2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-22 18:19:42 +00:00
bind/lib/dns/qp.c

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

2438 lines
65 KiB
C
Raw Normal View History

Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*
* For an overview, see doc/design/qp-trie.md
*/
#include <inttypes.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdint.h>
#include <string.h>
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
#include <sys/mman.h>
#include <unistd.h>
#endif
#include <isc/atomic.h>
#include <isc/bit.h>
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#include <isc/buffer.h>
#include <isc/log.h>
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/mutex.h>
#include <isc/refcount.h>
#include <isc/result.h>
#include <isc/rwlock.h>
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
#include <isc/tid.h>
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#include <isc/time.h>
#include <isc/types.h>
#include <isc/urcu.h>
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#include <isc/util.h>
#include <dns/fixedname.h>
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#include <dns/name.h>
#include <dns/qp.h>
#include <dns/types.h>
#include "qp_p.h"
#ifndef DNS_QP_LOG_STATS_LEVEL
#define DNS_QP_LOG_STATS_LEVEL 3
#endif
#ifndef DNS_QP_TRACE
#define DNS_QP_TRACE 0
#endif
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* very basic garbage collector statistics
*
* XXXFANF for now we're logging GC times, but ideally we should
* accumulate stats more quietly and report via the statschannel
*/
static atomic_uint_fast64_t compact_time;
static atomic_uint_fast64_t recycle_time;
static atomic_uint_fast64_t rollback_time;
/* for LOG_STATS() format strings */
#define PRItime " %" PRIu64 " ns "
#if DNS_QP_LOG_STATS_LEVEL
#define LOG_STATS(...) \
isc_log_write(DNS_LOGCATEGORY_DATABASE, DNS_LOGMODULE_QP, \
ISC_LOG_DEBUG(DNS_QP_LOG_STATS_LEVEL), __VA_ARGS__)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#else
#define LOG_STATS(...)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#endif
#if DNS_QP_TRACE
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* TRACE is generally used in allocation-related functions so it doesn't
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
* trace very high-frequency ops
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
#define TRACE(fmt, ...) \
do { \
if (isc_log_wouldlog(ISC_LOG_DEBUG(7))) { \
isc_log_write(DNS_LOGCATEGORY_DATABASE, \
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
DNS_LOGMODULE_QP, ISC_LOG_DEBUG(7), \
"%s:%d:%s(qp %p uctx \"%s\"):t%" PRItid \
": " fmt, \
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
__FILE__, __LINE__, __func__, qp, \
qp ? TRIENAME(qp) : "(null)", isc_tid(), \
##__VA_ARGS__); \
} \
} while (0)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#else
#define TRACE(...)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#endif
#if DNS_QPMULTI_TRACE
ISC_REFCOUNT_STATIC_TRACE_DECL(dns_qpmulti);
#define dns_qpmulti_ref(ptr) dns_qpmulti__ref(ptr, __func__, __FILE__, __LINE__)
#define dns_qpmulti_unref(ptr) \
dns_qpmulti__unref(ptr, __func__, __FILE__, __LINE__)
#define dns_qpmulti_attach(ptr, ptrp) \
dns_qpmulti__attach(ptr, ptrp, __func__, __FILE__, __LINE__)
#define dns_qpmulti_detach(ptrp) \
dns_qpmulti__detach(ptrp, __func__, __FILE__, __LINE__)
#else
ISC_REFCOUNT_STATIC_DECL(dns_qpmulti);
#endif
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/***********************************************************************
*
* converting DNS names to trie keys
*/
/*
* Convert the namespace value. We map namespace values to numerical
* digits so they can be represented in a single byte in the QP key;
* thus namespace 0 becomes '0', etc.
*/
#define ENCODE_NAMESPACE(c) dns_qp_bits_for_byte[(c) + (uint8_t)'0']
#define DECODE_NAMESPACE(c) dns_qp_byte_for_bit[(c)] - (uint8_t)'0'
#define NAME_OFFSET 1
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Number of distinct byte values, i.e. 256
*/
#define BYTE_VALUES (UINT8_MAX + 1)
/*
* Lookup table mapping bytes in DNS names to bit positions, used
* by dns_qpkey_fromname() to convert DNS names to qp-trie keys.
*
* Each element holds one or two bit positions, bit_one in the
* lower half and bit_two in the upper half.
*
* For common hostname characters, bit_two is zero (which cannot
* be a valid bit position).
*
* For others, bit_one is the escape bit, and bit_two is the
* position of the character within the escaped range.
*/
uint16_t dns_qp_bits_for_byte[BYTE_VALUES] = { 0 };
/*
* And the reverse, mapping bit positions to characters, so the tests
* can print diagnostics involving qp-trie keys.
*
* This table only handles the first bit in an escape sequence; we
* arrange that we can calculate the byte value for both bits by
* adding the the second bit to the first bit's byte value.
*/
uint8_t dns_qp_byte_for_bit[SHIFT_OFFSET] = { 0 };
/*
* Fill in the lookup tables at program startup. (It doesn't matter
* when this is initialized relative to other startup code.)
*/
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* The bit positions for bytes inside labels have to be between
* SHIFT_BITMAP and SHIFT_OFFSET. (SHIFT_NOBYTE separates labels.)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*
* Each byte range in between common hostname characters has a different
* escape character, to preserve the correct lexical order.
*
* Escaped byte ranges mostly fit into the space available in the
* bitmap, except for those above 'z' (which is mostly bytes with the
* top bit set). So, when we reach the end of the bitmap we roll over
* to the next escape character.
*
* After filling the table we ensure that the bit positions for
* hostname characters and escape characters all fit.
*/
void
dns__qp_initialize(void) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/* zero common character marker not a valid shift position */
INSIST(0 < SHIFT_BITMAP);
/* first bit is common byte or escape byte */
dns_qpshift_t bit_one = SHIFT_BITMAP;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/* second bit is position in escaped range */
dns_qpshift_t bit_two = SHIFT_BITMAP;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
bool escaping = true;
for (unsigned int byte = 0; byte < BYTE_VALUES; byte++) {
if (qp_common_character(byte)) {
escaping = false;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
dns_qp_bits_for_byte[byte] = bit_one;
} else if ('A' <= byte && byte <= 'Z') {
/* map upper case to lower case */
dns_qpshift_t after_esc = bit_one + 1;
dns_qpshift_t skip_punct = 'a' - '_';
dns_qpshift_t letter = byte - 'A';
dns_qpshift_t bit = after_esc + skip_punct + letter;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qp_bits_for_byte[byte] = bit;
/* to simplify reverse conversion */
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
bit_two++;
} else {
/* non-hostname characters need to be escaped */
if (!escaping || bit_two >= SHIFT_OFFSET) {
escaping = true;
bit_one++;
dns_qp_byte_for_bit[bit_one] = byte;
bit_two = SHIFT_BITMAP;
}
dns_qp_bits_for_byte[byte] = bit_two << 8 | bit_one;
bit_two++;
}
}
ENSURE(bit_one < SHIFT_OFFSET);
}
void
dns__qp_shutdown(void) {
/* Nothing */
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Convert a DNS name into a trie lookup key.
*
* Returns the length of the key.
*
* For performance we get our hands dirty in the guts of the name.
*
* We don't worry about the distinction between absolute and relative
* names. When the trie is only used with absolute names, the first byte
* of the key will always be SHIFT_NOBYTE and it will always be skipped
* when traversing the trie. So keeping the root label costs little, and
* it allows us to support tries of relative names too. In fact absolute
* and relative names can be mixed in the same trie without causing
* confusion, because the presence or absence of the initial
* SHIFT_NOBYTE in the key disambiguates them (exactly like a trailing
* dot in a zone file).
