mirror of
https://gitlab.com/apparmor/apparmor
synced 2025-08-22 10:07:12 +00:00
Elaborate in class comment of firstpos, lastpos, followpos, and nullable fields beyond just referencing the Dragon book. Also add the section of the book these are explained in.
811 lines
19 KiB
C++
811 lines
19 KiB
C++
/*
|
|
* (C) 2006, 2007 Andreas Gruenbacher <agruen@suse.de>
|
|
* Copyright (c) 2003-2008 Novell, Inc. (All rights reserved)
|
|
* Copyright 2009-2013 Canonical Ltd.
|
|
*
|
|
* The libapparmor library is licensed under the terms of the GNU
|
|
* Lesser General Public License, version 2.1. Please see the file
|
|
* COPYING.LGPL.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*
|
|
* Functions to create/manipulate an expression tree for regular expressions
|
|
* that have been parsed.
|
|
*
|
|
* The expression tree can be used directly after the parse creates it, or
|
|
* it can be factored so that the set of important nodes is smaller.
|
|
* Having a reduced set of important nodes generally results in a dfa that
|
|
* is closer to minimum (fewer redundant states are created). It also
|
|
* results in fewer important nodes in a the state set during subset
|
|
* construction resulting in less memory used to create a dfa.
|
|
*
|
|
* Generally it is worth doing expression tree simplification before dfa
|
|
* construction, if the regular expression tree contains any alternations.
|
|
* Even if the regular expression doesn't simplification should be fast
|
|
* enough that it can be used with minimal overhead.
|
|
*/
|
|
#ifndef __LIBAA_RE_EXPR_H
|
|
#define __LIBAA_RE_EXPR_H
|
|
|
|
#include <map>
|
|
#include <set>
|
|
#include <stack>
|
|
#include <ostream>
|
|
|
|
#include <stdint.h>
|
|
|
|
#include "apparmor_re.h"
|
|
|
|
using namespace std;
|
|
|
|
typedef unsigned char uchar;
|
|
typedef set<uchar> Chars;
|
|
|
|
ostream &operator<<(ostream &os, uchar c);
|
|
|
|
/* Compute the union of two sets. */
|
|
template<class T> set<T> operator+(const set<T> &a, const set<T> &b)
|
|
{
|
|
set<T> c(a);
|
|
c.insert(b.begin(), b.end());
|
|
return c;
|
|
}
|
|
|
|
/**
|
|
* When creating DFAs from regex trees, a DFA state is constructed from
|
|
* a set of important nodes in the syntax tree. This includes AcceptNodes,
|
|
* which indicate that when a match ends in a particular state, the
|
|
* regular expressions that the AcceptNode belongs to match.
|
|
*/
|
|
class Node;
|
|
class ImportantNode;
|
|
typedef set<ImportantNode *> NodeSet;
|
|
|
|
/**
|
|
* Text-dump a state (for debugging).
|
|
*/
|
|
ostream &operator<<(ostream &os, const NodeSet &state);
|
|
|
|
/**
|
|
* Out-edges from a state to another: we store the follow-set of Nodes
|
|
* for each input character that is not a default match in
|
|
* cases (i.e., following a CharNode or CharSetNode), and default
|
|
* matches in otherwise as well as in all matching explicit cases
|
|
* (i.e., following an AnyCharNode or NotCharSetNode). This avoids
|
|
* enumerating all the explicit tranitions for default matches.
