2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-23 18:49:54 +00:00
bind/lib/isc/netmgr/udp.c

575 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#include <unistd.h>
#include <uv.h>
#include <isc/atomic.h>
#include <isc/buffer.h>
#include <isc/condition.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/netmgr.h>
#include <isc/random.h>
#include <isc/refcount.h>
#include <isc/region.h>
#include <isc/result.h>
#include <isc/sockaddr.h>
#include <isc/thread.h>
#include <isc/util.h>
#include "netmgr-int.h"
#include "uv-compat.h"
2020-02-14 08:14:03 +01:00
static isc_result_t
udp_send_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_sockaddr_t *peer);
2020-02-14 08:14:03 +01:00
static void
udp_recv_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
const struct sockaddr *addr, unsigned flags);
2020-02-14 08:14:03 +01:00
static void
udp_send_cb(uv_udp_send_t *req, int status);
isc_result_t
isc_nm_listenudp(isc_nm_t *mgr, isc_nmiface_t *iface, isc_nm_recv_cb_t cb,
2020-02-13 14:44:37 -08:00
void *cbarg, size_t extrahandlesize, isc_nmsocket_t **sockp) {
isc_nmsocket_t *nsock = NULL;
REQUIRE(VALID_NM(mgr));
/*
* We are creating mgr->nworkers duplicated sockets, one
* socket for each worker thread.
*/
nsock = isc_mem_get(mgr->mctx, sizeof(isc_nmsocket_t));
isc__nmsocket_init(nsock, mgr, isc_nm_udplistener, iface);
nsock->nchildren = mgr->nworkers;
atomic_init(&nsock->rchildren, mgr->nworkers);
2020-02-13 14:44:37 -08:00
nsock->children = isc_mem_get(mgr->mctx,
mgr->nworkers * sizeof(*nsock));
memset(nsock->children, 0, mgr->nworkers * sizeof(*nsock));
INSIST(nsock->rcb.recv == NULL && nsock->rcbarg == NULL);
nsock->rcb.recv = cb;
nsock->rcbarg = cbarg;
nsock->extrahandlesize = extrahandlesize;
for (size_t i = 0; i < mgr->nworkers; i++) {
uint16_t family = iface->addr.type.sa.sa_family;
int res = 0;
isc__netievent_udplisten_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *csock = &nsock->children[i];
isc__nmsocket_init(csock, mgr, isc_nm_udpsocket, iface);
csock->parent = nsock;
csock->tid = i;
csock->extrahandlesize = extrahandlesize;
INSIST(csock->rcb.recv == NULL && csock->rcbarg == NULL);
csock->rcb.recv = cb;
csock->rcbarg = cbarg;
csock->fd = socket(family, SOCK_DGRAM, 0);
INSIST(csock->fd >= 0);
/*
* This is SO_REUSE**** hell:
*
* Generally, the SO_REUSEADDR socket option allows reuse of
* local addresses. On Windows, it also allows a socket to
* forcibly bind to a port in use by another socket.
*
* On Linux, SO_REUSEPORT socket option allows sockets to be
* bound to an identical socket address. For UDP sockets, the
* use of this option can provide better distribution of
* incoming datagrams to multiple processes (or threads) as
* compared to the traditional technique of having multiple
* processes compete to receive datagrams on the same socket.
*
* On FreeBSD, the same thing is achieved with SO_REUSEPORT_LB.
*
*/
#if defined(SO_REUSEADDR)
res = setsockopt(csock->fd, SOL_SOCKET, SO_REUSEADDR,
&(int){ 1 }, sizeof(int));
RUNTIME_CHECK(res == 0);
#endif
#if defined(SO_REUSEPORT_LB)
res = setsockopt(csock->fd, SOL_SOCKET, SO_REUSEPORT_LB,
&(int){ 1 }, sizeof(int));
RUNTIME_CHECK(res == 0);
#elif defined(SO_REUSEPORT)
res = setsockopt(csock->fd, SOL_SOCKET, SO_REUSEPORT,
&(int){ 1 }, sizeof(int));
RUNTIME_CHECK(res == 0);
#endif
2020-02-11 14:41:49 +01:00
#ifdef SO_INCOMING_CPU
/* We don't check for the result, because SO_INCOMING_CPU can be
* available without the setter on Linux kernel version 4.4, and
* setting SO_INCOMING_CPU is just an optimization.
*/
(void)setsockopt(csock->fd, SOL_SOCKET, SO_INCOMING_CPU,
&(int){ 1 }, sizeof(int));
2020-02-11 14:41:49 +01:00
#endif
ievent = isc__nm_get_ievent(mgr, netievent_udplisten);
ievent->sock = csock;
isc__nm_enqueue_ievent(&mgr->workers[i],
(isc__netievent_t *)ievent);
}
*sockp = nsock;
return (ISC_R_SUCCESS);
}
/*%<
* Allocator for UDP recv operations. Limited to size 20 * (2^16 + 2),
* which allows enough space for recvmmsg() to get multiple messages at
* a time.
