2019-11-05 13:55:54 -08:00
|
|
|
/*
|
|
|
|
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
|
|
|
|
*
|
|
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
2020-09-14 16:20:40 -07:00
|
|
|
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
|
2019-11-05 13:55:54 -08:00
|
|
|
*
|
|
|
|
* See the COPYRIGHT file distributed with this work for additional
|
|
|
|
* information regarding copyright ownership.
|
|
|
|
*/
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
#include <libgen.h>
|
2019-11-05 13:55:54 -08:00
|
|
|
#include <unistd.h>
|
|
|
|
#include <uv.h>
|
|
|
|
|
|
|
|
#include <isc/atomic.h>
|
2021-05-05 11:51:39 +02:00
|
|
|
#include <isc/barrier.h>
|
2019-11-05 13:55:54 -08:00
|
|
|
#include <isc/buffer.h>
|
|
|
|
#include <isc/condition.h>
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
#include <isc/errno.h>
|
|
|
|
#include <isc/log.h>
|
2019-11-05 13:55:54 -08:00
|
|
|
#include <isc/magic.h>
|
|
|
|
#include <isc/mem.h>
|
|
|
|
#include <isc/netmgr.h>
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
#include <isc/quota.h>
|
2019-11-05 13:55:54 -08:00
|
|
|
#include <isc/random.h>
|
|
|
|
#include <isc/refcount.h>
|
|
|
|
#include <isc/region.h>
|
|
|
|
#include <isc/result.h>
|
|
|
|
#include <isc/sockaddr.h>
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
#include <isc/stdtime.h>
|
2019-11-05 13:55:54 -08:00
|
|
|
#include <isc/thread.h>
|
|
|
|
#include <isc/util.h>
|
|
|
|
|
|
|
|
#include "netmgr-int.h"
|
2020-02-12 13:59:18 +01:00
|
|
|
#include "uv-compat.h"
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2019-11-08 10:52:49 -08:00
|
|
|
/*%<
|
|
|
|
*
|
|
|
|
* Maximum number of simultaneous handles in flight supported for a single
|
|
|
|
* connected TCPDNS socket. This value was chosen arbitrarily, and may be
|
|
|
|
* changed in the future.
|
|
|
|
*/
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
static atomic_uint_fast32_t last_tcpdnsquota_log = ATOMIC_VAR_INIT(0);
|
|
|
|
|
|
|
|
static bool
|
|
|
|
can_log_tcpdns_quota(void) {
|
|
|
|
isc_stdtime_t now, last;
|
|
|
|
|
|
|
|
isc_stdtime_get(&now);
|
|
|
|
last = atomic_exchange_relaxed(&last_tcpdnsquota_log, now);
|
|
|
|
if (now != last) {
|
|
|
|
return (true);
|
|
|
|
}
|
|
|
|
|
|
|
|
return (false);
|
|
|
|
}
|
|
|
|
|
|
|
|
static isc_result_t
|
|
|
|
tcpdns_connect_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req);
|
|
|
|
|
2020-03-02 12:10:26 +01:00
|
|
|
static void
|
|
|
|
tcpdns_close_direct(isc_nmsocket_t *sock);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
static void
|
|
|
|
tcpdns_connect_cb(uv_connect_t *uvreq, int status);
|
|
|
|
|
|
|
|
static void
|
|
|
|
tcpdns_connection_cb(uv_stream_t *server, int status);
|
|
|
|
|
|
|
|
static void
|
|
|
|
tcpdns_close_cb(uv_handle_t *uvhandle);
|
|
|
|
|
|
|
|
static isc_result_t
|
|
|
|
accept_connection(isc_nmsocket_t *ssock, isc_quota_t *quota);
|
|
|
|
|
|
|
|
static void
|
|
|
|
quota_accept_cb(isc_quota_t *quota, void *sock0);
|
|
|
|
|
|
|
|
static void
|
|
|
|
stop_tcpdns_parent(isc_nmsocket_t *sock);
|
|
|
|
static void
|
|
|
|
stop_tcpdns_child(isc_nmsocket_t *sock);
|
|
|
|
|
2020-06-17 12:09:10 -07:00
|
|
|
static isc_result_t
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
tcpdns_connect_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req) {
|
|
|
|
isc__networker_t *worker = NULL;
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_result_t result = ISC_R_UNSET;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
int r;
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(VALID_UVREQ(req));
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(isc__nm_in_netthread());
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
2020-09-11 10:53:31 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
worker = &sock->mgr->workers[sock->tid];
|
2019-11-25 18:36:14 -03:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->connecting, true);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_tcp_init(&worker->loop, &sock->uv_handle.tcp);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
|
|
|
uv_handle_set_data(&sock->uv_handle.handle, sock);
|
2020-06-04 23:13:54 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_timer_init(&worker->loop, &sock->timer);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
2020-06-09 17:07:16 -07:00
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nm_closing(sock)) {
|
|
|
|
result = ISC_R_CANCELED;
|
|
|
|
goto error;
|
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_tcp_open(&sock->uv_handle.tcp, sock->fd);
|
|
|
|
if (r != 0) {
|
|
|
|
isc__nm_closesocket(sock->fd);
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPEN]);
|
2020-06-04 23:13:54 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (req->local.length != 0) {
|
|
|
|
r = uv_tcp_bind(&sock->uv_handle.tcp, &req->local.type.sa, 0);
|
|
|
|
/*
|
|
|
|
* In case of shared socket UV_EINVAL will be returned and needs
|
|
|
|
* to be ignored
|
|
|
|
*/
|
|
|
|
if (r != 0 && r != UV_EINVAL) {
|
|
|
|
isc__nm_incstats(sock->mgr,
|
|
|
|
sock->statsindex[STATID_BINDFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
}
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
uv_handle_set_data(&req->uv_req.handle, req);
|
|
|
|
r = uv_tcp_connect(&req->uv_req.connect, &sock->uv_handle.tcp,
|
|
|
|
&req->peer.type.sa, tcpdns_connect_cb);
|
|
|
|
if (r != 0) {
|
|
|
|
isc__nm_incstats(sock->mgr,
|
|
|
|
sock->statsindex[STATID_CONNECTFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CONNECT]);
|
2020-06-17 12:09:10 -07:00
|
|
|
|
2021-03-30 09:25:09 +02:00
|
|
|
uv_handle_set_data((uv_handle_t *)&sock->timer, &req->uv_req.connect);
|
|
|
|
isc__nmsocket_timer_start(sock);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->connected, true);
|
2020-06-17 12:09:10 -07:00
|
|
|
|
2020-12-03 13:00:33 +01:00
|
|
|
done:
|
|
|
|
result = isc__nm_uverr2result(r);
|
2021-03-31 11:48:41 +02:00
|
|
|
error:
|
2020-12-03 13:00:33 +01:00
|
|
|
LOCK(&sock->lock);
|
|
|
|
sock->result = result;
|
|
|
|
SIGNAL(&sock->cond);
|
|
|
|
if (!atomic_load(&sock->active)) {
|
|
|
|
WAIT(&sock->scond, &sock->lock);
|
|
|
|
}
|
|
|
|
INSIST(atomic_load(&sock->active));
|
|
|
|
UNLOCK(&sock->lock);
|
2019-11-08 10:52:49 -08:00
|
|
|
|
2020-12-03 13:00:33 +01:00
|
|
|
return (result);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2019-11-08 10:52:49 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
void
|
|
|
|
isc__nm_async_tcpdnsconnect(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnsconnect_t *ievent =
|
|
|
|
(isc__netievent_tcpdnsconnect_t *)ev0;
|
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
|
|
|
isc__nm_uvreq_t *req = ievent->req;
|
|
|
|
isc_result_t result = ISC_R_SUCCESS;
|
2020-06-10 11:32:39 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
UNUSED(worker);
|
2020-09-11 10:53:31 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
|
|
|
REQUIRE(sock->iface != NULL);
|
|
|
|
REQUIRE(sock->parent == NULL);
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
2019-11-08 10:52:49 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = tcpdns_connect_direct(sock, req);
|
2020-12-03 13:00:33 +01:00
|
|
|
if (result != ISC_R_SUCCESS) {
|
2021-03-31 18:32:32 +02:00
|
|
|
isc__nmsocket_clearcb(sock);
|
|
|
|
isc__nm_connectcb(sock, req, result, true);
|
2020-12-03 13:00:33 +01:00
|
|
|
atomic_store(&sock->active, false);
|
|
|
|
isc__nm_tcpdns_close(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2019-11-08 10:52:49 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/*
|
|
|
|
* The sock is now attached to the handle.