*/
size_t
dns_qpkey_fromname(dns_qpkey_t key, const dns_name_t *name,
dns_namespace_t space) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
dns_offsets_t offsets;
size_t labels = dns_name_offsets(name, offsets);
size_t len = 0;
/* namespace */
key[len++] = ENCODE_NAMESPACE(space);
/* name */
if (labels == 0) {
key[len] = SHIFT_NOBYTE;
return len;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
size_t label = labels;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
while (label-- > 0) {
const uint8_t *ldata = name->ndata + offsets[label];
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
size_t label_len = *ldata++;
while (label_len-- > 0) {
uint16_t bits = dns_qp_bits_for_byte[*ldata++];
key[len++] = bits & 0xFF; /* bit_one */
if ((bits >> 8) != 0) { /* escape? */
key[len++] = bits >> 8; /* bit_two */
}
}
/* label terminator */
key[len++] = SHIFT_NOBYTE;
}
/* mark end with a double NOBYTE */
key[len] = SHIFT_NOBYTE;
ENSURE(len < sizeof(dns_qpkey_t));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return len;
}
void
dns_qpkey_toname(const dns_qpkey_t key, size_t keylen, dns_name_t *name,
dns_namespace_t *space) {
size_t locs[DNS_NAME_MAXLABELS];
size_t loc = 0;
size_t offset = 0;
REQUIRE(ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
REQUIRE(name->buffer != NULL);
REQUIRE(keylen > 0);
dns_name_reset(name);
SET_IF_NOT_NULL(space, DECODE_NAMESPACE(key[offset++]));
if (keylen == NAME_OFFSET) {
return;
}
/* Scan the key looking for label boundaries */
for (; offset <= keylen; offset++) {
INSIST(key[offset] >= SHIFT_NOBYTE &&
key[offset] < SHIFT_OFFSET);
INSIST(loc < DNS_NAME_MAXLABELS);
if (qpkey_bit(key, keylen, offset) == SHIFT_NOBYTE) {
if (qpkey_bit(key, keylen, offset + 1) == SHIFT_NOBYTE)
{
locs[loc] = offset + 1;
goto scanned;
}
locs[loc++] = offset + 1;
} else if (offset == NAME_OFFSET) {
/* This happens for a relative name */
locs[loc++] = offset;
}
}
UNREACHABLE();
scanned:
/*
* In the key the labels are encoded in reverse order, so
* we step backward through the label boundaries, then forward
* through the labels, to create the DNS wire format data.
*/
while (loc-- > 0) {
uint8_t len = 0, *lenp = NULL;
/* Store the location of the length byte */
lenp = isc_buffer_used(name->buffer);
/* Add a length byte to the name data */
isc_buffer_putuint8(name->buffer, 0);
name->length++;
/* Convert from escaped byte ranges to ASCII */
for (offset = locs[loc]; offset < locs[loc + 1] - 1; offset++) {
uint8_t bit = qpkey_bit(key, keylen, offset);
uint8_t byte = dns_qp_byte_for_bit[bit];
if (qp_common_character(byte)) {
isc_buffer_putuint8(name->buffer, byte);
} else {
byte += key[++offset] - SHIFT_BITMAP;
isc_buffer_putuint8(name->buffer, byte);
}
len++;
}
name->length += len;
/* Write the final label length to the length byte */
*lenp = len;
}
/* Add a root label for absolute names */
if (key[NAME_OFFSET] == SHIFT_NOBYTE) {
name->attributes.absolute = true;
isc_buffer_putuint8(name->buffer, 0);
name->length++;
}
name->ndata = isc_buffer_base(name->buffer);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Sentinel value for equal keys
*/
#define QPKEY_EQUAL (~(size_t)0)
/*
* Compare two keys and return the offset where they differ.
*
* This offset is used to work out where a trie search diverged: when one
* of the keys is in the trie and one is not, the common prefix (up to the
* offset) is the part of the unknown key that exists in the trie. This
* matters for adding new keys or finding neighbours of missing keys.
*
* When the keys are different lengths it is possible (but unwise) for
* the longer key to be the same as the shorter key but with superfluous
* trailing SHIFT_NOBYTE elements. This makes the keys equal for the
* purpose of traversing the trie.
*/
static size_t
qpkey_compare(const dns_qpkey_t key_a, const size_t keylen_a,
const dns_qpkey_t key_b, const size_t keylen_b) {
size_t keylen = ISC_MAX(keylen_a, keylen_b);
for (size_t offset = 0; offset < keylen; offset++) {
if (qpkey_bit(key_a, keylen_a, offset) !=
qpkey_bit(key_b, keylen_b, offset))
{
return offset;
}
}
return QPKEY_EQUAL;
}
/***********************************************************************
*
* allocator wrappers
*/
#if FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
/*
* Optionally (for debugging) during a copy-on-write transaction, use
* memory protection to ensure that the shared chunks are not modified.
* Once a chunk becomes shared, it remains read-only until it is freed.
* POSIX says we have to use mmap() to get an allocation that we can
* definitely pass to mprotect().
*/
static size_t
chunk_size_raw(void) {
size_t size = (size_t)sysconf(_SC_PAGE_SIZE);
return ISC_MAX(size, QP_CHUNK_BYTES);
}
static void *
chunk_get_raw(dns_qp_t *qp, size_t len) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qp->write_protect) {
size_t size = chunk_size_raw();
void *ptr = mmap(NULL, size, PROT_READ | PROT_WRITE,
MAP_ANON | MAP_PRIVATE, -1, 0);
RUNTIME_CHECK(ptr != MAP_FAILED);
return ptr;
} else {
return isc_mem_allocate(qp->mctx, len);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
static void
chunk_free_raw(dns_qp_t *qp, void *ptr) {
if (qp->write_protect) {
RUNTIME_CHECK(munmap(ptr, chunk_size_raw()) == 0);
} else {
isc_mem_free(qp->mctx, ptr);
}
}
static void *
chunk_shrink_raw(dns_qp_t *qp, void *ptr, size_t bytes) {
if (qp->write_protect) {
return ptr;
} else {
return isc_mem_reallocate(qp->mctx, ptr, bytes);
}
}
static void
write_protect(dns_qp_t *qp, dns_qpchunk_t chunk) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qp->write_protect) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* see transaction_open() wrt this special case */
if (qp->transaction_mode == QP_WRITE && chunk == qp->bump) {
return;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
TRACE("chunk %u", chunk);
void *ptr = qp->base->ptr[chunk];
size_t size = chunk_size_raw();
RUNTIME_CHECK(mprotect(ptr, size, PROT_READ) >= 0);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
#else
#define chunk_get_raw(qp, size) isc_mem_allocate(qp->mctx, size)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#define chunk_free_raw(qp, ptr) isc_mem_free(qp->mctx, ptr)
#define chunk_shrink_raw(qp, ptr, size) isc_mem_reallocate(qp->mctx, ptr, size)
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
#define write_protect(qp, chunk)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
#endif
/***********************************************************************
*
* allocator
*/
/*
* When we reuse the bump chunk across multiple write transactions,
* it can have an immutable prefix and a mutable suffix.
*/
static inline bool
cells_immutable(dns_qp_t *qp, dns_qpref_t ref) {
dns_qpchunk_t chunk = ref_chunk(ref);
dns_qpcell_t cell = ref_cell(ref);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (chunk == qp->bump) {
return cell < qp->fender;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
} else {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
return qp->usage[chunk].immutable;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
/*
* Find the next power that is both bigger than size and prev_capacity,
* but still within the chunk min and max sizes.
*/
static dns_qpcell_t
next_capacity(uint32_t prev_capacity, uint32_t size) {
/*
* Request size was floored at 2 because builtin_clz used to be 0.
* We keep this behavior because ISC_LEADING_ZEROS(0) = 32.
*/
size = ISC_MAX3(size, prev_capacity, 2U);
uint32_t log2 = 32U - ISC_LEADING_ZEROS(size - 1U);
return 1U << ISC_CLAMP(log2, QP_CHUNK_LOG_MIN, QP_CHUNK_LOG_MAX);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Create a fresh bump chunk and allocate some twigs from it.
*/
static dns_qpref_t
chunk_alloc(dns_qp_t *qp, dns_qpchunk_t chunk, dns_qpweight_t size) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(qp->base->ptr[chunk] == NULL);
INSIST(qp->usage[chunk].used == 0);
INSIST(qp->usage[chunk].free == 0);
INSIST(qp->chunk_capacity <= QP_CHUNK_SIZE);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->chunk_capacity = next_capacity(qp->chunk_capacity * 2u, size);
qp->base->ptr[chunk] =
chunk_get_raw(qp, qp->chunk_capacity * sizeof(dns_qpnode_t));
qp->usage[chunk] = (qp_usage_t){ .exists = true,
.used = size,
.capacity = qp->chunk_capacity };
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->used_count += size;
qp->bump = chunk;
qp->fender = 0;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
return make_ref(chunk, 0);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* This is used to grow the chunk arrays when they fill up. If the old
* base array is in use by readers, we must make a clone, otherwise we
* can reallocate in place.