*
* Note this doesn't actually allocate anything, it just assigns the
* worker's receive buffer to a socket, and marks it as "in use".
*/
static void
udp_alloc_cb(uv_handle_t *handle, size_t size, uv_buf_t *buf) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
isc__networker_t *worker = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(isc__nm_in_netthread());
REQUIRE(size <= ISC_NETMGR_RECVBUF_SIZE);
worker = &sock->mgr->workers[sock->tid];
INSIST(!worker->recvbuf_inuse);
buf->base = worker->recvbuf;
buf->len = ISC_NETMGR_RECVBUF_SIZE;
worker->recvbuf_inuse = true;
}
/*
* handle 'udplisten' async call - start listening on a socket.
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udplisten(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udplisten_t *ievent = (isc__netievent_udplisten_t *)ev0;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *sock = ievent->sock;
int r, uv_bind_flags = 0;
int uv_init_flags = 0;
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->iface != NULL);
REQUIRE(sock->parent != NULL);
REQUIRE(sock->tid == isc_nm_tid());
#ifdef UV_UDP_RECVMMSG
uv_init_flags |= UV_UDP_RECVMMSG;
#endif
uv_udp_init_ex(&worker->loop, &sock->uv_handle.udp, uv_init_flags);
uv_handle_set_data(&sock->uv_handle.handle, NULL);
isc__nmsocket_attach(sock,
(isc_nmsocket_t **)&sock->uv_handle.udp.data);
r = uv_udp_open(&sock->uv_handle.udp, sock->fd);
if (r == 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPEN]);
} else {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_OPENFAIL]);
}
if (sock->iface->addr.type.sa.sa_family == AF_INET6) {
uv_bind_flags |= UV_UDP_IPV6ONLY;
}
r = uv_udp_bind(&sock->uv_handle.udp,
&sock->parent->iface->addr.type.sa, uv_bind_flags);
if (r == UV_EADDRNOTAVAIL &&
isc__nm_socket_freebind(&sock->uv_handle.handle) == ISC_R_SUCCESS)
{
/*
* Retry binding with IP_FREEBIND (or equivalent option) if the
* address is not available. This helps with IPv6 tentative
* addresses which are reported by the route socket, although
* named is not yet able to properly bind to them.
*/
r = uv_udp_bind(&sock->uv_handle.udp,
&sock->parent->iface->addr.type.sa,
uv_bind_flags);
}
if (r < 0) {
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_BINDFAIL]);
}
#ifdef ISC_RECV_BUFFER_SIZE
uv_recv_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_RECV_BUFFER_SIZE });
#endif
#ifdef ISC_SEND_BUFFER_SIZE
uv_send_buffer_size(&sock->uv_handle.handle,
&(int){ ISC_SEND_BUFFER_SIZE });
#endif
uv_udp_recv_start(&sock->uv_handle.udp, udp_alloc_cb, udp_recv_cb);
}
static void
2020-02-13 14:44:37 -08:00
udp_close_cb(uv_handle_t *handle) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
atomic_store(&sock->closed, true);
isc__nmsocket_detach((isc_nmsocket_t **)&sock->uv_handle.udp.data);
}
static void
2020-02-13 14:44:37 -08:00
stop_udp_child(isc_nmsocket_t *sock) {
REQUIRE(sock->type == isc_nm_udpsocket);
REQUIRE(sock->tid == isc_nm_tid());
uv_udp_recv_stop(&sock->uv_handle.udp);
uv_close((uv_handle_t *)&sock->uv_handle.udp, udp_close_cb);
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_CLOSE]);
LOCK(&sock->parent->lock);
atomic_fetch_sub(&sock->parent->rchildren, 1);
UNLOCK(&sock->parent->lock);
BROADCAST(&sock->parent->cond);
}
static void
2020-02-13 14:44:37 -08:00
stoplistening(isc_nmsocket_t *sock) {
REQUIRE(sock->type == isc_nm_udplistener);
for (int i = 0; i < sock->nchildren; i++) {
isc__netievent_udpstop_t *event = NULL;
if (isc_nm_tid() == sock->children[i].tid) {
stop_udp_child(&sock->children[i]);
continue;
}
event = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
event->sock = &sock->children[i];
isc__nm_enqueue_ievent(&sock->mgr->workers[i],
(isc__netievent_t *)event);
}
LOCK(&sock->lock);
while (atomic_load_relaxed(&sock->rchildren) > 0) {
WAIT(&sock->cond, &sock->lock);
}
atomic_store(&sock->closed, true);
UNLOCK(&sock->lock);
isc__nmsocket_prep_destroy(sock);
}
void
isc__nm_udp_stoplistening(isc_nmsocket_t *sock) {
isc__netievent_udpstop_t *ievent = NULL;
/* We can't be launched from network thread, we'd deadlock */
REQUIRE(!isc__nm_in_netthread());
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->type == isc_nm_udplistener);
/*
* Socket is already closing; there's nothing to do.