|
|
*/
|
|
typedef struct Cases {
|
|
typedef map<uchar, NodeSet *>::iterator iterator;
|
|
iterator begin() { return cases.begin(); }
|
|
iterator end() { return cases.end(); }
|
|
|
|
Cases(): otherwise(0) { }
|
|
map<uchar, NodeSet *> cases;
|
|
NodeSet *otherwise;
|
|
} Cases;
|
|
|
|
ostream &operator<<(ostream &os, Node &node);
|
|
|
|
/* An abstract node in the syntax tree. */
|
|
class Node {
|
|
public:
|
|
Node(): nullable(false), label(0) { child[0] = child[1] = 0; }
|
|
Node(Node *left): nullable(false), label(0)
|
|
{
|
|
child[0] = left;
|
|
child[1] = 0;
|
|
}
|
|
Node(Node *left, Node *right): nullable(false), label(0)
|
|
{
|
|
child[0] = left;
|
|
child[1] = right;
|
|
}
|
|
virtual ~Node()
|
|
{
|
|
if (child[0])
|
|
child[0]->release();
|
|
if (child[1])
|
|
child[1]->release();
|
|
}
|
|
|
|
/**
|
|
* firstpos, lastpos, and followpos are used to convert the syntax tree
|
|
* to a DFA.
|
|
*
|
|
* firstpos holds nodes that can match the first character of a string
|
|
* that matches the syntax tree. For the regex 'a*bcd', firstpos holds
|
|
* the 'a' and 'b' nodes. firstpos is used to determine the start state
|
|
* of the DFA.
|
|
*
|
|
* lastpos is the same as firstpos for the last character. For the regex
|
|
* 'a*bcd', lastpos holds the 'd' node. lastpos is used to determine the
|
|
* accepting states of the DFA.
|
|
*
|
|
* followpos holds the set of nodes that can match a character directly
|
|
* after the current node. For the regexp 'a*bcd', the followpos of the
|
|
* 'a' node are the 'b' node and the 'a' node itself. followpos is used
|
|
* to determine the transitions of the DFA.
|
|
*
|
|
* nullable indicates that a node can match the empty string. It is used
|
|
* to compute firstpos and lastpos.
|
|
*
|
|
* See the "Dragon Book" 2nd Edition section 3.9.2 for an in-depth
|
|
* explanation.
|
|
*/
|
|
virtual void compute_nullable() { }
|
|
virtual void compute_firstpos() = 0;
|
|
virtual void compute_lastpos() = 0;
|
|
virtual void compute_followpos() { }
|
|
|
|
virtual int eq(Node *other) = 0;
|
|
virtual ostream &dump(ostream &os) = 0;
|
|
void dump_syntax_tree(ostream &os);
|
|
virtual void normalize(int dir)
|
|
{
|
|
if (child[dir])
|
|
child[dir]->normalize(dir);
|
|
if (child[!dir])
|
|
child[!dir]->normalize(dir);
|
|
}
|
|
/* return false if no work done */
|
|
virtual int normalize_eps(int dir __attribute__((unused))) { return 0; }
|
|
|
|
bool nullable;
|
|
NodeSet firstpos, lastpos, followpos;
|
|
/* child 0 is left, child 1 is right */
|
|
Node *child[2];
|
|
|
|
unsigned int label; /* unique number for debug etc */
|
|
/**
|
|
* We indirectly release Nodes through a virtual function because
|
|
* accept and Eps Nodes are shared, and must be treated specially.
|
|
* We could use full reference counting here but the indirect release
|
|
* is sufficient and has less overhead
|
|
*/
|
|
virtual void release(void) { delete this; }
|
|
};
|
|
|
|
class InnerNode: public Node {
|
|
public:
|
|
InnerNode(): Node() { };
|
|
InnerNode(Node *left): Node(left) { };
|
|
InnerNode(Node *left, Node *right): Node(left, right) { };
|
|
};
|
|
|
|
class OneChildNode: public InnerNode {
|
|
public:
|
|
OneChildNode(Node *left): InnerNode(left) { };
|
|
};
|
|
|
|
class TwoChildNode: public InnerNode {
|
|
public:
|
|
TwoChildNode(Node *left, Node *right): InnerNode(left, right) { };
|
|
virtual int normalize_eps(int dir);
|
|
};
|
|
|
|
class LeafNode: public Node {
|
|
public:
|
|
LeafNode(): Node() { };
|
|
virtual void normalize(int dir __attribute__((unused))) { return; }
|
|
};
|
|
|
|
/* Match nothing (//). */
|
|
class EpsNode: public LeafNode {
|
|
public:
|
|
EpsNode(): LeafNode()
|
|
{
|
|
nullable = true;
|
|
label = 0;
|
|
}
|
|
void release(void)
|
|
{
|
|
/* don't delete Eps nodes because there is a single static
|
|
* instance shared by all trees. Look for epsnode in the code
|
|
*/
|
|
}
|
|
|
|
void compute_firstpos() { }
|
|
void compute_lastpos() { }
|
|
int eq(Node *other)
|
|
{
|
|
if (dynamic_cast<EpsNode *>(other))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
return os << "[]";
|
|
}
|
|
};
|
|
|
|
/**
|
|
* Leaf nodes in the syntax tree are important to us: they describe the
|
|
* characters that the regular expression matches. We also consider
|
|
* AcceptNodes import: they indicate when a regular expression matches.