|
|
|
|
*/
|
|
|
|
isc__nmsocket_detach(&sock);
|
2019-11-08 10:52:49 -08:00
|
|
|
}
|
|
|
|
|
2019-11-05 13:55:54 -08:00
|
|
|
static void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
tcpdns_connect_cb(uv_connect_t *uvreq, int status) {
|
|
|
|
isc_result_t result;
|
|
|
|
isc__nm_uvreq_t *req = NULL;
|
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)uvreq->handle);
|
|
|
|
struct sockaddr_storage ss;
|
|
|
|
int r;
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
2021-03-30 09:25:09 +02:00
|
|
|
|
|
|
|
isc__nmsocket_timer_stop(sock);
|
|
|
|
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
|
2020-11-02 15:55:12 +01:00
|
|
|
|
2021-04-06 18:27:38 +02:00
|
|
|
if (!atomic_load(&sock->connecting)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
req = uv_handle_get_data((uv_handle_t *)uvreq);
|
2020-11-02 15:55:12 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_UVREQ(req));
|
|
|
|
REQUIRE(VALID_NMHANDLE(req->handle));
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2021-04-06 18:27:38 +02:00
|
|
|
if (isc__nmsocket_closing(sock)) {
|
2021-03-30 09:25:09 +02:00
|
|
|
/* Socket was closed midflight by isc__nm_tcpdns_shutdown() */
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = ISC_R_CANCELED;
|
|
|
|
goto error;
|
2021-03-30 09:25:09 +02:00
|
|
|
} else if (status == UV_ETIMEDOUT) {
|
|
|
|
/* Timeout status code here indicates hard error */
|
|
|
|
result = ISC_R_CANCELED;
|
|
|
|
goto error;
|
|
|
|
} else if (status != 0) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = isc__nm_uverr2result(status);
|
|
|
|
goto error;
|
2019-11-08 10:52:49 -08:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CONNECT]);
|
|
|
|
r = uv_tcp_getpeername(&sock->uv_handle.tcp, (struct sockaddr *)&ss,
|
|
|
|
&(int){ sizeof(ss) });
|
|
|
|
if (r != 0) {
|
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto error;
|
|
|
|
}
|
2019-11-20 22:33:35 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->connecting, false);
|
2019-11-08 10:52:49 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = isc_sockaddr_fromsockaddr(&sock->peer, (struct sockaddr *)&ss);
|
|
|
|
RUNTIME_CHECK(result == ISC_R_SUCCESS);
|
2019-11-08 10:52:49 -08:00
|
|
|
|
2021-03-30 09:25:09 +02:00
|
|
|
isc__nm_connectcb(sock, req, ISC_R_SUCCESS, false);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return;
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
error:
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_connect_cb(sock, req, result, false);
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
|
|
|
|
2021-03-31 18:32:32 +02:00
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nm_tcpdnsconnect(isc_nm_t *mgr, isc_nmiface_t *local, isc_nmiface_t *peer,
|
|
|
|
isc_nm_cb_t cb, void *cbarg, unsigned int timeout,
|
|
|
|
size_t extrahandlesize) {
|
|
|
|
isc_result_t result = ISC_R_SUCCESS;
|
|
|
|
isc_nmsocket_t *sock = NULL;
|
|
|
|
isc__netievent_tcpdnsconnect_t *ievent = NULL;
|
|
|
|
isc__nm_uvreq_t *req = NULL;
|
|
|
|
sa_family_t sa_family;
|
2019-11-05 13:55:54 -08:00
|
|
|
|
|
|
|
REQUIRE(VALID_NM(mgr));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(local != NULL);
|
|
|
|
REQUIRE(peer != NULL);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sa_family = peer->addr.type.sa.sa_family;
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock = isc_mem_get(mgr->mctx, sizeof(*sock));
|
|
|
|
isc__nmsocket_init(sock, mgr, isc_nm_tcpdnssocket, local);
|
|
|
|
|
|
|
|
sock->extrahandlesize = extrahandlesize;
|
|
|
|
sock->connect_timeout = timeout;
|
2021-05-05 11:51:39 +02:00
|
|
|
sock->result = ISC_R_UNSET;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_init(&sock->client, true);
|
|
|
|
|
|
|
|
req = isc__nm_uvreq_get(mgr, sock);
|
|
|
|
req->cb.connect = cb;
|
|
|
|
req->cbarg = cbarg;
|
|
|
|
req->peer = peer->addr;
|
|
|
|
req->local = local->addr;
|
|
|
|
req->handle = isc__nmhandle_get(sock, &req->peer, &sock->iface->addr);
|
|
|
|
|
2021-03-31 18:32:32 +02:00
|
|
|
result = isc__nm_socket(sa_family, SOCK_STREAM, 0, &sock->fd);
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
if (isc__nm_in_netthread()) {
|
|
|
|
sock->tid = isc_nm_tid();
|
|
|
|
}
|
|
|
|
isc__nmsocket_clearcb(sock);
|
|
|
|
isc__nm_connectcb(sock, req, result, true);
|
|
|
|
atomic_store(&sock->closed, true);
|
|
|
|
isc__nmsocket_detach(&sock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
/* 2 minute timeout */
|
|
|
|
result = isc__nm_socket_connectiontimeout(sock->fd, 120 * 1000);
|
|
|
|
RUNTIME_CHECK(result == ISC_R_SUCCESS);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
ievent = isc__nm_get_netievent_tcpdnsconnect(mgr, sock, req);
|
|
|
|
|
|
|
|
if (isc__nm_in_netthread()) {
|
|
|
|
atomic_store(&sock->active, true);
|
|
|
|
sock->tid = isc_nm_tid();
|
|
|
|
isc__nm_async_tcpdnsconnect(&mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
isc__nm_put_netievent_tcpdnsconnect(mgr, ievent);
|
|
|
|
} else {
|
2020-12-03 13:00:33 +01:00
|
|
|
atomic_init(&sock->active, false);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock->tid = isc_random_uniform(mgr->nworkers);
|
|
|
|
isc__nm_enqueue_ievent(&mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
}
|
2021-03-31 18:32:32 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
LOCK(&sock->lock);
|
2021-05-05 11:51:39 +02:00
|
|
|
while (sock->result == ISC_R_UNSET) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
WAIT(&sock->cond, &sock->lock);
|
|
|
|
}
|
|
|
|
atomic_store(&sock->active, true);
|
|
|
|
BROADCAST(&sock->scond);
|
|
|
|
UNLOCK(&sock->lock);
|
|
|
|
}
|
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
static uv_os_sock_t
|
|
|
|
isc__nm_tcpdns_lb_socket(sa_family_t sa_family) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_result_t result;
|
|
|
|
uv_os_sock_t sock;
|
|
|
|
|
|
|
|
result = isc__nm_socket(sa_family, SOCK_STREAM, 0, &sock);
|
2020-12-02 15:37:18 +01:00
|
|
|
RUNTIME_CHECK(result == ISC_R_SUCCESS);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
(void)isc__nm_socket_incoming_cpu(sock);
|
|
|
|
|
|
|
|
/* FIXME: set mss */
|
|
|
|
|
|
|
|
result = isc__nm_socket_reuse(sock);
|
2020-12-02 15:37:18 +01:00
|
|
|
RUNTIME_CHECK(result == ISC_R_SUCCESS);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
#if HAVE_SO_REUSEPORT_LB
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = isc__nm_socket_reuse_lb(sock);
|
2020-12-02 15:37:18 +01:00
|
|
|
RUNTIME_CHECK(result == ISC_R_SUCCESS);
|
|
|
|
#endif
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
return (sock);
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
static void
|
|
|
|
start_tcpdns_child(isc_nm_t *mgr, isc_nmiface_t *iface, isc_nmsocket_t *sock,
|
|
|
|
uv_os_sock_t fd, int tid) {
|
|
|
|
isc__netievent_tcpdnslisten_t *ievent = NULL;
|
|
|
|
isc_nmsocket_t *csock = &sock->children[tid];
|
|
|
|
|
|
|
|
isc__nmsocket_init(csock, mgr, isc_nm_tcpdnssocket, iface);
|
|
|
|
csock->parent = sock;
|
|
|
|
csock->accept_cb = sock->accept_cb;
|
|
|
|
csock->accept_cbarg = sock->accept_cbarg;
|
|
|
|
csock->recv_cb = sock->recv_cb;
|
|
|
|
csock->recv_cbarg = sock->recv_cbarg;
|
|
|
|
csock->extrahandlesize = sock->extrahandlesize;
|
|
|
|
csock->backlog = sock->backlog;
|
|
|
|
csock->tid = tid;
|
|
|
|
/*
|
|
|
|
* We don't attach to quota, just assign - to avoid
|
|
|
|
* increasing quota unnecessarily.