*
* The isc_refcount_init() and qpbase_unref() in this function are a pair.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static void
realloc_chunk_arrays(dns_qp_t *qp, dns_qpchunk_t newmax) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
size_t oldptrs = sizeof(qp->base->ptr[0]) * qp->chunk_max;
size_t newptrs = sizeof(qp->base->ptr[0]) * newmax;
size_t size = STRUCT_FLEX_SIZE(qp->base, ptr, newmax);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->base == NULL || qpbase_unref(qp)) {
qp->base = isc_mem_reallocate(qp->mctx, qp->base, size);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
} else {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qpbase_t *oldbase = qp->base;
qp->base = isc_mem_allocate(qp->mctx, size);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
memmove(&qp->base->ptr[0], &oldbase->ptr[0], oldptrs);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
memset(&qp->base->ptr[qp->chunk_max], 0, newptrs - oldptrs);
isc_refcount_init(&qp->base->refcount, 1);
qp->base->magic = QPBASE_MAGIC;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* usage array is exclusive to the writer */
size_t oldusage = sizeof(qp->usage[0]) * qp->chunk_max;
size_t newusage = sizeof(qp->usage[0]) * newmax;
qp->usage = isc_mem_reallocate(qp->mctx, qp->usage, newusage);
memset(&qp->usage[qp->chunk_max], 0, newusage - oldusage);
qp->chunk_max = newmax;
TRACE("qpbase %p usage %p max %u", qp->base, qp->usage, qp->chunk_max);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/*
* There was no space in the bump chunk, so find a place to put a fresh
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* chunk in the chunk arrays, then allocate some twigs from it.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static dns_qpref_t
alloc_slow(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
for (chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (!qp->usage[chunk].exists) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return chunk_alloc(qp, chunk, size);
}
}
ENSURE(chunk == qp->chunk_max);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
realloc_chunk_arrays(qp, GROWTH_FACTOR(chunk));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return chunk_alloc(qp, chunk, size);
}
/*
* Ensure we are using a fresh bump chunk.
*/
static void
alloc_reset(dns_qp_t *qp) {
(void)alloc_slow(qp, 0);
}
/*
* Allocate some fresh twigs. This is the bump allocator fast path.
*/
static inline dns_qpref_t
alloc_twigs(dns_qp_t *qp, dns_qpweight_t size) {
dns_qpchunk_t chunk = qp->bump;
dns_qpcell_t cell = qp->usage[chunk].used;
if (cell + size <= qp->usage[chunk].capacity) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->usage[chunk].used += size;
qp->used_count += size;
return make_ref(chunk, cell);
} else {
return alloc_slow(qp, size);
}
}
/*
* Record that some twigs are no longer being used, and if possible
* zero them to ensure that there isn't a spurious double detach when
* the chunk is later recycled.
*
* Returns true if the twigs were immediately destroyed.
*
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
* NOTE: the caller is responsible for attaching or detaching any
* leaves as required.
*/
static inline bool
free_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
dns_qpchunk_t chunk = ref_chunk(twigs);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->free_count += size;
qp->usage[chunk].free += size;
ENSURE(qp->free_count <= qp->used_count);
ENSURE(qp->usage[chunk].free <= qp->usage[chunk].used);
if (cells_immutable(qp, twigs)) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->hold_count += size;
ENSURE(qp->free_count >= qp->hold_count);
return false;
} else {
zero_twigs(ref_ptr(qp, twigs), size);
return true;
}
}
/*
* When some twigs have been copied, and free_twigs() could not
* immediately destroy the old copy, we need to update the refcount
* on any leaves that were duplicated.
*/
static void
attach_twigs(dns_qp_t *qp, dns_qpnode_t *twigs, dns_qpweight_t size) {
for (dns_qpweight_t pos = 0; pos < size; pos++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (node_tag(&twigs[pos]) == LEAF_TAG) {
attach_leaf(qp, &twigs[pos]);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
/***********************************************************************
*
* chunk reclamation
*/
/*
* Is any of this chunk still in use?
*/
static inline dns_qpcell_t
chunk_usage(dns_qp_t *qp, dns_qpchunk_t chunk) {
return qp->usage[chunk].used - qp->usage[chunk].free;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* We remove each empty chunk from the total counts when the chunk is
* freed, or when it is scheduled for safe memory reclamation. We check
* the chunk's phase to avoid discounting it twice in the latter case.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static void
chunk_discount(dns_qp_t *qp, dns_qpchunk_t chunk) {
if (qp->usage[chunk].discounted) {
return;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
INSIST(qp->used_count >= qp->usage[chunk].used);
INSIST(qp->free_count >= qp->usage[chunk].free);
qp->used_count -= qp->usage[chunk].used;
qp->free_count -= qp->usage[chunk].free;
qp->usage[chunk].discounted = true;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* When a chunk is being recycled, we need to detach any leaves that
* remain, and free any `base` arrays that have been marked as unused.
*/
static void
chunk_free(dns_qp_t *qp, dns_qpchunk_t chunk) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->write_protect) {
TRACE("chunk %u base %p", chunk, qp->base->ptr[chunk]);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpnode_t *n = qp->base->ptr[chunk];
for (dns_qpcell_t count = qp->usage[chunk].used; count > 0;
count--, n++)
{
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (node_tag(n) == LEAF_TAG && node_pointer(n) != NULL) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
detach_leaf(qp, n);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
} else if (count > 1 && reader_valid(n)) {
dns_qpreader_t qpr;
unpack_reader(&qpr, n);
/* pairs with dns_qpmulti_commit() */
if (qpbase_unref(&qpr)) {
isc_mem_free(qp->mctx, qpr.base);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
chunk_discount(qp, chunk);
chunk_free_raw(qp, qp->base->ptr[chunk]);
qp->base->ptr[chunk] = NULL;
qp->usage[chunk] = (qp_usage_t){};
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* Free any chunks that we can while a trie is in use.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static void
recycle(dns_qp_t *qp) {
unsigned int nfree = 0;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
isc_nanosecs_t start = isc_time_monotonic();
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && !qp->usage[chunk].immutable)
{
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
chunk_free(qp, chunk);
nfree++;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
atomic_fetch_add_relaxed(&recycle_time, time);
if (nfree > 0) {
LOG_STATS("qp recycle" PRItime "free %u chunks", time, nfree);
LOG_STATS("qp recycle leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* asynchronous cleanup
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
*/
static void
reclaim_chunks_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* If chunk_max is zero, chunks have already been freed.
*/
if (qp->chunk_max != 0) {
unsigned int nfree = 0;
isc_nanosecs_t start = isc_time_monotonic();
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(QP_VALID(qp));
for (unsigned int i = 0; i < rcuctx->count; i++) {
dns_qpchunk_t chunk = rcuctx->chunk[i];
if (qp->usage[chunk].snapshot) {
/* clean up when snapshot is destroyed */
qp->usage[chunk].snapfree = true;
} else {
chunk_free(qp, chunk);
nfree++;
}
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (nfree > 0) {
LOG_STATS("qp reclaim" PRItime "free %u chunks", time,
nfree);
LOG_STATS(
"qp reclaim leaf %u live %u used %u free %u "
"hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
}
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
UNLOCK(&multi->mutex);
dns_qpmulti_detach(&multi);
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
/*
* At the end of a transaction, schedule empty but immutable chunks
* for reclamation later.
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
*/
static void
reclaim_chunks(dns_qpmulti_t *multi) {
dns_qp_t *qp = &multi->writer;
unsigned int count = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
count++;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
}
if (count == 0) {
return;
}
qp_rcuctx_t *rcuctx =
isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, count));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
.count = count,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
unsigned int i = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
if (chunk != qp->bump && chunk_usage(qp, chunk) == 0 &&
qp->usage[chunk].exists && qp->usage[chunk].immutable &&
!qp->usage[chunk].discounted)
{
rcuctx->chunk[i++] = chunk;
chunk_discount(qp, chunk);
}
}
/*
* Reference the qpmulti object to keep it from being
* freed until reclaim_chunks_cb() runs.
*/
dns_qpmulti_ref(multi);
call_rcu(&rcuctx->rcu_head, reclaim_chunks_cb);
LOG_STATS("qp will reclaim %u chunks", count);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
/*
* When a snapshot is destroyed, clean up chunks that need free()ing
* and are not used by any remaining snapshots.
*/
static void
marksweep_chunks(dns_qpmulti_t *multi) {
unsigned int nfree = 0;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
isc_nanosecs_t start = isc_time_monotonic();
dns_qp_t *qpw = &multi->writer;
ISC_LIST_FOREACH(multi->snapshots, qps, link) {
for (dns_qpchunk_t chunk = 0; chunk < qps->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qps->base->ptr[chunk] != NULL) {
INSIST(qps->base->ptr[chunk] ==
qpw->base->ptr[chunk]);
qpw->usage[chunk].snapmark = true;
}
}
}
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qpw->usage[chunk].snapshot = qpw->usage[chunk].snapmark;
qpw->usage[chunk].snapmark = false;
if (qpw->usage[chunk].snapfree && !qpw->usage[chunk].snapshot) {
chunk_free(qpw, chunk);
nfree++;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
}
isc_nanosecs_t time = isc_time_monotonic() - start;
recycle_time += time;
if (nfree > 0) {
LOG_STATS("qp marksweep" PRItime "free %u chunks", time, nfree);
LOG_STATS(
"qp marksweep leaf %u live %u used %u free %u hold %u",
qpw->leaf_count, qpw->used_count - qpw->free_count,
qpw->used_count, qpw->free_count, qpw->hold_count);
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/***********************************************************************
*
* garbage collector
*/
/*
* Move a branch node's twigs to the `bump` chunk, for copy-on-write
* or for garbage collection. We don't update the node in place
* because `compact_recursive()` does not ensure the node itself is
* mutable until after it discovers evacuation was necessary.