|
|
*/
|
|
class ImportantNode: public LeafNode {
|
|
public:
|
|
ImportantNode(): LeafNode() { }
|
|
void compute_firstpos() { firstpos.insert(this); }
|
|
void compute_lastpos() { lastpos.insert(this); }
|
|
virtual void follow(Cases &cases) = 0;
|
|
virtual int is_accept(void) = 0;
|
|
virtual int is_postprocess(void) = 0;
|
|
};
|
|
|
|
/* common base class for all the different classes that contain
|
|
* character information.
|
|
*/
|
|
class CNode: public ImportantNode {
|
|
public:
|
|
CNode(): ImportantNode() { }
|
|
int is_accept(void) { return false; }
|
|
int is_postprocess(void) { return false; }
|
|
};
|
|
|
|
/* Match one specific character (/c/). */
|
|
class CharNode: public CNode {
|
|
public:
|
|
CharNode(uchar c): c(c) { }
|
|
void follow(Cases &cases)
|
|
{
|
|
NodeSet **x = &cases.cases[c];
|
|
if (!*x) {
|
|
if (cases.otherwise)
|
|
*x = new NodeSet(*cases.otherwise);
|
|
else
|
|
*x = new NodeSet;
|
|
}
|
|
(*x)->insert(followpos.begin(), followpos.end());
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
CharNode *o = dynamic_cast<CharNode *>(other);
|
|
if (o) {
|
|
return c == o->c;
|
|
}
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
return os << c;
|
|
}
|
|
|
|
uchar c;
|
|
};
|
|
|
|
/* Match a set of characters (/[abc]/). */
|
|
class CharSetNode: public CNode {
|
|
public:
|
|
CharSetNode(Chars &chars): chars(chars) { }
|
|
void follow(Cases &cases)
|
|
{
|
|
for (Chars::iterator i = chars.begin(); i != chars.end(); i++) {
|
|
NodeSet **x = &cases.cases[*i];
|
|
if (!*x) {
|
|
if (cases.otherwise)
|
|
*x = new NodeSet(*cases.otherwise);
|
|
else
|
|
*x = new NodeSet;
|
|
}
|
|
(*x)->insert(followpos.begin(), followpos.end());
|
|
}
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
CharSetNode *o = dynamic_cast<CharSetNode *>(other);
|
|
if (!o || chars.size() != o->chars.size())
|
|
return 0;
|
|
|
|
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
|
|
i != chars.end() && j != o->chars.end(); i++, j++) {
|
|
if (*i != *j)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
os << '[';
|
|
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
|
|
os << *i;
|
|
return os << ']';
|
|
}
|
|
|
|
Chars chars;
|
|
};
|
|
|
|
/* Match all except one character (/[^abc]/). */
|
|
class NotCharSetNode: public CNode {
|
|
public:
|
|
NotCharSetNode(Chars &chars): chars(chars) { }
|
|
void follow(Cases &cases)
|
|
{
|
|
if (!cases.otherwise)
|
|
cases.otherwise = new NodeSet;
|
|
for (Chars::iterator j = chars.begin(); j != chars.end(); j++) {
|
|
NodeSet **x = &cases.cases[*j];
|
|
if (!*x)
|
|
*x = new NodeSet(*cases.otherwise);
|
|
}
|
|
/* Note: Add to the nonmatching characters after copying away
|
|
* the old otherwise state for the matching characters.