|
|
|
|
*/
|
|
|
|
csock->pquota = sock->pquota;
|
|
|
|
isc_quota_cb_init(&csock->quotacb, quota_accept_cb, csock);
|
|
|
|
|
|
|
|
#if HAVE_SO_REUSEPORT_LB || defined(WIN32)
|
|
|
|
UNUSED(fd);
|
|
|
|
csock->fd = isc__nm_tcpdns_lb_socket(iface->addr.type.sa.sa_family);
|
|
|
|
#else
|
|
|
|
csock->fd = dup(fd);
|
|
|
|
#endif
|
|
|
|
REQUIRE(csock->fd >= 0);
|
|
|
|
|
|
|
|
ievent = isc__nm_get_netievent_tcpdnslisten(mgr, csock);
|
|
|
|
isc__nm_maybe_enqueue_ievent(&mgr->workers[tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
}
|
2020-05-13 17:37:51 +02:00
|
|
|
isc_result_t
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nm_listentcpdns(isc_nm_t *mgr, isc_nmiface_t *iface,
|
|
|
|
isc_nm_recv_cb_t recv_cb, void *recv_cbarg,
|
|
|
|
isc_nm_accept_cb_t accept_cb, void *accept_cbarg,
|
|
|
|
size_t extrahandlesize, int backlog, isc_quota_t *quota,
|
2020-05-13 17:37:51 +02:00
|
|
|
isc_nmsocket_t **sockp) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_result_t result = ISC_R_SUCCESS;
|
|
|
|
isc_nmsocket_t *sock = NULL;
|
|
|
|
size_t children_size = 0;
|
2020-12-02 15:37:18 +01:00
|
|
|
uv_os_sock_t fd = -1;
|
2020-05-13 17:37:51 +02:00
|
|
|
|
|
|
|
REQUIRE(VALID_NM(mgr));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
sock = isc_mem_get(mgr->mctx, sizeof(*sock));
|
|
|
|
isc__nmsocket_init(sock, mgr, isc_nm_tcpdnslistener, iface);
|
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
atomic_init(&sock->rchildren, 0);
|
2020-12-02 15:37:18 +01:00
|
|
|
#if defined(WIN32)
|
|
|
|
sock->nchildren = 1;
|
|
|
|
#else
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock->nchildren = mgr->nworkers;
|
2020-12-02 15:37:18 +01:00
|
|
|
#endif
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
children_size = sock->nchildren * sizeof(sock->children[0]);
|
|
|
|
sock->children = isc_mem_get(mgr->mctx, children_size);
|
|
|
|
memset(sock->children, 0, children_size);
|
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
sock->result = ISC_R_UNSET;
|
|
|
|
sock->accept_cb = accept_cb;
|
|
|
|
sock->accept_cbarg = accept_cbarg;
|
|
|
|
sock->recv_cb = recv_cb;
|
|
|
|
sock->recv_cbarg = recv_cbarg;
|
|
|
|
sock->extrahandlesize = extrahandlesize;
|
|
|
|
sock->backlog = backlog;
|
|
|
|
sock->pquota = quota;
|
|
|
|
|
|
|
|
if (isc__nm_in_netthread()) {
|
|
|
|
sock->tid = isc_nm_tid();
|
|
|
|
} else {
|
|
|
|
sock->tid = isc_random_uniform(sock->nchildren);
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock->fd = -1;
|
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
#if !HAVE_SO_REUSEPORT_LB && !defined(WIN32)
|
2021-05-05 11:51:39 +02:00
|
|
|
fd = isc__nm_tcpdns_lb_socket(iface->addr.type.sa.sa_family);
|
2020-12-02 15:37:18 +01:00
|
|
|
#endif
|
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_barrier_init(&sock->startlistening, sock->nchildren);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
for (size_t i = 0; i < sock->nchildren; i++) {
|
|
|
|
if ((int)i == isc_nm_tid()) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
start_tcpdns_child(mgr, iface, sock, fd, i);
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
if (isc__nm_in_netthread()) {
|
|
|
|
start_tcpdns_child(mgr, iface, sock, fd, isc_nm_tid());
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
#if !HAVE_SO_REUSEPORT_LB && !defined(WIN32)
|
|
|
|
isc__nm_closesocket(fd);
|
|
|
|
#endif
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
LOCK(&sock->lock);
|
2021-05-05 11:51:39 +02:00
|
|
|
while (atomic_load(&sock->rchildren) != sock->nchildren) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
WAIT(&sock->cond, &sock->lock);
|
|
|
|
}
|
|
|
|
result = sock->result;
|
|
|
|
atomic_store(&sock->active, true);
|
|
|
|
UNLOCK(&sock->lock);
|
2021-05-05 11:51:39 +02:00
|
|
|
|
|
|
|
INSIST(result != ISC_R_UNSET);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2020-05-13 17:37:51 +02:00
|
|
|
if (result == ISC_R_SUCCESS) {
|
2021-05-05 11:51:39 +02:00
|
|
|
REQUIRE(atomic_load(&sock->rchildren) == sock->nchildren);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
*sockp = sock;
|
2020-05-13 17:37:51 +02:00
|
|
|
} else {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->active, false);
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_nm_stoplistening(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nmsocket_close(&sock);
|
2020-05-13 17:37:51 +02:00
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
return (result);
|
2020-05-13 17:37:51 +02:00
|
|
|
}
|
|
|
|
|
2019-11-05 13:55:54 -08:00
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_async_tcpdnslisten(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnslisten_t *ievent =
|
|
|
|
(isc__netievent_tcpdnslisten_t *)ev0;
|
2020-12-02 15:37:18 +01:00
|
|
|
isc_nmiface_t *iface = NULL;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sa_family_t sa_family;
|
|
|
|
int r;
|
|
|
|
int flags = 0;
|
|
|
|
isc_nmsocket_t *sock = NULL;
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_result_t result = ISC_R_UNSET;
|
2020-10-02 09:28:29 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(ievent->sock));
|
|
|
|
REQUIRE(ievent->sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(VALID_NMSOCK(ievent->sock->parent));
|
2020-10-02 09:28:29 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock = ievent->sock;
|
|
|
|
iface = sock->iface;
|
|
|
|
sa_family = iface->addr.type.sa.sa_family;
|
|
|
|
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
|
|
|
REQUIRE(sock->iface != NULL);
|
|
|
|
REQUIRE(sock->parent != NULL);
|
2020-10-02 09:28:29 +02:00
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/* TODO: set min mss */
|
2020-10-02 09:28:29 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_tcp_init(&worker->loop, &sock->uv_handle.tcp);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
|
|
|
uv_handle_set_data(&sock->uv_handle.handle, sock);
|
|
|
|
/* This keeps the socket alive after everything else is gone */
|
|
|
|
isc__nmsocket_attach(sock, &(isc_nmsocket_t *){ NULL });
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_timer_init(&worker->loop, &sock->timer);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
|
|
|
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
|
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
LOCK(&sock->parent->lock);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = uv_tcp_open(&sock->uv_handle.tcp, sock->fd);
|
|
|
|
if (r < 0) {
|
|
|
|
isc__nm_closesocket(sock->fd);
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPEN]);
|
2020-10-02 09:28:29 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sa_family == AF_INET6) {
|
|
|
|
flags = UV_TCP_IPV6ONLY;
|
|
|
|
}
|
2020-10-02 09:28:29 +02:00
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
#if HAVE_SO_REUSEPORT_LB || defined(WIN32)
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
r = isc_uv_tcp_freebind(&sock->uv_handle.tcp,
|
|
|
|
&sock->iface->addr.type.sa, flags);
|
2020-12-02 15:37:18 +01:00
|
|
|
if (r < 0) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_BINDFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2020-12-02 15:37:18 +01:00
|
|
|
#else
|
|
|
|
if (sock->parent->fd == -1) {
|
|
|
|
r = isc_uv_tcp_freebind(&sock->uv_handle.tcp,
|
|
|
|
&sock->iface->addr.type.sa, flags);
|
|
|
|
if (r < 0) {
|
|
|
|
isc__nm_incstats(sock->mgr,
|
|
|
|
sock->statsindex[STATID_BINDFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
2020-12-02 15:37:18 +01:00
|
|
|
}
|
|
|
|
sock->parent->uv_handle.tcp.flags = sock->uv_handle.tcp.flags;
|
|
|
|
sock->parent->fd = sock->fd;
|
|
|
|
} else {
|
|
|
|
/* The socket is already bound, just copy the flags */
|
|
|
|
sock->uv_handle.tcp.flags = sock->parent->uv_handle.tcp.flags;
|
|
|
|
}
|
|
|
|
#endif
|
2020-10-02 09:28:29 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/*
|
|
|
|
* The callback will run in the same thread uv_listen() was called
|
|
|
|
* from, so a race with tcpdns_connection_cb() isn't possible.