*
* If free_twigs() could not immediately destroy the old twigs, we have
* to re-attach to any leaves.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static dns_qpref_t
evacuate(dns_qp_t *qp, dns_qpnode_t *n) {
dns_qpweight_t size = branch_twigs_size(n);
dns_qpref_t old_ref = branch_twigs_ref(n);
dns_qpref_t new_ref = alloc_twigs(qp, size);
dns_qpnode_t *old_twigs = ref_ptr(qp, old_ref);
dns_qpnode_t *new_twigs = ref_ptr(qp, new_ref);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
move_twigs(new_twigs, old_twigs, size);
if (!free_twigs(qp, old_ref, size)) {
attach_twigs(qp, new_twigs, size);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
return new_ref;
}
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* Immutable nodes need copy-on-write. As we walk down the trie finding the
* right place to modify, make_root_mutable() and make_twigs_mutable()
* are called to ensure that immutable nodes on the path from the root are
* copied to a mutable chunk.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
static inline dns_qpnode_t *
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
make_root_mutable(dns_qp_t *qp) {
if (cells_immutable(qp, qp->root_ref)) {
qp->root_ref = evacuate(qp, MOVABLE_ROOT(qp));
}
return ref_ptr(qp, qp->root_ref);
}
static inline void
make_twigs_mutable(dns_qp_t *qp, dns_qpnode_t *n) {
if (cells_immutable(qp, branch_twigs_ref(n))) {
*n = make_node(branch_index(n), evacuate(qp, n));
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/*
* Compact the trie by traversing the whole thing recursively, copying
* bottom-up as required. The aim is to avoid evacuation as much as
* possible, but when parts of the trie are immutable, we need to evacuate
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
* the paths from the root to the parts of the trie that occupy
* fragmented chunks.
*
* Without the QP_MIN_USED check, the algorithm will leave the trie
* unchanged. If the children are all leaves, the loop changes nothing,
* so we will return this node's original ref. If all of the children
* that are branches did not need moving, again, the loop changes
* nothing. So the evacuation check is the only place that the
* algorithm introduces ref changes, that then bubble up towards the
* root through the logic inside the loop.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
static dns_qpref_t
compact_recursive(dns_qp_t *qp, dns_qpnode_t *parent) {
dns_qpweight_t size = branch_twigs_size(parent);
dns_qpref_t twigs_ref = branch_twigs_ref(parent);
dns_qpchunk_t chunk = ref_chunk(twigs_ref);
if (qp->compact_all ||
(chunk != qp->bump && chunk_usage(qp, chunk) < QP_MIN_USED))
{
twigs_ref = evacuate(qp, parent);
}
bool immutable = cells_immutable(qp, twigs_ref);
for (dns_qpweight_t pos = 0; pos < size; pos++) {
dns_qpnode_t *child = ref_ptr(qp, twigs_ref) + pos;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (!is_branch(child)) {
continue;
}
dns_qpref_t old_grandtwigs = branch_twigs_ref(child);
dns_qpref_t new_grandtwigs = compact_recursive(qp, child);
if (old_grandtwigs == new_grandtwigs) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
continue;
}
if (immutable) {
twigs_ref = evacuate(qp, parent);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/* the twigs have moved */
child = ref_ptr(qp, twigs_ref) + pos;
immutable = false;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
*child = make_node(branch_index(child), new_grandtwigs);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
return twigs_ref;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
static void
compact(dns_qp_t *qp) {
LOG_STATS("qp compact before leaf %u live %u used %u free %u hold %u",
qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
isc_nanosecs_t start = isc_time_monotonic();
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qp->usage[qp->bump].free > QP_MAX_FREE) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
alloc_reset(qp);
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->leaf_count > 0) {
qp->root_ref = compact_recursive(qp, MOVABLE_ROOT(qp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
qp->compact_all = false;
isc_nanosecs_t time = isc_time_monotonic() - start;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
atomic_fetch_add_relaxed(&compact_time, time);
LOG_STATS("qp compact" PRItime
"leaf %u live %u used %u free %u hold %u",
time, qp->leaf_count, qp->used_count - qp->free_count,
qp->used_count, qp->free_count, qp->hold_count);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
void
dns_qp_compact(dns_qp_t *qp, dns_qpgc_t mode) {
REQUIRE(QP_VALID(qp));
if (mode == DNS_QPGC_MAYBE && !QP_NEEDGC(qp)) {
return;
}
if (mode == DNS_QPGC_ALL) {
alloc_reset(qp);
qp->compact_all = true;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
compact(qp);
recycle(qp);
}
/*
* Free some twigs and (if they were destroyed immediately so that the
* result from QP_MAX_GARBAGE can change) compact the trie if necessary.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*
* This is called by the trie modification API entry points. The
* free_twigs() function requires the caller to attach or detach any
* leaves as necessary. Callers of squash_twigs() satisfy this
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* requirement by calling make_twigs_mutable().
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*
* Aside: In typical garbage collectors, compaction is triggered when
* the allocator runs out of space. But that is because typical garbage
* collectors do not know how much memory can be recovered, so they must
* find out by scanning the heap. The qp-trie code was originally
* designed to use malloc() and free(), so it has more information about
* when garbage collection might be worthwhile. Hence we can trigger
* collection when garbage passes a threshold.
*
* XXXFANF: If we need to avoid latency outliers caused by compaction in
* write transactions, we can check qp->transaction_mode here.
*/
static inline bool
squash_twigs(dns_qp_t *qp, dns_qpref_t twigs, dns_qpweight_t size) {
bool destroyed = free_twigs(qp, twigs, size);
if (destroyed && QP_AUTOGC(qp)) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
compact(qp);
recycle(qp);
/*
* This shouldn't happen if the garbage collector is
* working correctly. We can recover at the cost of some
* time and space, but recovery should be cheaper than
* letting compact+recycle fail repeatedly.
*/
if (QP_AUTOGC(qp)) {
isc_log_write(DNS_LOGCATEGORY_DATABASE,
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
DNS_LOGMODULE_QP, ISC_LOG_NOTICE,
"qp %p uctx \"%s\" compact/recycle "
"failed to recover any space, "
"scheduling a full compaction",
qp, TRIENAME(qp));
qp->compact_all = true;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
return destroyed;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/***********************************************************************
*
* public accessors for memory management internals
*/
dns_qp_memusage_t
dns_qp_memusage(dns_qp_t *qp) {
REQUIRE(QP_VALID(qp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qp_memusage_t memusage = {
.uctx = qp->uctx,
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
.leaves = qp->leaf_count,
.live = qp->used_count - qp->free_count,
.used = qp->used_count,
.hold = qp->hold_count,
.free = qp->free_count,
.node_size = sizeof(dns_qpnode_t),
.fragmented = QP_NEEDGC(qp),
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
};
size_t chunk_usage_bytes = 0;
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->base->ptr[chunk] != NULL) {
chunk_usage_bytes += qp->usage[chunk].capacity;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
memusage.chunk_count += 1;
}
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* XXXFANF does not subtract chunks that have been shrunk,
* and does not count unreclaimed dns_qpbase_t objects
*/
memusage.bytes = chunk_usage_bytes +
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->chunk_max * sizeof(qp->base->ptr[0]) +
qp->chunk_max * sizeof(qp->usage[0]);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return memusage;
}
dns_qp_memusage_t
dns_qpmulti_memusage(dns_qpmulti_t *multi) {
REQUIRE(QPMULTI_VALID(multi));
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
INSIST(QP_VALID(qp));
dns_qp_memusage_t memusage = dns_qp_memusage(qp);
if (qp->transaction_mode == QP_UPDATE) {
memusage.bytes -= qp->usage[qp->bump].capacity;
memusage.bytes += qp->usage[qp->bump].used *
sizeof(dns_qpnode_t);
}
UNLOCK(&multi->mutex);
return memusage;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
void
dns_qp_gctime(isc_nanosecs_t *compact_p, isc_nanosecs_t *recycle_p,
isc_nanosecs_t *rollback_p) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*compact_p = atomic_load_relaxed(&compact_time);
*recycle_p = atomic_load_relaxed(&recycle_time);
*rollback_p = atomic_load_relaxed(&rollback_time);
}
/***********************************************************************
*
* read-write transactions
*/
static dns_qp_t *
transaction_open(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(qptp != NULL && *qptp == NULL);
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(QP_VALID(qp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* Mark existing chunks as immutable.