*/
if (!isc__nmsocket_active(sock)) {
return;
}
/*
* Mark it inactive now so that all sends will be ignored
* and we won't try to stop listening again.
*/
atomic_store(&sock->active, false);
/*
* If the manager is interlocked, re-enqueue this as an asynchronous
* event. Otherwise, go ahead and stop listening right away.
*/
if (!isc__nm_acquire_interlocked(sock->mgr)) {
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
ievent->sock = sock;
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
} else {
stoplistening(sock);
isc__nm_drop_interlocked(sock->mgr);
}
}
/*
* handle 'udpstop' async call - stop listening on a socket.
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udpstop(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpstop_t *ievent = (isc__netievent_udpstop_t *)ev0;
2020-02-13 14:44:37 -08:00
isc_nmsocket_t *sock = ievent->sock;
REQUIRE(sock->iface != NULL);
UNUSED(worker);
/*
* If this is a child socket, stop listening and return.
*/
if (sock->parent != NULL) {
stop_udp_child(sock);
return;
}
/*
* If network manager is paused, re-enqueue the event for later.
*/
if (!isc__nm_acquire_interlocked(sock->mgr)) {
isc__netievent_udplisten_t *event = NULL;
event = isc__nm_get_ievent(sock->mgr, netievent_udpstop);
event->sock = sock;
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)event);
} else {
stoplistening(sock);
isc__nm_drop_interlocked(sock->mgr);
}
}
/*
* udp_recv_cb handles incoming UDP packet from uv. The buffer here is
* reused for a series of packets, so we need to allocate a new one. This
* new one can be reused to send the response then.
*/
static void
udp_recv_cb(uv_udp_t *handle, ssize_t nrecv, const uv_buf_t *buf,
2020-02-13 14:44:37 -08:00
const struct sockaddr *addr, unsigned flags) {
isc_result_t result;
isc_nmhandle_t *nmhandle = NULL;
isc_sockaddr_t sockaddr;
isc_nmsocket_t *sock = NULL;
2020-02-13 14:44:37 -08:00
isc_region_t region;
uint32_t maxudp;
bool free_buf = true;
/*
* Even though destruction of the socket can only happen from the
* network thread that we're in, we still attach to the socket here
* to ensure it won't be destroyed by the recv callback.
*/
isc__nmsocket_attach(uv_handle_get_data((uv_handle_t *)handle), &sock);
#ifdef UV_UDP_MMSG_CHUNK
free_buf = ((flags & UV_UDP_MMSG_CHUNK) == 0);
#else
UNUSED(flags);
#endif
/*
* Three reasons to return now without processing:
* - If addr == NULL that's the end of stream - we can
* free the buffer and bail.
* - If we're simulating a firewall blocking UDP packets
* bigger than 'maxudp' bytes for testing purposes.
* - If the socket is no longer active.
*/
maxudp = atomic_load(&sock->mgr->maxudp);
if ((addr == NULL) || (maxudp != 0 && (uint32_t)nrecv > maxudp) ||
(!isc__nmsocket_active(sock)))
{
if (free_buf) {
isc__nm_free_uvbuf(sock, buf);
}
isc__nmsocket_detach(&sock);
return;
}
result = isc_sockaddr_fromsockaddr(&sockaddr, addr);
RUNTIME_CHECK(result == ISC_R_SUCCESS);
nmhandle = isc__nmhandle_get(sock, &sockaddr, NULL);
region.base = (unsigned char *)buf->base;
region.length = nrecv;
INSIST(sock->rcb.recv != NULL);
sock->rcb.recv(nmhandle, ISC_R_SUCCESS, &region, sock->rcbarg);
if (free_buf) {
isc__nm_free_uvbuf(sock, buf);
}
/*
* The sock is now attached to the handle, we can detach our ref.
*/
isc__nmsocket_detach(&sock);
/*
* If the recv callback wants to hold on to the handle,
* it needs to attach to it.
*/
isc_nmhandle_unref(nmhandle);
}
/*
* isc__nm_udp_send sends buf to a peer on a socket.
* It tries to find a proper sibling/child socket so that we won't have
2020-02-18 13:38:41 -08:00
* to jump to another thread.