|
|
|
|
*/
|
|
|
|
r = uv_listen((uv_stream_t *)&sock->uv_handle.tcp, sock->backlog,
|
|
|
|
tcpdns_connection_cb);
|
2020-12-02 15:37:18 +01:00
|
|
|
if (r != 0) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_log_write(isc_lctx, ISC_LOGCATEGORY_GENERAL,
|
|
|
|
ISC_LOGMODULE_NETMGR, ISC_LOG_ERROR,
|
|
|
|
"uv_listen failed: %s",
|
|
|
|
isc_result_totext(isc__nm_uverr2result(r)));
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_BINDFAIL]);
|
2020-12-03 13:00:33 +01:00
|
|
|
goto done;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->listening, true);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2020-12-03 13:00:33 +01:00
|
|
|
done:
|
2020-12-02 15:37:18 +01:00
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
sock->pquota = NULL;
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
atomic_fetch_add(&sock->parent->rchildren, 1);
|
|
|
|
if (sock->parent->result == ISC_R_UNSET) {
|
2020-12-02 15:37:18 +01:00
|
|
|
sock->parent->result = result;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
SIGNAL(&sock->parent->cond);
|
|
|
|
UNLOCK(&sock->parent->lock);
|
2021-05-05 11:51:39 +02:00
|
|
|
|
|
|
|
isc_barrier_wait(&sock->parent->startlistening);
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
static void
|
|
|
|
tcpdns_connection_cb(uv_stream_t *server, int status) {
|
|
|
|
isc_nmsocket_t *ssock = uv_handle_get_data((uv_handle_t *)server);
|
|
|
|
isc_result_t result;
|
|
|
|
isc_quota_t *quota = NULL;
|
2019-11-20 22:33:35 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (status != 0) {
|
|
|
|
result = isc__nm_uverr2result(status);
|
|
|
|
goto done;
|
2019-11-20 22:33:35 +01:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(ssock));
|
|
|
|
REQUIRE(ssock->tid == isc_nm_tid());
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(ssock)) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
result = ISC_R_CANCELED;
|
|
|
|
goto done;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ssock->pquota != NULL) {
|
|
|
|
result = isc_quota_attach_cb(ssock->pquota, "a,
|
|
|
|
&ssock->quotacb);
|
|
|
|
if (result == ISC_R_QUOTA) {
|
|
|
|
isc__nm_incstats(ssock->mgr,
|
|
|
|
ssock->statsindex[STATID_ACCEPTFAIL]);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
result = accept_connection(ssock, quota);
|
|
|
|
done:
|
|
|
|
if (result != ISC_R_SUCCESS && result != ISC_R_NOCONN) {
|
|
|
|
if ((result != ISC_R_QUOTA && result != ISC_R_SOFTQUOTA) ||
|
|
|
|
can_log_tcpdns_quota())
|
|
|
|
{
|
|
|
|
isc_log_write(isc_lctx, ISC_LOGCATEGORY_GENERAL,
|
|
|
|
ISC_LOGMODULE_NETMGR, ISC_LOG_ERROR,
|
|
|
|
"TCP connection failed: %s",
|
|
|
|
isc_result_totext(result));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
enqueue_stoplistening(isc_nmsocket_t *sock) {
|
|
|
|
isc__netievent_tcpdnsstop_t *ievent =
|
|
|
|
isc__nm_get_netievent_tcpdnsstop(sock->mgr, sock);
|
|
|
|
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
isc__nm_tcpdns_stoplistening(isc_nmsocket_t *sock) {
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnslistener);
|
|
|
|
|
|
|
|
if (!atomic_compare_exchange_strong(&sock->closing, &(bool){ false },
|
|
|
|
true)) {
|
|
|
|
INSIST(0);
|
|
|
|
ISC_UNREACHABLE();
|
|
|
|
}
|
2021-05-05 11:51:39 +02:00
|
|
|
|
|
|
|
if (!isc__nm_in_netthread()) {
|
|
|
|
enqueue_stoplistening(sock);
|
|
|
|
} else if (!isc__nm_acquire_interlocked(sock->mgr)) {
|
|
|
|
enqueue_stoplistening(sock);
|
|
|
|
} else {
|
|
|
|
stop_tcpdns_parent(sock);
|
|
|
|
isc__nm_drop_interlocked(sock->mgr);
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
isc__nm_async_tcpdnsstop(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnsstop_t *ievent =
|
|
|
|
(isc__netievent_tcpdnsstop_t *)ev0;
|
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
|
|
|
|
|
|
|
UNUSED(worker);
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
|
|
|
if (sock->parent != NULL) {
|
|
|
|
stop_tcpdns_child(sock);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
/*
|
|
|
|
* If network manager is paused, re-enqueue the event for later.
|
|
|
|
*/
|
|
|
|
if (!isc__nm_acquire_interlocked(sock->mgr)) {
|
|
|
|
enqueue_stoplistening(sock);
|
|
|
|
} else {
|
|
|
|
stop_tcpdns_parent(sock);
|
|
|
|
isc__nm_drop_interlocked(sock->mgr);
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
void
|
|
|
|
isc__nm_tcpdns_failed_read_cb(isc_nmsocket_t *sock, isc_result_t result) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(result != ISC_R_SUCCESS);
|
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
isc__nmsocket_timer_stop(sock);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_stop_reading(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
if (!sock->recv_read) {
|
|
|
|
goto destroy;
|
|
|
|
}
|
|
|
|
sock->recv_read = false;
|
|
|
|
|
|
|
|
if (sock->recv_cb != NULL) {
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_uvreq_t *req = isc__nm_get_read_req(sock, NULL);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nmsocket_clearcb(sock);
|
|
|
|
isc__nm_readcb(sock, req, result);
|
|
|
|
}
|
|
|
|
|
|
|
|
destroy:
|
|
|
|
isc__nmsocket_prep_destroy(sock);
|
|
|
|
|
2021-04-20 23:27:51 -07:00
|
|
|
/*
|
|
|
|
* We need to detach from quota after the read callback function had a
|
|
|
|
* chance to be executed.
|
|
|
|
*/
|
|
|
|
if (sock->quota != NULL) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_quota_detach(&sock->quota);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
isc__nm_tcpdns_read(isc_nmhandle_t *handle, isc_nm_recv_cb_t cb, void *cbarg) {
|
|
|
|
REQUIRE(VALID_NMHANDLE(handle));
|
|
|
|
REQUIRE(VALID_NMSOCK(handle->sock));
|
|
|
|
|
|
|
|
isc_nmsocket_t *sock = handle->sock;
|
|
|
|
isc__netievent_tcpdnsread_t *ievent = NULL;
|
|
|
|
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
|
|
|
REQUIRE(sock->statichandle == handle);
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(!sock->recv_read);
|
|
|
|
|
|
|
|
sock->recv_cb = cb;
|
|
|
|
sock->recv_cbarg = cbarg;
|
|
|
|
sock->recv_read = true;
|
|
|
|
if (sock->read_timeout == 0) {
|
2020-12-02 09:52:39 +01:00
|
|
|
sock->read_timeout =
|
|
|
|
(atomic_load(&sock->keepalive)
|
|
|
|
? atomic_load(&sock->mgr->keepalive)
|
|
|
|
: atomic_load(&sock->mgr->idle));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
ievent = isc__nm_get_netievent_tcpdnsread(sock->mgr, sock);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This MUST be done asynchronously, no matter which thread we're
|
|
|
|
* in. The callback function for isc_nm_read() often calls
|
|
|
|
* isc_nm_read() again; if we tried to do that synchronously
|
|
|
|
* we'd clash in processbuffer() and grow the stack indefinitely.