|
|
*/
|
|
cases.otherwise->insert(followpos.begin(), followpos.end());
|
|
for (Cases::iterator i = cases.begin(); i != cases.end();
|
|
i++) {
|
|
if (chars.find(i->first) == chars.end())
|
|
i->second->insert(followpos.begin(),
|
|
followpos.end());
|
|
}
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
NotCharSetNode *o = dynamic_cast<NotCharSetNode *>(other);
|
|
if (!o || chars.size() != o->chars.size())
|
|
return 0;
|
|
|
|
for (Chars::iterator i = chars.begin(), j = o->chars.begin();
|
|
i != chars.end() && j != o->chars.end(); i++, j++) {
|
|
if (*i != *j)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
os << "[^";
|
|
for (Chars::iterator i = chars.begin(); i != chars.end(); i++)
|
|
os << *i;
|
|
return os << ']';
|
|
}
|
|
|
|
Chars chars;
|
|
};
|
|
|
|
/* Match any character (/./). */
|
|
class AnyCharNode: public CNode {
|
|
public:
|
|
AnyCharNode() { }
|
|
void follow(Cases &cases)
|
|
{
|
|
if (!cases.otherwise)
|
|
cases.otherwise = new NodeSet;
|
|
cases.otherwise->insert(followpos.begin(), followpos.end());
|
|
for (Cases::iterator i = cases.begin(); i != cases.end();
|
|
i++)
|
|
i->second->insert(followpos.begin(), followpos.end());
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
if (dynamic_cast<AnyCharNode *>(other))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os) { return os << "."; }
|
|
};
|
|
|
|
/* Match a node zero or more times. (This is a unary operator.) */
|
|
class StarNode: public OneChildNode {
|
|
public:
|
|
StarNode(Node *left): OneChildNode(left) { nullable = true; }
|
|
void compute_firstpos() { firstpos = child[0]->firstpos; }
|
|
void compute_lastpos() { lastpos = child[0]->lastpos; }
|
|
void compute_followpos()
|
|
{
|
|
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
|
|
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
|
|
(*i)->followpos.insert(to.begin(), to.end());
|
|
}
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
if (dynamic_cast<StarNode *>(other))
|
|
return child[0]->eq(other->child[0]);
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
os << '(';
|
|
child[0]->dump(os);
|
|
return os << ")*";
|
|
}
|
|
};
|
|
|
|
/* Match a node one or more times. (This is a unary operator.) */
|
|
class PlusNode: public OneChildNode {
|
|
public:
|
|
PlusNode(Node *left): OneChildNode(left) {
|
|
}
|
|
void compute_nullable() { nullable = child[0]->nullable; }
|
|
void compute_firstpos() { firstpos = child[0]->firstpos; }
|
|
void compute_lastpos() { lastpos = child[0]->lastpos; }
|
|
void compute_followpos()
|
|
{
|
|
NodeSet from = child[0]->lastpos, to = child[0]->firstpos;
|
|
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
|
|
(*i)->followpos.insert(to.begin(), to.end());
|
|
}
|
|
}
|
|
int eq(Node *other) {
|
|
if (dynamic_cast<PlusNode *>(other))
|