*
* Aside: The bump chunk is special: in a series of write
* transactions the bump chunk is reused; the first part (up
* to fender) is immutable, the rest mutable. But we set its
* immutable flag so that when the bump chunk fills up, the
* first part continues to be treated as immutable. (And the
* rest of the chunk too, but that's OK.)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->usage[chunk].exists) {
qp->usage[chunk].immutable = true;
write_protect(qp, chunk);
}
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Ensure QP_AUTOGC() ignores free space in immutable chunks.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->hold_count = qp->free_count;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qptp = qp;
return qp;
}
/*
* a write is light
*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* We need to ensure we allocate from a fresh chunk if the last transaction
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
* shrunk the bump chunk; but usually in a sequence of write transactions
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* we just put `fender` at the point where we started this generation.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* (Aside: Instead of keeping the previous transaction's mode, I
* considered forcing allocation into the slow path by fiddling with
* the bump chunk's usage counters. But that is troublesome because
* `chunk_free()` needs to know how much of the chunk to scan.)
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
void
dns_qpmulti_write(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->transaction_mode == QP_WRITE) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->fender = qp->usage[qp->bump].used;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
} else {
alloc_reset(qp);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
qp->transaction_mode = QP_WRITE;
}
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* an update is heavier
*
* We always reset the allocator to the start of a fresh chunk,
* because the previous transaction was probably an update that shrunk
* the bump chunk. It simplifies rollback because `fender` is always zero.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* To rollback a transaction, we need to reset all the allocation
* counters to their previous state, in particular we need to un-free
* any nodes that were copied to make them mutable. This means we need
* to make a copy of basically the whole `dns_qp_t writer`: everything
* but the chunks holding the trie nodes.
*
* We do most of the transaction setup before creating the rollback
* state so that after rollback we have a correct idea of which chunks
* are immutable, and so we have the correct transaction mode to make
* the next transaction allocate a new bump chunk. The exception is
* resetting the allocator, which we do after creating the rollback
* state; if this transaction is rolled back then the next transaction
* will start from the rollback state and also reset the allocator as
* one of its first actions.
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
void
dns_qpmulti_update(dns_qpmulti_t *multi, dns_qp_t **qptp) {
dns_qp_t *qp = transaction_open(multi, qptp);
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->transaction_mode = QP_UPDATE;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qp_t *rollback = isc_mem_allocate(qp->mctx, sizeof(*rollback));
memmove(rollback, qp, sizeof(*rollback));
/* can be uninitialized on the first transaction */
if (rollback->base != NULL) {
INSIST(QPBASE_VALID(rollback->base));
INSIST(qp->usage != NULL && qp->chunk_max > 0);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* paired with either _commit() or _rollback() */
isc_refcount_increment(&rollback->base->refcount);
size_t usage_bytes = sizeof(qp->usage[0]) * qp->chunk_max;
rollback->usage = isc_mem_allocate(qp->mctx, usage_bytes);
memmove(rollback->usage, qp->usage, usage_bytes);
}
INSIST(multi->rollback == NULL);
multi->rollback = rollback;
alloc_reset(qp);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
void
dns_qpmulti_commit(dns_qpmulti_t *multi, dns_qp_t **qptp) {
REQUIRE(QPMULTI_VALID(multi));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
REQUIRE(qptp != NULL && *qptp == &multi->writer);
REQUIRE(multi->writer.transaction_mode == QP_WRITE ||
multi->writer.transaction_mode == QP_UPDATE);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qp_t *qp = *qptp;
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qp->transaction_mode == QP_UPDATE) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(multi->rollback != NULL);
/* paired with dns_qpmulti_update() */
if (qpbase_unref(multi->rollback)) {
isc_mem_free(qp->mctx, multi->rollback->base);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (multi->rollback->usage != NULL) {
isc_mem_free(qp->mctx, multi->rollback->usage);
}
isc_mem_free(qp->mctx, multi->rollback);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(multi->rollback == NULL);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* not the first commit? */
if (multi->reader_ref != INVALID_REF) {
INSIST(cells_immutable(qp, multi->reader_ref));
free_twigs(qp, multi->reader_ref, READER_SIZE);
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qp->transaction_mode == QP_UPDATE) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* minimize memory overhead */
compact(qp);
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
qp->base->ptr[qp->bump] = chunk_shrink_raw(
qp, qp->base->ptr[qp->bump],
qp->usage[qp->bump].used * sizeof(dns_qpnode_t));
} else {
multi->reader_ref = alloc_twigs(qp, READER_SIZE);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* anchor a new version of the trie */
dns_qpnode_t *reader = ref_ptr(qp, multi->reader_ref);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
make_reader(reader, multi);
/* paired with chunk_free() */
isc_refcount_increment(&qp->base->refcount);
rcu_assign_pointer(multi->reader, reader); /* COMMIT */
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* clean up what we can right now */
if (qp->transaction_mode == QP_UPDATE || QP_NEEDGC(qp)) {
recycle(qp);
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/* schedule the rest for later */
reclaim_chunks(multi);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/*
* Throw away everything that was allocated during this transaction.
*/
void
dns_qpmulti_rollback(dns_qpmulti_t *multi, dns_qp_t **qptp) {
unsigned int nfree = 0;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(QPMULTI_VALID(multi));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
REQUIRE(multi->writer.transaction_mode == QP_UPDATE);
REQUIRE(qptp != NULL && *qptp == &multi->writer);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qp_t *qp = *qptp;
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
isc_nanosecs_t start = isc_time_monotonic();
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->base->ptr[chunk] != NULL && !qp->usage[chunk].immutable)
{
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
chunk_free(qp, chunk);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* we need to clear its base pointer in the rollback
* trie, in case the arrays were resized
*/
if (chunk < multi->rollback->chunk_max) {
INSIST(!multi->rollback->usage[chunk].exists);
multi->rollback->base->ptr[chunk] = NULL;
}
nfree++;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
/*
* multi->rollback->base and multi->writer->base are the same,
* unless there was a realloc_chunk_arrays() during the transaction
*/
if (qpbase_unref(qp)) {
/* paired with dns_qpmulti_update() */
isc_mem_free(qp->mctx, qp->base);
}
isc_mem_free(qp->mctx, qp->usage);
/* reset allocator state */
INSIST(multi->rollback != NULL);
memmove(qp, multi->rollback, sizeof(*qp));
isc_mem_free(qp->mctx, multi->rollback);
INSIST(multi->rollback == NULL);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
isc_nanosecs_t time = isc_time_monotonic() - start;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
atomic_fetch_add_relaxed(&rollback_time, time);
LOG_STATS("qp rollback" PRItime "free %u chunks", time, nfree);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qptp = NULL;
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* read-only transactions
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
static dns_qpmulti_t *
reader_open(dns_qpmulti_t *multi, dns_qpreadable_t qpr) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpnode_t *reader = rcu_dereference(multi->reader);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (reader == NULL) {
QP_INIT(qp, multi->writer.methods, multi->writer.uctx);
} else {
multi = unpack_reader(qp, reader);
}
return multi;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* a query is light
*/
void
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qpmulti_query(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
REQUIRE(qp != NULL);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->tid = isc_tid();
rcu_read_lock();