|
|
|
|
*/
|
|
|
|
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
isc__nm_async_tcpdnsread(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnsread_t *ievent =
|
|
|
|
(isc__netievent_tcpdnsread_t *)ev0;
|
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
UNUSED(worker);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(sock)) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
sock->reading = true;
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_read_cb(sock, ISC_R_CANCELED, false);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_process_sock_buffer(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process a single packet from the incoming buffer.
|
|
|
|
*
|
|
|
|
* Return ISC_R_SUCCESS and attach 'handlep' to a handle if something
|
|
|
|
* was processed; return ISC_R_NOMORE if there isn't a full message
|
|
|
|
* to be processed.
|
|
|
|
*
|
|
|
|
* The caller will need to unreference the handle.
|
|
|
|
*/
|
2021-03-18 09:27:38 +01:00
|
|
|
isc_result_t
|
|
|
|
isc__nm_tcpdns_processbuffer(isc_nmsocket_t *sock) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
size_t len;
|
2020-12-02 15:37:18 +01:00
|
|
|
isc__nm_uvreq_t *req = NULL;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nmhandle_t *handle = NULL;
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(sock)) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return (ISC_R_CANCELED);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If we don't even have the length yet, we can't do
|
|
|
|
* anything.
|
|
|
|
*/
|
|
|
|
if (sock->buf_len < 2) {
|
|
|
|
return (ISC_R_NOMORE);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Process the first packet from the buffer, leaving
|
|
|
|
* the rest (if any) for later.
|
|
|
|
*/
|
|
|
|
len = ntohs(*(uint16_t *)sock->buf);
|
|
|
|
if (len > sock->buf_len - 2) {
|
|
|
|
return (ISC_R_NOMORE);
|
|
|
|
}
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
req = isc__nm_get_read_req(sock, NULL);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_UVREQ(req));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to launch the resume_processing after the buffer has
|
|
|
|
* been consumed, thus we need to delay the detaching the handle.
|
|
|
|
*/
|
|
|
|
isc_nmhandle_attach(req->handle, &handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The callback will be called synchronously because the
|
|
|
|
* result is ISC_R_SUCCESS, so we don't need to have
|
|
|
|
* the buffer on the heap
|
|
|
|
*/
|
|
|
|
req->uvbuf.base = (char *)sock->buf + 2;
|
|
|
|
req->uvbuf.len = len;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* If isc__nm_tcpdns_read() was called, it will be satisfied by single
|
|
|
|
* DNS message in the next call.
|
|
|
|
*/
|
|
|
|
sock->recv_read = false;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The assertion failure here means that there's a errnoneous extra
|
|
|
|
* nmhandle detach happening in the callback and resume_processing gets
|
|
|
|
* called while we are still processing the buffer.
|
|
|
|
*/
|
|
|
|
REQUIRE(sock->processing == false);
|
|
|
|
sock->processing = true;
|
|
|
|
isc__nm_readcb(sock, req, ISC_R_SUCCESS);
|
|
|
|
sock->processing = false;
|
|
|
|
|
|
|
|
len += 2;
|
|
|
|
sock->buf_len -= len;
|
2021-02-09 13:25:52 +01:00
|
|
|
if (sock->buf_len > 0) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
memmove(sock->buf, sock->buf + len, sock->buf_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
isc_nmhandle_detach(&handle);
|
|
|
|
|
|
|
|
return (ISC_R_SUCCESS);
|
|
|
|
}
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
void
|
|
|
|
isc__nm_tcpdns_read_cb(uv_stream_t *stream, ssize_t nread,
|
|
|
|
const uv_buf_t *buf) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)stream);
|
|
|
|
uint8_t *base = NULL;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(sock->reading);
|
|
|
|
REQUIRE(buf != NULL);
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(sock)) {
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_read_cb(sock, ISC_R_CANCELED, true);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nread < 0) {
|
|
|
|
if (nread != UV_EOF) {
|
|
|
|
isc__nm_incstats(sock->mgr,
|
|
|
|
sock->statsindex[STATID_RECVFAIL]);
|
|
|
|
}
|
|
|
|
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_read_cb(sock, isc__nm_uverr2result(nread), true);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
goto free;
|
|
|
|
}
|
|
|
|
|
|
|
|
base = (uint8_t *)buf->base;
|
|
|
|
len = nread;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* FIXME: We can avoid the memmove here if we know we have received full
|
|
|
|
* packet; e.g. we should be smarter, a.s. there are just few situations
|
|
|
|
*
|
|
|
|
* The tcp_alloc_buf should be smarter and point the uv_read_start to
|
|
|
|
* the position where previous read has ended in the sock->buf, that way
|
|
|
|
* the data could be read directly into sock->buf.
|
|
|
|
*/
|
|
|
|
|
|
|
|
if (sock->buf_len + len > sock->buf_size) {
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_alloc_dnsbuf(sock, sock->buf_len + len);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
memmove(sock->buf + sock->buf_len, base, len);
|
|
|
|
sock->buf_len += len;
|
|
|
|
|
|
|
|
if (!atomic_load(&sock->client)) {
|
2020-12-02 09:52:39 +01:00
|
|
|
sock->read_timeout = atomic_load(&sock->mgr->idle);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_process_sock_buffer(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
free:
|
|
|
|
isc__nm_free_uvbuf(sock, buf);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
quota_accept_cb(isc_quota_t *quota, void *sock0) {
|
|
|
|
isc_nmsocket_t *sock = (isc_nmsocket_t *)sock0;
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Create a tcpdnsaccept event and pass it using the async channel.
|
|
|
|
*/
|
2020-12-02 15:37:18 +01:00
|
|
|
|
|
|
|
isc__netievent_tcpdnsaccept_t *ievent =
|
|
|
|
isc__nm_get_netievent_tcpdnsaccept(sock->mgr, sock, quota);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_maybe_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* This is called after we get a quota_accept_cb() callback.