|
return child[0]->eq(other->child[0]);
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os) {
|
|
os << '(';
|
|
child[0]->dump(os);
|
|
return os << ")+";
|
|
}
|
|
};
|
|
|
|
/* Match a pair of consecutive nodes. */
|
|
class CatNode: public TwoChildNode {
|
|
public:
|
|
CatNode(Node *left, Node *right): TwoChildNode(left, right) { }
|
|
void compute_nullable()
|
|
{
|
|
nullable = child[0]->nullable && child[1]->nullable;
|
|
}
|
|
void compute_firstpos()
|
|
{
|
|
if (child[0]->nullable)
|
|
firstpos = child[0]->firstpos + child[1]->firstpos;
|
|
else
|
|
firstpos = child[0]->firstpos;
|
|
}
|
|
void compute_lastpos()
|
|
{
|
|
if (child[1]->nullable)
|
|
lastpos = child[0]->lastpos + child[1]->lastpos;
|
|
else
|
|
lastpos = child[1]->lastpos;
|
|
}
|
|
void compute_followpos()
|
|
{
|
|
NodeSet from = child[0]->lastpos, to = child[1]->firstpos;
|
|
for (NodeSet::iterator i = from.begin(); i != from.end(); i++) {
|
|
(*i)->followpos.insert(to.begin(), to.end());
|
|
}
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
if (dynamic_cast<CatNode *>(other)) {
|
|
if (!child[0]->eq(other->child[0]))
|
|
return 0;
|
|
return child[1]->eq(other->child[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
child[0]->dump(os);
|
|
child[1]->dump(os);
|
|
return os;
|
|
}
|
|
void normalize(int dir);
|
|
};
|
|
|
|
/* Match one of two alternative nodes. */
|
|
class AltNode: public TwoChildNode {
|
|
public:
|
|
AltNode(Node *left, Node *right): TwoChildNode(left, right) { }
|
|
void compute_nullable()
|
|
{
|
|
nullable = child[0]->nullable || child[1]->nullable;
|
|
}
|
|
void compute_lastpos()
|
|
{
|
|
lastpos = child[0]->lastpos + child[1]->lastpos;
|
|
}
|
|
void compute_firstpos()
|
|
{
|
|
firstpos = child[0]->firstpos + child[1]->firstpos;
|
|
}
|
|
int eq(Node *other)
|
|
{
|
|
if (dynamic_cast<AltNode *>(other)) {
|
|
if (!child[0]->eq(other->child[0]))
|
|
return 0;
|
|
return child[1]->eq(other->child[1]);
|
|
}
|
|
return 0;
|
|
}
|
|
ostream &dump(ostream &os)
|
|
{
|
|
os << '(';
|
|
child[0]->dump(os);
|
|
os << '|';
|
|
child[1]->dump(os);
|
|
os << ')';
|
|
return os;
|
|
}
|
|
void normalize(int dir);
|
|
};
|
|
|
|
class SharedNode: public ImportantNode {
|
|
public:
|
|
SharedNode() { }
|
|
void release(void)
|
|
{
|
|
/* don't delete SharedNodes via release as they are shared, and
|
|
* will be deleted when the table they are stored in is deleted
|
|
*/
|
|
}
|
|
|
|
void follow(Cases &cases __attribute__ ((unused)))
|
|
{
|
|
/* Nothing to follow. */
|
|
}
|
|
|
|
/* requires shared nodes to be common by pointer */
|
|
int eq(Node *other) { return (this == other); }
|
|
};
|
|
|
|
/**
|
|
* Indicate that a regular expression matches. An AcceptNode itself
|
|
* doesn't match anything, so it will never generate any transitions.