dns_qpmulti_t *whence = reader_open(multi, qp);
INSIST(whence == multi);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
void
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qpread_destroy(dns_qpmulti_t *multi, dns_qpread_t *qp) {
REQUIRE(QPMULTI_VALID(multi));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
REQUIRE(QP_VALID(qp));
REQUIRE(qp->tid == isc_tid());
*qp = (dns_qpread_t){};
rcu_read_unlock();
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/*
* a snapshot is heavy
*/
void
dns_qpmulti_snapshot(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(qpsp != NULL && *qpsp == NULL);
rcu_read_lock();
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
LOCK(&multi->mutex);
dns_qp_t *qpw = &multi->writer;
size_t bytes = sizeof(dns_qpsnap_t) + sizeof(dns_qpbase_t) +
sizeof(qpw->base->ptr[0]) * qpw->chunk_max;
dns_qpsnap_t *qps = isc_mem_allocate(qpw->mctx, bytes);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qps->whence = reader_open(multi, qps);
INSIST(qps->whence == multi);
/* not a separate allocation */
qps->base = (dns_qpbase_t *)(qps + 1);
isc_refcount_init(&qps->base->refcount, 0);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* only copy base pointers of chunks we need, so we can
* reclaim unused memory in dns_qpsnap_destroy()
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qps->chunk_max = qpw->chunk_max;
for (dns_qpchunk_t chunk = 0; chunk < qpw->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qpw->usage[chunk].exists && chunk_usage(qpw, chunk) > 0) {
qpw->usage[chunk].snapshot = true;
qps->base->ptr[chunk] = qpw->base->ptr[chunk];
} else {
qps->base->ptr[chunk] = NULL;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
ISC_LIST_INITANDAPPEND(multi->snapshots, qps, link);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
*qpsp = qps;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
UNLOCK(&multi->mutex);
rcu_read_unlock();
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
void
dns_qpsnap_destroy(dns_qpmulti_t *multi, dns_qpsnap_t **qpsp) {
REQUIRE(QPMULTI_VALID(multi));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(qpsp != NULL && *qpsp != NULL);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
LOCK(&multi->mutex);
dns_qpsnap_t *qp = *qpsp;
/* make sure the API is being used correctly */
REQUIRE(qp->whence == multi);
ISC_LIST_UNLINK(multi->snapshots, qp, link);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
* eagerly reclaim chunks that are now unused, so that memory does
* not accumulate when a trie has a lot of updates and snapshots
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
marksweep_chunks(multi);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
isc_mem_free(multi->writer.mctx, qp);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
*qpsp = NULL;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
UNLOCK(&multi->mutex);
}
/***********************************************************************
*
* constructors, destructors
*/
void
dns_qp_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qp_t **qptp) {
REQUIRE(qptp != NULL && *qptp == NULL);
dns_qp_t *qp = isc_mem_get(mctx, sizeof(*qp));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
alloc_reset(qp);
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qptp = qp;
}
void
dns_qpmulti_create(isc_mem_t *mctx, const dns_qpmethods_t *methods, void *uctx,
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpmulti_t **qpmp) {
REQUIRE(qpmp != NULL && *qpmp == NULL);
dns_qpmulti_t *multi = isc_mem_get(mctx, sizeof(*multi));
*multi = (dns_qpmulti_t){ .magic = QPMULTI_MAGIC,
.reader_ref = INVALID_REF,
.references = ISC_REFCOUNT_INITIALIZER(1) };
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
isc_mutex_init(&multi->mutex);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
ISC_LIST_INIT(multi->snapshots);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/*
* Do not waste effort allocating a bump chunk that will be thrown
* away when a transaction is opened. dns_qpmulti_update() always
* allocates; to ensure dns_qpmulti_write() does too, pretend the
* previous transaction was an update
*/
dns_qp_t *qp = &multi->writer;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
QP_INIT(qp, methods, uctx);
isc_mem_attach(mctx, &qp->mctx);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->transaction_mode = QP_UPDATE;
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qpmp = multi;
}
static void
destroy_guts(dns_qp_t *qp) {
if (qp->chunk_max == 0) {
return;
}
for (dns_qpchunk_t chunk = 0; chunk < qp->chunk_max; chunk++) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (qp->base->ptr[chunk] != NULL) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
chunk_free(qp, chunk);
}
}
qp->chunk_max = 0;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
ENSURE(qp->used_count == 0);
ENSURE(qp->free_count == 0);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
ENSURE(isc_refcount_current(&qp->base->refcount) == 1);
isc_mem_free(qp->mctx, qp->base);
isc_mem_free(qp->mctx, qp->usage);
qp->magic = 0;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
void
dns_qp_destroy(dns_qp_t **qptp) {
REQUIRE(qptp != NULL);
REQUIRE(QP_VALID(*qptp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qp_t *qp = *qptp;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qptp = NULL;
/* do not try to destroy part of a dns_qpmulti_t */
REQUIRE(qp->transaction_mode == QP_NONE);
TRACE("");
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
destroy_guts(qp);
isc_mem_putanddetach(&qp->mctx, qp, sizeof(*qp));
}
static void
qpmulti_free_mem(dns_qpmulti_t *multi) {
REQUIRE(QPMULTI_VALID(multi));
/* reassure thread sanitizer */
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
UNLOCK(&multi->mutex);
isc_mutex_destroy(&multi->mutex);
isc_mem_putanddetach(&qp->mctx, multi, sizeof(*multi));
}
#if QPMULTI_TRACE
ISC_REFCOUNT_STATIC_TRACE_IMPL(dns_qpmulti, qpmulti_free_mem)
#else
ISC_REFCOUNT_STATIC_IMPL(dns_qpmulti, qpmulti_free_mem)
#endif
static void
qpmulti_destroy_guts_cb(struct rcu_head *arg) {
qp_rcuctx_t *rcuctx = caa_container_of(arg, qp_rcuctx_t, rcu_head);
REQUIRE(QPRCU_VALID(rcuctx));
/* only nonzero for reclaim_chunks_cb() */
REQUIRE(rcuctx->count == 0);
dns_qpmulti_t *multi = rcuctx->multi;
REQUIRE(QPMULTI_VALID(multi));
/* reassure thread sanitizer */
LOCK(&multi->mutex);
dns_qp_t *qp = &multi->writer;
REQUIRE(QP_VALID(qp));
destroy_guts(qp);
UNLOCK(&multi->mutex);
dns_qpmulti_detach(&multi);
isc_mem_putanddetach(&rcuctx->mctx, rcuctx,
STRUCT_FLEX_SIZE(rcuctx, chunk, rcuctx->count));
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
void
dns_qpmulti_destroy(dns_qpmulti_t **qpmp) {
dns_qp_t *qp = NULL;
dns_qpmulti_t *multi = NULL;
qp_rcuctx_t *rcuctx = NULL;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(qpmp != NULL);
REQUIRE(QPMULTI_VALID(*qpmp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
multi = *qpmp;
qp = &multi->writer;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
*qpmp = NULL;
REQUIRE(QP_VALID(qp));
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
REQUIRE(multi->rollback == NULL);
REQUIRE(ISC_LIST_EMPTY(multi->snapshots));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
rcuctx = isc_mem_get(qp->mctx, STRUCT_FLEX_SIZE(rcuctx, chunk, 0));
*rcuctx = (qp_rcuctx_t){
.magic = QPRCU_MAGIC,
.multi = multi,
};
isc_mem_attach(qp->mctx, &rcuctx->mctx);
call_rcu(&rcuctx->rcu_head, qpmulti_destroy_guts_cb);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/***********************************************************************
*
* modification
*/
isc_result_t
dns_qp_insert(dns_qp_t *qp, void *pval, uint32_t ival) {
dns_qpref_t new_ref, old_ref;
dns_qpnode_t new_leaf, old_node;
dns_qpnode_t *new_twigs = NULL, *old_twigs = NULL;
dns_qpshift_t new_bit, old_bit;
dns_qpweight_t old_size, new_size;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpkey_t new_key, old_key;
size_t new_keylen, old_keylen;
size_t offset;
uint64_t index;
dns_qpshift_t bit;
dns_qpweight_t pos;
dns_qpnode_t *n = NULL;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(QP_VALID(qp));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
new_leaf = make_leaf(pval, ival);
new_keylen = leaf_qpkey(qp, &new_leaf, new_key);
/* first leaf in an empty trie? */
if (qp->leaf_count == 0) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
new_ref = alloc_twigs(qp, 1);
new_twigs = ref_ptr(qp, new_ref);
*new_twigs = new_leaf;
attach_leaf(qp, new_twigs);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
qp->leaf_count++;
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->root_ref = new_ref;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return ISC_R_SUCCESS;
}
/*
* We need to keep searching down to a leaf even if our key is
* missing from this branch. It doesn't matter which twig we
* choose since the keys are all the same up to this node's
* offset. Note that if we simply use branch_twig_pos(n, bit)
* we may get an out-of-bounds access if our bit is greater
* than all the set bits in the node.