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
isc__nm_async_tcpdnsaccept(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnsaccept_t *ievent =
|
|
|
|
(isc__netievent_tcpdnsaccept_t *)ev0;
|
|
|
|
isc_result_t result;
|
|
|
|
|
|
|
|
UNUSED(worker);
|
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(ievent->sock));
|
|
|
|
REQUIRE(ievent->sock->tid == isc_nm_tid());
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2020-12-02 15:37:18 +01:00
|
|
|
result = accept_connection(ievent->sock, ievent->quota);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (result != ISC_R_SUCCESS && result != ISC_R_NOCONN) {
|
|
|
|
if ((result != ISC_R_QUOTA && result != ISC_R_SOFTQUOTA) ||
|
|
|
|
can_log_tcpdns_quota())
|
|
|
|
{
|
|
|
|
isc_log_write(isc_lctx, ISC_LOGCATEGORY_GENERAL,
|
|
|
|
ISC_LOGMODULE_NETMGR, ISC_LOG_ERROR,
|
|
|
|
"TCP connection failed: %s",
|
|
|
|
isc_result_totext(result));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static isc_result_t
|
|
|
|
accept_connection(isc_nmsocket_t *ssock, isc_quota_t *quota) {
|
|
|
|
isc_nmsocket_t *csock = NULL;
|
|
|
|
isc__networker_t *worker = NULL;
|
|
|
|
int r;
|
|
|
|
isc_result_t result;
|
|
|
|
struct sockaddr_storage peer_ss;
|
|
|
|
struct sockaddr_storage local_ss;
|
|
|
|
isc_sockaddr_t local;
|
2020-12-02 15:37:18 +01:00
|
|
|
isc_nmhandle_t *handle = NULL;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(ssock));
|
|
|
|
REQUIRE(ssock->tid == isc_nm_tid());
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(ssock)) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (quota != NULL) {
|
|
|
|
isc_quota_detach("a);
|
|
|
|
}
|
|
|
|
return (ISC_R_CANCELED);
|
|
|
|
}
|
|
|
|
|
|
|
|
REQUIRE(ssock->accept_cb != NULL);
|
|
|
|
|
|
|
|
csock = isc_mem_get(ssock->mgr->mctx, sizeof(isc_nmsocket_t));
|
|
|
|
isc__nmsocket_init(csock, ssock->mgr, isc_nm_tcpdnssocket,
|
|
|
|
ssock->iface);
|
|
|
|
csock->tid = ssock->tid;
|
|
|
|
csock->extrahandlesize = ssock->extrahandlesize;
|
|
|
|
isc__nmsocket_attach(ssock, &csock->server);
|
|
|
|
csock->recv_cb = ssock->recv_cb;
|
|
|
|
csock->recv_cbarg = ssock->recv_cbarg;
|
|
|
|
csock->quota = quota;
|
|
|
|
csock->accepting = true;
|
|
|
|
|
|
|
|
worker = &csock->mgr->workers[csock->tid];
|
|
|
|
|
|
|
|
r = uv_tcp_init(&worker->loop, &csock->uv_handle.tcp);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
|
|
|
uv_handle_set_data(&csock->uv_handle.handle, csock);
|
|
|
|
|
|
|
|
r = uv_timer_init(&worker->loop, &csock->timer);
|
|
|
|
RUNTIME_CHECK(r == 0);
|
|
|
|
uv_handle_set_data((uv_handle_t *)&csock->timer, csock);
|
|
|
|
|
|
|
|
r = uv_accept(&ssock->uv_handle.stream, &csock->uv_handle.stream);
|
|
|
|
if (r != 0) {
|
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = uv_tcp_getpeername(&csock->uv_handle.tcp,
|
|
|
|
(struct sockaddr *)&peer_ss,
|
|
|
|
&(int){ sizeof(peer_ss) });
|
|
|
|
if (r != 0) {
|
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
result = isc_sockaddr_fromsockaddr(&csock->peer,
|
|
|
|
(struct sockaddr *)&peer_ss);
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
r = uv_tcp_getsockname(&csock->uv_handle.tcp,
|
|
|
|
(struct sockaddr *)&local_ss,
|
|
|
|
&(int){ sizeof(local_ss) });
|
|
|
|
if (r != 0) {
|
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
result = isc_sockaddr_fromsockaddr(&local,
|
|
|
|
(struct sockaddr *)&local_ss);
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* The handle will be either detached on acceptcb failure or in the
|
|
|
|
* readcb.
|
|
|
|
*/
|
|
|
|
handle = isc__nmhandle_get(csock, NULL, &local);
|
|
|
|
|
|
|
|
result = ssock->accept_cb(handle, ISC_R_SUCCESS, ssock->accept_cbarg);
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
isc_nmhandle_detach(&handle);
|
|
|
|
goto failure;
|
|
|
|
}
|
|
|
|
|
|
|
|
csock->accepting = false;
|
|
|
|
|
|
|
|
isc__nm_incstats(csock->mgr, csock->statsindex[STATID_ACCEPT]);
|
|
|
|
|
2020-12-02 09:52:39 +01:00
|
|
|
csock->read_timeout = atomic_load(&csock->mgr->init);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
csock->closehandle_cb = isc__nm_resume_processing;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* We need to keep the handle alive until we fail to read or connection
|
|
|
|
* is closed by the other side, it will be detached via
|
|
|
|
* prep_destroy()->tcpdns_close_direct().
|
|
|
|
*/
|
|
|
|
isc_nmhandle_attach(handle, &csock->recv_handle);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_process_sock_buffer(csock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
/*
|
|
|
|
* The initial timer has been set, update the read timeout for the next
|
|
|
|
* reads.
|
|
|
|
*/
|
|
|
|
csock->read_timeout = (atomic_load(&csock->keepalive)
|
2020-12-02 09:52:39 +01:00
|
|
|
? atomic_load(&csock->mgr->keepalive)
|
|
|
|
: atomic_load(&csock->mgr->idle));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
isc_nmhandle_detach(&handle);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* sock is now attached to the handle.
|
|
|
|
*/
|
|
|
|
isc__nmsocket_detach(&csock);
|
|
|
|
|
|
|
|
return (ISC_R_SUCCESS);
|
|
|
|
|
|
|
|
failure:
|
|
|
|
|
|
|
|
atomic_store(&csock->active, false);
|
|
|
|
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_failed_accept_cb(csock, result);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
|
|
|
isc__nmsocket_prep_destroy(csock);
|
|
|
|
|
|
|
|
isc__nmsocket_detach(&csock);
|
|
|
|
|
|
|
|
return (result);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
|
|
|
isc__nm_tcpdns_send(isc_nmhandle_t *handle, isc_region_t *region,
|
|
|
|
isc_nm_cb_t cb, void *cbarg) {
|
|
|
|
REQUIRE(VALID_NMHANDLE(handle));
|
|
|
|
REQUIRE(VALID_NMSOCK(handle->sock));
|
|
|
|
|
|
|
|
isc_nmsocket_t *sock = handle->sock;
|
|
|
|
isc__netievent_tcpdnssend_t *ievent = NULL;
|
|
|
|
isc__nm_uvreq_t *uvreq = NULL;
|
|
|
|
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
|
|
|
|
|
|
|
uvreq = isc__nm_uvreq_get(sock->mgr, sock);
|
2020-12-03 08:33:21 +01:00
|
|
|
*(uint16_t *)uvreq->tcplen = htons(region->length);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
uvreq->uvbuf.base = (char *)region->base;
|
|
|
|
uvreq->uvbuf.len = region->length;
|
|
|
|
|
|
|
|
isc_nmhandle_attach(handle, &uvreq->handle);
|
|
|
|
|
|
|
|
uvreq->cb.send = cb;
|
|
|
|
uvreq->cbarg = cbarg;
|
|
|
|
|
|
|
|
ievent = isc__nm_get_netievent_tcpdnssend(sock->mgr, sock, uvreq);
|
|
|
|
isc__nm_maybe_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tcpdns_send_cb(uv_write_t *req, int status) {
|
|
|
|
isc__nm_uvreq_t *uvreq = (isc__nm_uvreq_t *)req->data;
|
|
|
|
isc_nmsocket_t *sock = uvreq->sock;
|
|
|
|
|
|
|
|
REQUIRE(VALID_UVREQ(uvreq));
|
|
|
|
REQUIRE(VALID_NMHANDLE(uvreq->handle));
|
|
|
|
|
|
|
|
if (status < 0) {
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_failed_send_cb(sock, uvreq,
|
|
|
|
isc__nm_uverr2result(status));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
isc__nm_sendcb(sock, uvreq, ISC_R_SUCCESS, false);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Handle 'tcpsend' async event - send a packet on the socket
|
|
|
|
*/
|
|
|
|
void
|
|
|
|
isc__nm_async_tcpdnssend(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnssend_t *ievent =
|
|
|
|
(isc__netievent_tcpdnssend_t *)ev0;
|
2021-03-16 09:03:02 +01:00
|
|
|
|
|
|
|
REQUIRE(ievent->sock->type == isc_nm_tcpdnssocket);
|
|
|
|
REQUIRE(ievent->sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(VALID_NMSOCK(ievent->sock));
|
|
|
|
REQUIRE(VALID_UVREQ(ievent->req));
|
|
|
|
REQUIRE(ievent->sock->tid == isc_nm_tid());
|
|
|
|
|
|
|
|
isc_result_t result;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
|
|
|
isc__nm_uvreq_t *uvreq = ievent->req;
|
2021-03-16 09:03:02 +01:00
|
|
|
uv_buf_t bufs[2] = { { .base = uvreq->tcplen, .len = 2 },