|
|
*/
|
|
class AcceptNode: public SharedNode {
|
|
public:
|
|
AcceptNode() { }
|
|
int is_accept(void) { return true; }
|
|
int is_postprocess(void) { return false; }
|
|
};
|
|
|
|
class MatchFlag: public AcceptNode {
|
|
public:
|
|
MatchFlag(uint32_t flag, uint32_t audit): flag(flag), audit(audit) { }
|
|
ostream &dump(ostream &os) { return os << "< 0x" << hex << flag << '>'; }
|
|
|
|
uint32_t flag;
|
|
uint32_t audit;
|
|
};
|
|
|
|
class ExactMatchFlag: public MatchFlag {
|
|
public:
|
|
ExactMatchFlag(uint32_t flag, uint32_t audit): MatchFlag(flag, audit) {}
|
|
};
|
|
|
|
class DenyMatchFlag: public MatchFlag {
|
|
public:
|
|
DenyMatchFlag(uint32_t flag, uint32_t quiet): MatchFlag(flag, quiet) {}
|
|
};
|
|
|
|
/* Traverse the syntax tree depth-first in an iterator-like manner. */
|
|
class depth_first_traversal {
|
|
stack<Node *>pos;
|
|
void push_left(Node *node) {
|
|
pos.push(node);
|
|
|
|
while (dynamic_cast<InnerNode *>(node)) {
|
|
pos.push(node->child[0]);
|
|
node = node->child[0];
|
|
}
|
|
}
|
|
public:
|
|
depth_first_traversal(Node *node) { push_left(node); }
|
|
Node *operator*() { return pos.top(); }
|
|
Node *operator->() { return pos.top(); }
|
|
operator bool() { return !pos.empty(); }
|
|
void operator++(int)
|
|
{
|
|
Node *last = pos.top();
|
|
pos.pop();
|
|
|
|
if (!pos.empty()) {
|
|
/* no need to dynamic cast, as we just popped a node so
|
|
* the top node must be an inner node */
|
|
InnerNode *node = (InnerNode *) (pos.top());
|
|
if (node->child[1] && node->child[1] != last) {
|
|
push_left(node->child[1]);
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct node_counts {
|
|
int charnode;
|
|
int charset;
|
|
int notcharset;
|
|
int alt;
|
|
int plus;
|
|
int star;
|
|
int any;
|
|
int cat;
|
|
};
|
|
|
|
extern EpsNode epsnode;
|
|
|
|
int debug_tree(Node *t);
|
|
Node *simplify_tree(Node *t, dfaflags_t flags);
|
|
void label_nodes(Node *root);
|
|
unsigned long hash_NodeSet(NodeSet *ns);
|
|
void flip_tree(Node *node);
|
|
|
|
|
|
|
|
/*
|
|
* hashedNodes - for efficient set comparison
|
|
*/
|
|
class hashedNodeSet {
|
|
public:
|
|
unsigned long hash;
|
|
NodeSet *nodes;
|
|
|
|
hashedNodeSet(NodeSet *n): nodes(n)
|
|
{
|
|
hash = hash_NodeSet(n);
|
|
}
|
|
|
|
bool operator<(hashedNodeSet const &rhs)const
|
|
{
|
|
if (hash == rhs.hash) {
|
|
if (nodes->size() == rhs.nodes->size())
|
|
return *nodes < *(rhs.nodes);
|
|
else
|
|
return nodes->size() < rhs.nodes->size();
|
|
} else {
|
|
return hash < rhs.hash;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
class hashedNodeVec {
|
|
public:
|
|
typedef ImportantNode ** iterator;
|
|
iterator begin() { return nodes; }
|
|
iterator end() { iterator t = nodes ? &nodes[len] : NULL; return t; }
|
|
|
|
unsigned long hash;
|
|
unsigned long len;
|
|
ImportantNode **nodes;
|
|
|
|
hashedNodeVec(NodeSet *n)
|
|
{
|
|
hash = hash_NodeSet(n);
|
|
len = n->size();
|
|
nodes = new ImportantNode *[n->size()];