*/
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
n = ref_ptr(qp, qp->root_ref);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
while (is_branch(n)) {
prefetch_twigs(qp, n);
dns_qpref_t ref = branch_twigs_ref(n);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
bit = branch_keybit(n, new_key, new_keylen);
pos = branch_has_twig(n, bit) ? branch_twig_pos(n, bit) : 0;
n = ref_ptr(qp, ref + pos);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/* do the keys differ, and if so, where? */
old_keylen = leaf_qpkey(qp, n, old_key);
offset = qpkey_compare(new_key, new_keylen, old_key, old_keylen);
if (offset == QPKEY_EQUAL) {
return ISC_R_EXISTS;
}
new_bit = qpkey_bit(new_key, new_keylen, offset);
old_bit = qpkey_bit(old_key, old_keylen, offset);
/* find where to insert a branch or grow an existing branch. */
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
n = make_root_mutable(qp);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
while (is_branch(n)) {
prefetch_twigs(qp, n);
if (offset < branch_key_offset(n)) {
goto newbranch;
}
if (offset == branch_key_offset(n)) {
goto growbranch;
}
make_twigs_mutable(qp, n);
bit = branch_keybit(n, new_key, new_keylen);
INSIST(branch_has_twig(n, bit));
n = branch_twig_ptr(qp, n, bit);
}
/* fall through */
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
newbranch:
new_ref = alloc_twigs(qp, 2);
new_twigs = ref_ptr(qp, new_ref);
/* save before overwriting. */
old_node = *n;
/* new branch node takes old node's place */
index = BRANCH_TAG | (1ULL << new_bit) | (1ULL << old_bit) |
((uint64_t)offset << SHIFT_OFFSET);
*n = make_node(index, new_ref);
/* populate twigs */
new_twigs[old_bit > new_bit] = old_node;
new_twigs[new_bit > old_bit] = new_leaf;
attach_leaf(qp, &new_leaf);
qp->leaf_count++;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return ISC_R_SUCCESS;
growbranch:
INSIST(!branch_has_twig(n, new_bit));
/* locate twigs vectors */
old_size = branch_twigs_size(n);
new_size = old_size + 1;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
old_ref = branch_twigs_ref(n);
new_ref = alloc_twigs(qp, new_size);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
old_twigs = ref_ptr(qp, old_ref);
new_twigs = ref_ptr(qp, new_ref);
/* embiggen branch node */
index = branch_index(n) | (1ULL << new_bit);
*n = make_node(index, new_ref);
/* embiggen twigs vector */
pos = branch_twig_pos(n, new_bit);
move_twigs(new_twigs, old_twigs, pos);
new_twigs[pos] = new_leaf;
move_twigs(new_twigs + pos + 1, old_twigs + pos, old_size - pos);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (squash_twigs(qp, old_ref, old_size)) {
/* old twigs destroyed, only attach to new leaf */
attach_leaf(qp, &new_leaf);
} else {
/* old twigs duplicated, attach to all leaves */
attach_twigs(qp, new_twigs, new_size);
}
qp->leaf_count++;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletekey(dns_qp_t *qp, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
if (get_root(qp) == NULL) {
return ISC_R_NOTFOUND;
}
dns_qpshift_t bit = 0; /* suppress warning */
dns_qpnode_t *parent = NULL;
dns_qpnode_t *n = make_root_mutable(qp);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
make_twigs_mutable(qp, n);
parent = n;
n = branch_twig_ptr(qp, n, bit);
}
dns_qpkey_t found_key;
size_t found_keylen = leaf_qpkey(qp, n, found_key);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
detach_leaf(qp, n);
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
qp->leaf_count--;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/* trie becomes empty */
if (qp->leaf_count == 0) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
INSIST(parent == NULL);
INSIST(n == get_root(qp));
free_twigs(qp, qp->root_ref, 1);
qp->root_ref = INVALID_REF;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return ISC_R_SUCCESS;
}
/* step back to parent node */
n = parent;
parent = NULL;
INSIST(bit != 0);
dns_qpweight_t size = branch_twigs_size(n);
dns_qpweight_t pos = branch_twig_pos(n, bit);
dns_qpref_t ref = branch_twigs_ref(n);
dns_qpnode_t *twigs = ref_ptr(qp, ref);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
if (size == 2) {
/*
* move the other twig to the parent branch.
*/
*n = twigs[!pos];
squash_twigs(qp, ref, 2);
} else {
/*
* shrink the twigs in place, to avoid using the bump
* chunk too fast - the gc will clean up after us
*/
*n = make_node(branch_index(n) & ~(1ULL << bit), ref);
move_twigs(twigs + pos, twigs + pos + 1, size - pos - 1);
squash_twigs(qp, ref + size - 1, 1);
}
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_deletename(dns_qp_t *qp, const dns_name_t *name, dns_namespace_t space,
void **pval_r, uint32_t *ival_r) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name, space);
return dns_qp_deletekey(qp, key, keylen, pval_r, ival_r);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
}
/***********************************************************************
* chains
*/
static void
maybe_set_name(dns_qpreader_t *qp, dns_qpnode_t *node, dns_name_t *name) {
dns_qpkey_t key;
size_t len;
if (name == NULL) {
return;
}
dns_name_reset(name);
len = leaf_qpkey(qp, node, key);
dns_qpkey_toname(key, len, name, NULL);
}
void
dns_qpchain_init(dns_qpreadable_t qpr, dns_qpchain_t *chain) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(chain != NULL);
/*
* dns_qpchain_t contains a 2kb buffer, which is slow to
* zero-initialize. Therefore we avoid designated initializers, and
* initialize each field manually.
*/
chain->magic = QPCHAIN_MAGIC;
chain->qp = qp;
chain->len = 0;
}
unsigned int
dns_qpchain_length(dns_qpchain_t *chain) {
REQUIRE(QPCHAIN_VALID(chain));
return chain->len;
}
void
dns_qpchain_node(dns_qpchain_t *chain, unsigned int level, dns_name_t *name,
void **pval_r, uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPCHAIN_VALID(chain));
REQUIRE(level < chain->len);
node = chain->chain[level].node;
maybe_set_name(chain->qp, node, name);
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
}
/***********************************************************************
* iterators
*/
void
dns_qpiter_init(dns_qpreadable_t qpr, dns_qpiter_t *qpi) {
dns_qpreader_t *qp = dns_qpreader(qpr);
REQUIRE(QP_VALID(qp));
REQUIRE(qpi != NULL);
/*
* dns_qpiter_t contains a 4kb buffer, which is slow to zero-initialize.
* Therefore we avoid designated initializers, and initialize each
* field manually.
*/
qpi->qp = qp;
qpi->sp = 0;
qpi->magic = QPITER_MAGIC;
/*
* The top of the stack must be initialized.
*/
qpi->stack[qpi->sp] = NULL;
}
/*
* are we at the last twig in this branch (in whichever direction
* we're iterating)?
*/
static bool
last_twig(dns_qpiter_t *qpi, bool forward) {
dns_qpweight_t pos = 0, max = 0;
if (qpi->sp > 0) {
dns_qpnode_t *child = qpi->stack[qpi->sp];
dns_qpnode_t *parent = qpi->stack[qpi->sp - 1];
pos = child - ref_ptr(qpi->qp, branch_twigs_ref(parent));
if (forward) {
max = branch_twigs_size(parent) - 1;
}
}
return pos == max;
}
/*
* move a QP iterator forward or back to the next or previous leaf.
* note: this function can go wrong when the iterator refers to
* a mutable view of the trie which is altered while iterating
*/
static isc_result_t
iterate(bool forward, dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
bool initial_branch = true;
REQUIRE(QPITER_VALID(qpi));
dns_qpreader_t *qp = qpi->qp;
REQUIRE(QP_VALID(qp));
node = get_root(qp);
if (node == NULL) {
return ISC_R_NOMORE;
}
do {
if (qpi->stack[qpi->sp] == NULL) {
/* newly initialized iterator: use the root node */
INSIST(qpi->sp == 0);
qpi->stack[0] = node;
} else if (!initial_branch) {
/*
* in a prior loop, we reached a branch; from
* here we just need to get the highest or lowest
* leaf in the subtree; we don't need to bother
* stepping forward or backward through twigs
* anymore.
*/
INSIST(qpi->sp > 0);
} else if (last_twig(qpi, forward)) {
/*
* we've stepped to the end (or the beginning,
* if we're iterating backwards) of a set of twigs.
*/
if (qpi->sp == 0) {
/*
* we've finished iterating. reinitialize
* the iterator, then return ISC_R_NOMORE.
*/
dns_qpiter_init(qpi->qp, qpi);
return ISC_R_NOMORE;
}
/*
* pop the stack, and resume at the parent branch.
*/
qpi->stack[qpi->sp] = NULL;
qpi->sp--;
continue;
} else {
/*
* there are more twigs in the current branch,
* so step the node pointer forward (or back).
*/
qpi->stack[qpi->sp] += (forward ? 1 : -1);
node = qpi->stack[qpi->sp];
}
/*
* if we're at a branch now, we loop down to the
* left- or rightmost leaf.