|
|
|
|
{ .base = uvreq->uvbuf.base,
|
|
|
|
.len = uvreq->uvbuf.len } };
|
|
|
|
int nbufs = 2;
|
|
|
|
int r;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
UNUSED(worker);
|
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (isc__nmsocket_closing(sock)) {
|
2021-03-16 09:03:02 +01:00
|
|
|
result = ISC_R_CANCELED;
|
|
|
|
goto fail;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2020-12-17 11:40:29 +01:00
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
r = uv_try_write(&sock->uv_handle.stream, bufs, nbufs);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
if (r == (int)(bufs[0].len + bufs[1].len)) {
|
|
|
|
/* Wrote everything */
|
|
|
|
isc__nm_sendcb(sock, uvreq, ISC_R_SUCCESS, true);
|
|
|
|
return;
|
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
if (r == 1) {
|
|
|
|
/* Partial write of DNSMSG length */
|
|
|
|
bufs[0].base = uvreq->tcplen + 1;
|
|
|
|
bufs[0].len = 1;
|
|
|
|
} else if (r > 0) {
|
|
|
|
/* Partial write of DNSMSG */
|
|
|
|
nbufs = 1;
|
|
|
|
bufs[0].base = uvreq->uvbuf.base + (r - 2);
|
|
|
|
bufs[0].len = uvreq->uvbuf.len - (r - 2);
|
|
|
|
} else if (r == UV_ENOSYS || r == UV_EAGAIN) {
|
|
|
|
/* uv_try_write not support, send asynchronously */
|
|
|
|
} else {
|
|
|
|
/* error sending data */
|
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto fail;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
r = uv_write(&uvreq->uv_req.write, &sock->uv_handle.stream, bufs, nbufs,
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
tcpdns_send_cb);
|
|
|
|
if (r < 0) {
|
2021-03-16 09:03:02 +01:00
|
|
|
result = isc__nm_uverr2result(r);
|
|
|
|
goto fail;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
return;
|
|
|
|
|
|
|
|
fail:
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_SENDFAIL]);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_failed_send_cb(sock, uvreq, result);
|
2021-03-16 09:03:02 +01:00
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
tcpdns_stop_cb(uv_handle_t *handle) {
|
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data(handle);
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(atomic_load(&sock->closing));
|
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
uv_handle_set_data(handle, NULL);
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (!atomic_compare_exchange_strong(&sock->closed, &(bool){ false },
|
|
|
|
true)) {
|
|
|
|
INSIST(0);
|
|
|
|
ISC_UNREACHABLE();
|
|
|
|
}
|
|
|
|
|
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CLOSE]);
|
|
|
|
|
|
|
|
atomic_store(&sock->listening, false);
|
|
|
|
|
|
|
|
isc__nmsocket_detach(&sock);
|
2019-11-20 22:33:35 +01:00
|
|
|
}
|
|
|
|
|
2019-11-08 10:52:49 -08:00
|
|
|
static void
|
2021-03-30 09:25:09 +02:00
|
|
|
tcpdns_close_sock(isc_nmsocket_t *sock) {
|
2019-11-08 10:52:49 -08:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
2019-11-19 11:56:00 +01:00
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(atomic_load(&sock->closing));
|
2019-11-08 10:52:49 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (!atomic_compare_exchange_strong(&sock->closed, &(bool){ false },
|
|
|
|
true)) {
|
|
|
|
INSIST(0);
|
|
|
|
ISC_UNREACHABLE();
|
2019-11-19 11:56:00 +01:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CLOSE]);
|
2019-11-19 11:56:00 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sock->server != NULL) {
|
|
|
|
isc__nmsocket_detach(&sock->server);
|
2019-11-08 10:52:49 -08:00
|
|
|
}
|
2019-11-19 11:56:00 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->connected, false);
|
2019-11-19 11:56:00 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nmsocket_prep_destroy(sock);
|
2019-11-08 10:52:49 -08:00
|
|
|
}
|
|
|
|
|
2019-11-05 13:55:54 -08:00
|
|
|
static void
|
2021-03-30 09:25:09 +02:00
|
|
|
tcpdns_close_cb(uv_handle_t *handle) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data(handle);
|
2021-03-30 09:25:09 +02:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
uv_handle_set_data(handle, NULL);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2021-03-30 09:25:09 +02:00
|
|
|
tcpdns_close_sock(sock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
|
|
timer_close_cb(uv_handle_t *timer) {
|
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data(timer);
|
|
|
|
uv_handle_set_data(timer, NULL);
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sock->parent) {
|
|
|
|
uv_close(&sock->uv_handle.handle, tcpdns_stop_cb);
|
2021-03-30 09:25:09 +02:00
|
|
|
} else if (uv_is_closing(&sock->uv_handle.handle)) {
|
|
|
|
tcpdns_close_sock(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
} else {
|
|
|
|
uv_close(&sock->uv_handle.handle, tcpdns_close_cb);
|
|
|
|
}
|
2020-11-02 15:55:12 +01:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
static void
|
|
|
|
stop_tcpdns_child(isc_nmsocket_t *sock) {
|
2020-11-02 15:55:12 +01:00
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
2020-06-22 16:45:47 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (!atomic_compare_exchange_strong(&sock->closing, &(bool){ false },
|
|
|
|
true)) {
|
2020-11-02 15:55:12 +01:00
|
|
|
return;
|
2020-06-22 16:45:47 -07:00
|
|
|
}
|
2020-11-02 15:55:12 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
tcpdns_close_direct(sock);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
atomic_fetch_sub(&sock->parent->rchildren, 1);
|
Refactor taskmgr to run on top of netmgr
This commit changes the taskmgr to run the individual tasks on the
netmgr internal workers. While an effort has been put into keeping the
taskmgr interface intact, couple of changes have been made:
* The taskmgr has no concept of universal privileged mode - rather the
tasks are either privileged or unprivileged (normal). The privileged
tasks are run as a first thing when the netmgr is unpaused. There
are now four different queues in in the netmgr:
1. priority queue - netievent on the priority queue are run even when
the taskmgr enter exclusive mode and netmgr is paused. This is
needed to properly start listening on the interfaces, free
resources and resume.
2. privileged task queue - only privileged tasks are queued here and
this is the first queue that gets processed when network manager
is unpaused using isc_nm_resume(). All netmgr workers need to
clean the privileged task queue before they all proceed normal
operation. Both task queues are processed when the workers are
finished.
3. task queue - only (traditional) task are scheduled here and this
queue along with privileged task queues are process when the
netmgr workers are finishing. This is needed to process the task
shutdown events.
4. normal queue - this is the queue with netmgr events, e.g. reading,
sending, callbacks and pretty much everything is processed here.
* The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t)
object.
* The isc_nm_destroy() function now waits for indefinite time, but it
will print out the active objects when in tracing mode
(-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been
made a little bit more asynchronous and it might take longer time to
shutdown all the active networking connections.
* Previously, the isc_nm_stoplistening() was a synchronous operation.
This has been changed and the isc_nm_stoplistening() just schedules
the child sockets to stop listening and exits. This was needed to
prevent a deadlock as the the (traditional) tasks are now executed on
the netmgr threads.
* The socket selection logic in isc__nm_udp_send() was flawed, but
fortunatelly, it was broken, so we never hit the problem where we
created uvreq_t on a socket from nmhandle_t, but then a different
socket could be picked up and then we were trying to run the send
callback on a socket that had different threadid than currently
running.