|
|
|
|
unsigned int j = 0;
|
|
for (NodeSet::iterator i = n->begin(); i != n->end(); i++, j++) {
|
|
nodes[j] = *i;
|
|
}
|
|
}
|
|
|
|
hashedNodeVec(NodeSet *n, unsigned long h): hash(h)
|
|
{
|
|
len = n->size();
|
|
nodes = new ImportantNode *[n->size()];
|
|
ImportantNode **j = nodes;
|
|
for (NodeSet::iterator i = n->begin(); i != n->end(); i++) {
|
|
*(j++) = *i;
|
|
}
|
|
}
|
|
|
|
~hashedNodeVec()
|
|
{
|
|
delete [] nodes;
|
|
}
|
|
|
|
unsigned long size()const { return len; }
|
|
|
|
bool operator<(hashedNodeVec const &rhs)const
|
|
{
|
|
if (hash == rhs.hash) {
|
|
if (len == rhs.size()) {
|
|
for (unsigned int i = 0; i < len; i++) {
|
|
if (nodes[i] != rhs.nodes[i])
|
|
return nodes[i] < rhs.nodes[i];
|
|
}
|
|
return false;
|
|
}
|
|
return len < rhs.size();
|
|
}
|
|
return hash < rhs.hash;
|
|
}
|
|
};
|
|
|
|
class CacheStats {
|
|
public:
|
|
unsigned long dup, sum, max;
|
|
|
|
CacheStats(void): dup(0), sum(0), max(0) { };
|
|
|
|
void clear(void) { dup = sum = max = 0; }
|
|
virtual unsigned long size(void) const = 0;
|
|
};
|
|
|
|
class NodeCache: public CacheStats {
|
|
public:
|
|
set<hashedNodeSet> cache;
|
|
|
|
NodeCache(void): cache() { };
|
|
~NodeCache() { clear(); };
|
|
|
|
virtual unsigned long size(void) const { return cache.size(); }
|
|
|
|
void clear()
|
|
{
|
|
for (set<hashedNodeSet>::iterator i = cache.begin();
|
|
i != cache.end(); i++) {
|
|
delete i->nodes;
|
|
}
|
|
cache.clear();
|
|
CacheStats::clear();
|
|
}
|
|
|
|
NodeSet *insert(NodeSet *nodes)
|
|
{
|
|
if (!nodes)
|
|
return NULL;
|
|
pair<set<hashedNodeSet>::iterator,bool> uniq;
|
|
uniq = cache.insert(hashedNodeSet(nodes));
|
|
if (uniq.second == false) {
|
|
delete(nodes);
|
|
dup++;
|
|
} else {
|
|
sum += nodes->size();
|
|
if (nodes->size() > max)
|
|
max = nodes->size();
|
|
}
|
|
return uniq.first->nodes;
|
|
}
|
|
};
|
|
|
|
struct deref_less_than {
|
|
bool operator()(hashedNodeVec * const &lhs, hashedNodeVec * const &rhs)const
|
|
{
|
|
return *lhs < *rhs;
|
|
}
|
|
};
|
|
|
|
class NodeVecCache: public CacheStats {
|
|
public:
|
|
set<hashedNodeVec *, deref_less_than> cache;
|
|
|
|
NodeVecCache(void): cache() { };
|
|
~NodeVecCache() { clear(); };
|
|
|
|
virtual unsigned long size(void) const { return cache.size(); }
|
|
|
|
void clear()
|
|
{
|
|
for (set<hashedNodeVec *>::iterator i = cache.begin();
|
|
i != cache.end(); i++) {
|
|
delete *i;
|
|
}
|
|
cache.clear();
|
|
CacheStats::clear();
|
|
}
|
|
|
|
hashedNodeVec *insert(NodeSet *nodes)
|
|
{
|
|
if (!nodes)
|
|
return NULL;
|
|
pair<set<hashedNodeVec *>::iterator,bool> uniq;
|
|
hashedNodeVec *nv = new hashedNodeVec(nodes);
|
|
uniq = cache.insert(nv);
|
|
if (uniq.second == false) {
|
|
delete nv;
|
|
dup++;
|
|
} else {
|
|
sum += nodes->size();
|
|
if (nodes->size() > max)
|
|
max = nodes->size();
|
|
}
|
|
delete(nodes);
|
|
return (*uniq.first);
|
|
}
|
|
};
|
|
|
|
#endif /* __LIBAA_RE_EXPR */
|