @@
/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2010 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Parsing of regular expression into expression trees as implemented in
* expr-tree
*/
#ifndef __LIBAA_RE_PARSE_H
#define __LIBAA_RE_PARSE_H
int regex_parse(Node **tree, const char *rule);
#endif /* __LIBAA_RE_PARSE_H */

View File

@ -0,0 +1,266 @@
/*
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
* Copyright 2009-2010 Canonical Ltd.
*
* The libapparmor library is licensed under the terms of the GNU
* Lesser General Public License, version 2.1. Please see the file
* COPYING.LGPL.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*
* Parsing of regular expression into expression trees as implemented in
* expr-tree
*/
%{
/* #define DEBUG_TREE */
#include "expr-tree.h"
%}
%union {
char c;
Node *node;
Chars *cset;
}
%{
void regex_error(Node **, const char *, const char *);
# define YYLEX_PARAM &text
int regex_lex(YYSTYPE *, const char **);
static inline Chars*
insert_char(Chars* cset, uchar a)
{
cset->insert(a);
return cset;
}
static inline Chars*
insert_char_range(Chars* cset, uchar a, uchar b)
{
if (a > b)
swap(a, b);
for (uchar i = a; i <= b; i++)
cset->insert(i);
return cset;
}
%}
%pure-parser
/* %error-verbose */
%parse-param {Node **root}
%parse-param {const char *text}
%name-prefix = "regex_"
%token <c> CHAR
%type <c> regex_char cset_char1 cset_char cset_charN
%type <cset> charset cset_chars
%type <node> regex expr terms0 terms qterm term
/**
* Note: destroy all nodes upon failure, but *not* the start symbol once
* parsing succeeds!
*/
%destructor { $$->release(); } expr terms0 terms qterm term
%%
/* FIXME: Does not parse "[--]", "[---]", "[^^-x]". I don't actually know
which precise grammer Perl regexs use, and rediscovering that
is proving to be painful. */
regex : /* empty */ { *root = $$ = &epsnode; }
| expr { *root = $$ = $1; }
;
expr : terms
| expr '|' terms0 { $$ = new AltNode($1, $3); }
| '|' terms0 { $$ = new AltNode(&epsnode, $2); }
;
terms0 : /* empty */ { $$ = &epsnode; }
| terms
;
terms : qterm
| terms qterm { $$ = new CatNode($1, $2); }
;
qterm : term
| term '*' { $$ = new StarNode($1); }
| term '+' { $$ = new PlusNode($1); }
;
term : '.' { $$ = new AnyCharNode; }
| regex_char { $$ = new CharNode($1); }
| '[' charset ']' { $$ = new CharSetNode(*$2);
delete $2; }
| '[' '^' charset ']'
{ $$ = new NotCharSetNode(*$3);
delete $3; }
| '[' '^' '^' cset_chars ']'
{ $4->insert('^');
$$ = new NotCharSetNode(*$4);
delete $4; }
| '(' regex ')' { $$ = $2; }
;
regex_char : CHAR
| '^' { $$ = '^'; }
| '-' { $$ = '-'; }
| ']' { $$ = ']'; }
;
charset : cset_char1 cset_chars
{ $$ = insert_char($2, $1); }
| cset_char1 '-' cset_charN cset_chars
{ $$ = insert_char_range($4, $1, $3); }
;
cset_chars : /* nothing */ { $$ = new Chars; }
| cset_chars cset_charN
{ $$ = insert_char($1, $2); }
| cset_chars cset_charN '-' cset_charN
{ $$ = insert_char_range($1, $2, $4); }
;
cset_char1 : cset_char
| ']' { $$ = ']'; }
| '-' { $$ = '-'; }
;
cset_charN : cset_char
| '^' { $$ = '^'; }
;
cset_char : CHAR
| '[' { $$ = '['; }
| '*' { $$ = '*'; }
| '+' { $$ = '+'; }
| '.' { $$ = '.'; }
| '|' { $$ = '|'; }
| '(' { $$ = '('; }
| ')' { $$ = ')'; }
;
%%
int
octdigit(char c)
{
if (c >= '0' && c <= '7')
return c - '0';
return -1;
}
int
hexdigit(char c)
{
if (c >= '0' && c <= '9')
return c - '0';
else if (c >= 'A' && c <= 'F')
return 10 + c - 'A';
else if (c >= 'a' && c <= 'f')
return 10 + c - 'A';
else
return -1;
}
int
regex_lex(YYSTYPE *val, const char **pos)
{
int c;
val->c = **pos;
switch(*(*pos)++) {
case '\0':
(*pos)--;
return 0;
case '*': case '+': case '.': case '|': case '^': case '-':
case '[': case ']': case '(' : case ')':
return *(*pos - 1);
case '\\':
val->c = **pos;
switch(*(*pos)++) {
case '\0':
(*pos)--;
/* fall through */
case '\\':
val->c = '\\';
break;
case '0':
val->c = 0;
if ((c = octdigit(**pos)) >= 0) {
val->c = c;
(*pos)++;
}
if ((c = octdigit(**pos)) >= 0) {
val->c = (val->c << 3) + c;
(*pos)++;
}
if ((c = octdigit(**pos)) >= 0) {
val->c = (val->c << 3) + c;
(*pos)++;
}
break;
case 'x':
val->c = 0;
if ((c = hexdigit(**pos)) >= 0) {
val->c = c;
(*pos)++;
}
if ((c = hexdigit(**pos)) >= 0) {
val->c = (val->c << 4) + c;
(*pos)++;
}
break;
case 'a':
val->c = '\a';
break;
case 'e':
val->c = 033 /* ESC */;
break;
case 'f':
val->c = '\f';
break;
case 'n':
val->c = '\n';
break;
case 'r':
val->c = '\r';
break;
case 't':
val->c = '\t';
break;
}
}
return CHAR;
}
void
regex_error(Node ** __attribute__((unused)),
const char *text __attribute__((unused)),
const char *error __attribute__((unused)))
{
/* We don't want the library to print error messages. */
}

View File

@ -1,10 +0,0 @@
#ifndef __REGEXP_H
#define __REGEXP_H
/**
* Flex file format, but without state compression and with negative
* match results in the YYTD_ID_DEF table instead.
*/
#define YYTH_REGEXP_MAGIC 0x1B5E783D
#endif /* __REGEXP_H */