*/
isc_result_t
isc__nm_udp_send(isc_nmhandle_t *handle, isc_region_t *region, isc_nm_cb_t cb,
2020-02-13 14:44:37 -08:00
void *cbarg) {
isc_nmsocket_t *psock = NULL, *rsock = NULL;
isc_nmsocket_t *sock = handle->sock;
isc_sockaddr_t *peer = &handle->peer;
2019-12-03 00:07:59 -08:00
isc__netievent_udpsend_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
isc__nm_uvreq_t *uvreq = NULL;
int ntid;
uint32_t maxudp = atomic_load(&sock->mgr->maxudp);
/*
* We're simulating a firewall blocking UDP packets bigger than
* 'maxudp' bytes, for testing purposes.
*
* The client would ordinarily have unreferenced the handle
* in the callback, but that won't happen in this case, so
* we need to do so here.
*/
if (maxudp != 0 && region->length > maxudp) {
isc_nmhandle_unref(handle);
return (ISC_R_SUCCESS);
}
if (sock->type == isc_nm_udpsocket) {
INSIST(sock->parent != NULL);
psock = sock->parent;
} else if (sock->type == isc_nm_udplistener) {
psock = sock;
} else {
INSIST(0);
ISC_UNREACHABLE();
}
if (!isc__nmsocket_active(sock)) {
return (ISC_R_CANCELED);
}
/*
2020-02-18 13:38:41 -08:00
* If we're in the network thread, we can send directly. If the
* handle is associated with a UDP socket, we can reuse its thread
* (assuming CPU affinity). Otherwise, pick a thread at random.
*/
if (isc__nm_in_netthread()) {
ntid = isc_nm_tid();
} else if (sock->type == isc_nm_udpsocket) {
ntid = sock->tid;
} else {
ntid = (int)isc_random_uniform(sock->nchildren);
}
rsock = &psock->children[ntid];
uvreq = isc__nm_uvreq_get(sock->mgr, sock);
uvreq->uvbuf.base = (char *)region->base;
uvreq->uvbuf.len = region->length;
uvreq->handle = handle;
isc_nmhandle_ref(uvreq->handle);
uvreq->cb.send = cb;
uvreq->cbarg = cbarg;
if (isc_nm_tid() == rsock->tid) {
/*
* If we're in the same thread as the socket we can send the
* data directly
*/
return (udp_send_direct(rsock, uvreq, peer));
} else {
/*
* We need to create an event and pass it using async channel
*/
ievent = isc__nm_get_ievent(sock->mgr, netievent_udpsend);
ievent->sock = rsock;
ievent->peer = *peer;
ievent->req = uvreq;
isc__nm_enqueue_ievent(&sock->mgr->workers[rsock->tid],
(isc__netievent_t *)ievent);
return (ISC_R_SUCCESS);
}
}
/*
* handle 'udpsend' async event - send a packet on the socket
*/
void
2020-02-13 14:44:37 -08:00
isc__nm_async_udpsend(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_udpsend_t *ievent = (isc__netievent_udpsend_t *)ev0;
REQUIRE(worker->id == ievent->sock->tid);
if (isc__nmsocket_active(ievent->sock)) {
udp_send_direct(ievent->sock, ievent->req, &ievent->peer);
} else {
ievent->req->cb.send(ievent->req->handle, ISC_R_CANCELED,
ievent->req->cbarg);
isc__nm_uvreq_put(&ievent->req, ievent->req->sock);
}
}
/*
* udp_send_cb - callback
*/
static void
2020-02-13 14:44:37 -08:00
udp_send_cb(uv_udp_send_t *req, int status) {
isc_result_t result = ISC_R_SUCCESS;
isc__nm_uvreq_t *uvreq = (isc__nm_uvreq_t *)req->data;
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
if (status < 0) {
result = isc__nm_uverr2result(status);
isc__nm_incstats(uvreq->sock->mgr,
uvreq->sock->statsindex[STATID_SENDFAIL]);
}
uvreq->cb.send(uvreq->handle, result, uvreq->cbarg);
isc_nmhandle_unref(uvreq->handle);
isc__nm_uvreq_put(&uvreq, uvreq->sock);
}
/*
* udp_send_direct sends buf to a peer on a socket. Sock has to be in
* the same thread as the callee.
*/
static isc_result_t
udp_send_direct(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
2020-02-13 14:44:37 -08:00
isc_sockaddr_t *peer) {
int rv;
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(sock->type == isc_nm_udpsocket);
if (!isc__nmsocket_active(sock)) {
return (ISC_R_CANCELED);
}
isc_nmhandle_ref(req->handle);
rv = uv_udp_send(&req->uv_req.udp_send, &sock->uv_handle.udp,
&req->uvbuf, 1, &peer->type.sa, udp_send_cb);
if (rv < 0) {
isc__nm_incstats(req->sock->mgr,
req->sock->statsindex[STATID_SENDFAIL]);
return (isc__nm_uverr2result(rv));
}
return (ISC_R_SUCCESS);
}