2021-04-09 11:31:19 +02:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_barrier_wait(&sock->parent->stoplistening);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2019-11-05 13:55:54 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
static void
|
|
|
|
stop_tcpdns_parent(isc_nmsocket_t *sock) {
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_nmsocket_t *csock = NULL;
|
|
|
|
|
2019-11-05 13:55:54 -08:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnslistener);
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
isc_barrier_init(&sock->stoplistening, sock->nchildren);
|
|
|
|
|
2020-12-03 17:58:10 +01:00
|
|
|
for (size_t i = 0; i < sock->nchildren; i++) {
|
2021-05-05 11:51:39 +02:00
|
|
|
csock = &sock->children[i];
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(csock));
|
2020-10-21 12:52:09 +02:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
if ((int)i == isc_nm_tid()) {
|
|
|
|
/*
|
|
|
|
* We need to schedule closing the other sockets first
|
|
|
|
*/
|
|
|
|
continue;
|
|
|
|
}
|
2019-11-05 13:55:54 -08:00
|
|
|
|
2021-05-05 11:51:39 +02:00
|
|
|
atomic_store(&csock->active, false);
|
|
|
|
enqueue_stoplistening(csock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2021-05-05 11:51:39 +02:00
|
|
|
|
|
|
|
csock = &sock->children[isc_nm_tid()];
|
|
|
|
atomic_store(&csock->active, false);
|
|
|
|
stop_tcpdns_child(csock);
|
|
|
|
|
|
|
|
atomic_store(&sock->closed, true);
|
|
|
|
isc__nmsocket_prep_destroy(sock);
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
|
|
|
|
2019-12-06 22:25:52 +01:00
|
|
|
static void
|
2020-02-13 14:44:37 -08:00
|
|
|
tcpdns_close_direct(isc_nmsocket_t *sock) {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
2019-12-07 23:43:52 +01:00
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(atomic_load(&sock->closing));
|
2020-06-09 17:07:16 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sock->quota != NULL) {
|
|
|
|
isc_quota_detach(&sock->quota);
|
2020-11-02 15:55:12 +01:00
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sock->recv_handle != NULL) {
|
|
|
|
isc_nmhandle_detach(&sock->recv_handle);
|
2019-12-06 22:25:52 +01:00
|
|
|
}
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
isc__nmsocket_timer_stop(sock);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_stop_reading(sock);
|
2021-03-30 09:25:09 +02:00
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
uv_close((uv_handle_t *)&sock->timer, timer_close_cb);
|
2019-12-06 22:25:52 +01:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2020-02-13 14:44:37 -08:00
|
|
|
isc__nm_tcpdns_close(isc_nmsocket_t *sock) {
|
2019-12-06 22:25:52 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(!isc__nmsocket_active(sock));
|
2019-12-06 22:25:52 +01:00
|
|
|
|
2020-11-02 15:55:12 +01:00
|
|
|
if (!atomic_compare_exchange_strong(&sock->closing, &(bool){ false },
|
|
|
|
true)) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2019-12-06 22:25:52 +01:00
|
|
|
if (sock->tid == isc_nm_tid()) {
|
|
|
|
tcpdns_close_direct(sock);
|
|
|
|
} else {
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/*
|
|
|
|
* We need to create an event and pass it using async channel
|
|
|
|
*/
|
2019-12-06 22:25:52 +01:00
|
|
|
isc__netievent_tcpdnsclose_t *ievent =
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_get_netievent_tcpdnsclose(sock->mgr, sock);
|
2019-12-06 22:25:52 +01:00
|
|
|
|
|
|
|
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
2020-02-12 13:59:18 +01:00
|
|
|
(isc__netievent_t *)ievent);
|
2019-12-06 22:25:52 +01:00
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
2020-02-13 14:44:37 -08:00
|
|
|
isc__nm_async_tcpdnsclose(isc__networker_t *worker, isc__netievent_t *ev0) {
|
2019-12-06 22:25:52 +01:00
|
|
|
isc__netievent_tcpdnsclose_t *ievent =
|
2020-02-12 13:59:18 +01:00
|
|
|
(isc__netievent_tcpdnsclose_t *)ev0;
|
2020-11-02 15:55:12 +01:00
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
2019-12-06 22:25:52 +01:00
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
UNUSED(worker);
|
|
|
|
|
2020-11-02 15:55:12 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
tcpdns_close_direct(sock);
|
2019-11-05 13:55:54 -08:00
|
|
|
}
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2021-03-30 09:25:09 +02:00
|
|
|
static void
|
|
|
|
tcpdns_close_connect_cb(uv_handle_t *handle) {
|
|
|
|
isc_nmsocket_t *sock = uv_handle_get_data(handle);
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
|
|
|
|
REQUIRE(isc__nm_in_netthread());
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
|
|
|
isc__nmsocket_prep_destroy(sock);
|
|
|
|
isc__nmsocket_detach(&sock);
|
|
|
|
}
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
void
|
|
|
|
isc__nm_tcpdns_shutdown(isc_nmsocket_t *sock) {
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
2020-11-04 20:59:31 +01:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/*
|
|
|
|
* If the socket is active, mark it inactive and
|
|
|
|
* continue. If it isn't active, stop now.
|
|
|
|
*/
|
|
|
|
if (!isc__nmsocket_deactivate(sock)) {
|
2020-11-11 10:46:33 +01:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2021-03-30 09:25:09 +02:00
|
|
|
if (sock->accepting) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (atomic_load(&sock->connecting)) {
|
|
|
|
isc_nmsocket_t *tsock = NULL;
|
|
|
|
isc__nmsocket_attach(sock, &tsock);
|
|
|
|
uv_close(&sock->uv_handle.handle, tcpdns_close_connect_cb);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return;
|
|
|
|
}
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2021-03-31 11:48:41 +02:00
|
|
|
if (sock->statichandle != NULL) {
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_read_cb(sock, ISC_R_CANCELED, false);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
return;
|
|
|
|
}
|
2020-11-04 20:59:31 +01:00
|
|
|
|
|
|
|
/*
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
* Otherwise, we just send the socket to abyss...
|
2020-11-04 20:59:31 +01:00
|
|
|
*/
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
if (sock->parent == NULL) {
|
|
|
|
isc__nmsocket_prep_destroy(sock);
|
2020-11-11 10:46:33 +01:00
|
|
|
}
|
2020-05-13 17:37:51 +02:00
|
|
|
}
|
|
|
|
|
2020-11-02 15:55:12 +01:00
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_tcpdns_cancelread(isc_nmhandle_t *handle) {
|
2020-11-10 11:23:05 +01:00
|
|
|
isc_nmsocket_t *sock = NULL;
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__netievent_tcpdnscancel_t *ievent = NULL;
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2020-11-10 11:23:05 +01:00
|
|
|
REQUIRE(VALID_NMHANDLE(handle));
|
|
|
|
|
|
|
|
sock = handle->sock;
|
|
|
|
|
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(sock->type == isc_nm_tcpdnssocket);
|
2020-11-02 19:58:05 -08:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
ievent = isc__nm_get_netievent_tcpdnscancel(sock->mgr, sock, handle);
|
2020-09-05 11:07:40 -07:00
|
|
|
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
|
|
|
|
(isc__netievent_t *)ievent);
|
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc__nm_async_tcpdnscancel(isc__networker_t *worker, isc__netievent_t *ev0) {
|
|
|
|
isc__netievent_tcpdnscancel_t *ievent =
|
|
|
|
(isc__netievent_tcpdnscancel_t *)ev0;
|
2020-09-05 11:07:40 -07:00
|
|
|
isc_nmsocket_t *sock = ievent->sock;
|
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
UNUSED(worker);
|
|
|
|
|
2020-09-05 11:07:40 -07:00
|
|
|
REQUIRE(VALID_NMSOCK(sock));
|
|
|
|
REQUIRE(sock->tid == isc_nm_tid());
|
|
|
|
|
2021-04-06 18:27:38 +02:00
|
|
|
isc__nm_failed_read_cb(sock, ISC_R_EOF, false);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
}
|
2020-11-02 15:55:12 +01:00
|
|
|
|
2020-09-05 11:07:40 -07:00
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nm_tcpdns_sequential(isc_nmhandle_t *handle) {
|
2020-12-17 11:40:29 +01:00
|
|
|
isc_nmsocket_t *sock = NULL;
|
|
|
|
|
2020-09-05 11:07:40 -07:00
|
|
|
REQUIRE(VALID_NMHANDLE(handle));
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMSOCK(handle->sock));
|
|
|
|
REQUIRE(handle->sock->type == isc_nm_tcpdnssocket);
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
sock = handle->sock;
|
2020-09-05 11:07:40 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
/*
|
|
|
|
* We don't want pipelining on this connection. That means
|
|
|
|
* that we need to pause after reading each request, and
|
|
|
|
* resume only after the request has been processed. This
|
|
|
|
* is done in resume_processing(), which is the socket's
|
|
|
|
* closehandle_cb callback, called whenever a handle
|
|
|
|
* is released.
|
|
|
|
*/
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2021-03-16 09:03:02 +01:00
|
|
|
isc__nmsocket_timer_stop(sock);
|
2021-03-18 09:27:38 +01:00
|
|
|
isc__nm_stop_reading(sock);
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->sequential, true);
|
2020-09-05 11:07:40 -07:00
|
|
|
}
|
|
|
|
|
|
|
|
void
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
isc_nm_tcpdns_keepalive(isc_nmhandle_t *handle, bool value) {
|
2020-12-17 11:40:29 +01:00
|
|
|
isc_nmsocket_t *sock = NULL;
|
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
REQUIRE(VALID_NMHANDLE(handle));
|
|
|
|
REQUIRE(VALID_NMSOCK(handle->sock));
|
|
|
|
REQUIRE(handle->sock->type != isc_nm_tcpdnssocket);
|
2020-09-05 11:07:40 -07:00
|
|
|
|
2020-12-17 11:40:29 +01:00
|
|
|
sock = handle->sock;
|
2020-09-05 11:07:40 -07:00
|
|
|
|
Refactor netmgr and add more unit tests
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
2020-11-12 10:32:18 +01:00
|
|
|
atomic_store(&sock->keepalive, value);
|
|
|
|
}
|