*/
if (is_branch(node)) {
qpi->sp++;
INSIST(qpi->sp < DNS_QP_MAXKEY);
node = ref_ptr(qp, branch_twigs_ref(node)) +
(forward ? 0 : branch_twigs_size(node) - 1);
qpi->stack[qpi->sp] = node;
initial_branch = false;
}
} while (is_branch(node));
/* we're at a leaf: return its data to the caller */
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
isc_result_t
dns_qpiter_next(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(true, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_prev(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
return iterate(false, qpi, name, pval_r, ival_r);
}
isc_result_t
dns_qpiter_current(dns_qpiter_t *qpi, dns_name_t *name, void **pval_r,
uint32_t *ival_r) {
dns_qpnode_t *node = NULL;
REQUIRE(QPITER_VALID(qpi));
node = qpi->stack[qpi->sp];
if (node == NULL || is_branch(node)) {
return ISC_R_FAILURE;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(node));
SET_IF_NOT_NULL(ival_r, leaf_ival(node));
maybe_set_name(qpi->qp, node, name);
return ISC_R_SUCCESS;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/***********************************************************************
*
* search
*/
isc_result_t
dns_qp_getkey(dns_qpreadable_t qpr, const dns_qpkey_t search_key,
size_t search_keylen, void **pval_r, uint32_t *ival_r) {
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
dns_qpreader_t *qp = dns_qpreader(qpr);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpkey_t found_key;
size_t found_keylen;
dns_qpshift_t bit;
dns_qpnode_t *n = NULL;
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
REQUIRE(QP_VALID(qp));
REQUIRE(search_keylen < sizeof(dns_qpkey_t));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
Refactor qp-trie to use QSBR The first working multi-threaded qp-trie was stuck with an unpleasant trade-off: * Use `isc_rwlock`, which has acceptable write performance, but terrible read scalability because the qp-trie made all accesses through a single lock. * Use `liburcu`, which has great read scalability, but terrible write performance, because I was relying on `rcu_synchronize()` which is rather slow. And `liburcu` is LGPL. To get the best of both worlds, we need our own scalable read side, which we now have with `isc_qsbr`. And we need to modify the write side so that it is not blocked by readers. Better write performance requires an async cleanup function like `call_rcu()`, instead of the blocking `rcu_synchronize()`. (There is no blocking cleanup in `isc_qsbr`, because I have concluded that it would be an attractive nuisance.) Until now, all my multithreading qp-trie designs have been based around two versions, read-only and mutable. This is too few to work with asynchronous cleanup. The bare minimum (as in epoch based reclamation) is three, but it makes more sense to support an arbitrary number. Doing multi-version support "properly" makes fewer assumptions about how safe memory reclamation works, and it makes snapshots and rollbacks simpler. To avoid making the memory management even more complicated, I have introduced a new kind of "packed reader node" to anchor the root of a version of the trie. This is simpler because it re-uses the existing chunk lifetime logic - see the discussion under "packed reader nodes" in `qp_p.h`. I have also made the chunk lifetime logic simpler. The idea of a "generation" is gone; instead, chunks are either mutable or immutable. And the QSBR phase number is used to indicate when a chunk can be reclaimed. Instead of the `shared_base` flag (which was basically a one-bit reference count, with a two version limit) the base array now has a refcount, which replaces the confusing ad-hoc lifetime logic with something more familiar and systematic.
2022-12-22 14:55:14 +00:00
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
while (is_branch(n)) {
prefetch_twigs(qp, n);
bit = branch_keybit(n, search_key, search_keylen);
if (!branch_has_twig(n, bit)) {
return ISC_R_NOTFOUND;
}
n = branch_twig_ptr(qp, n, bit);
}
found_keylen = leaf_qpkey(qp, n, found_key);
if (qpkey_compare(search_key, search_keylen, found_key, found_keylen) !=
QPKEY_EQUAL)
{
return ISC_R_NOTFOUND;
}
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return ISC_R_SUCCESS;
}
isc_result_t
dns_qp_getname(dns_qpreadable_t qpr, const dns_name_t *name,
dns_namespace_t space, void **pval_r, uint32_t *ival_r) {
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
dns_qpkey_t key;
size_t keylen = dns_qpkey_fromname(key, name, space);
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
return dns_qp_getkey(qpr, key, keylen, pval_r, ival_r);
}
static inline void
add_link(dns_qpchain_t *chain, dns_qpnode_t *node, size_t offset) {
/* prevent duplication */
if (chain->len != 0 && chain->chain[chain->len - 1].node == node) {
return;
}
chain->chain[chain->len].node = node;
chain->chain[chain->len].offset = offset;
chain->len++;
INSIST(chain->len <= DNS_NAME_MAXLABELS);
}
static inline void
prevleaf(dns_qpiter_t *it) {
isc_result_t result = dns_qpiter_prev(it, NULL, NULL, NULL);
if (result == ISC_R_NOMORE) {
result = dns_qpiter_prev(it, NULL, NULL, NULL);
}
RUNTIME_CHECK(result == ISC_R_SUCCESS);
}
static inline void
greatest_leaf(dns_qpreadable_t qpr, dns_qpnode_t *n, dns_qpiter_t *iter) {
while (is_branch(n)) {
dns_qpref_t ref = branch_twigs_ref(n) + branch_twigs_size(n) -
1;
iter->stack[++iter->sp] = n;
n = ref_ptr(qpr, ref);
}
iter->stack[++iter->sp] = n;
}
static inline dns_qpnode_t *
anyleaf(dns_qpreader_t *qp, dns_qpnode_t *n) {
while (is_branch(n)) {
n = branch_twigs(qp, n);
}
return n;
}
static inline int
twig_offset(dns_qpnode_t *n, dns_qpshift_t sbit, dns_qpshift_t kbit,
dns_qpshift_t fbit) {
dns_qpweight_t pos = branch_twig_pos(n, sbit);
if (branch_has_twig(n, sbit)) {
return pos - (kbit < fbit);
}
return pos - 1;
}
/*
* If dns_qp_lookup() was passed an iterator, we want it to point at the
* matching name in the case of an exact match, or at the predecessor name
* for a non-exact match.
*
* If there is an exact match, then there is nothing to be done. Otherwise,
* we pop up the iterator stack until we find a parent branch with an offset
* that is before the position where the search key differs from the found key.
* From there we can step to the leaf that is the predecessor of the searched
* name.
*
* Requires the iterator to be pointing at a leaf node.
*/
static void
fix_iterator(dns_qpreader_t *qp, dns_qpiter_t *it, dns_qpkey_t key,
size_t len) {
dns_qpnode_t *n = it->stack[it->sp];
REQUIRE(!is_branch(n));
dns_qpkey_t found;
size_t foundlen = leaf_qpkey(qp, n, found);
size_t to = qpkey_compare(key, len, found, foundlen);
/* If the keys are equal, the iterator is already at the right node. */
if (to == QPKEY_EQUAL) {
return;
}
/*
* Special case: if the key differs even before the root
* key offset, it means the name desired either precedes or
* follows the entire range of names in the database, and
* popping up the stack won't help us, so just move the
* iterator one step back from the origin and return.
*/
if (to < branch_key_offset(it->stack[0])) {
dns_qpiter_init(qp, it);
prevleaf(it);
return;
}
/*
* As long as the branch offset point is after the point where the
* key differs, we need to branch up and find a better node.
*/
while (it->sp > 0) {
dns_qpnode_t *b = it->stack[it->sp - 1];
if (branch_key_offset(b) < to) {
break;
}
it->sp--;
}
n = it->stack[it->sp];
/*
* Either we are now at the correct branch, or we are at the
* first unmatched node. Determine the bit position for the
* twig we need (sbit).
*/
dns_qpshift_t kbit = qpkey_bit(key, len, to);
dns_qpshift_t fbit = qpkey_bit(found, foundlen, to);
dns_qpshift_t sbit = 0;
if (is_branch(n) && branch_key_offset(n) == to) {
/* We are on the correct branch now. */
sbit = kbit;
} else if (it->sp == 0) {
/*
* We are on the root branch, popping up the stack won't
* help us, so just move the iterator one step back from the
* origin and return.
*/
dns_qpiter_init(qp, it);
prevleaf(it);
return;
} else {
/* We are at the first unmatched node, pop up the stack. */
n = it->stack[--it->sp];
sbit = qpkey_bit(key, len, branch_key_offset(n));
}
INSIST(is_branch(n));
prefetch_twigs(qp, n);
dns_qpnode_t *twigs = branch_twigs(qp, n);
int toff = twig_offset(n, sbit, kbit, fbit);
if (toff >= 0) {
/*
* The name we want would've been after some twig in
* this branch. Walk down from that twig to the
* highest leaf in its subtree to get the predecessor.
*/
greatest_leaf(qp, twigs + toff, it);
} else {
/*
* Every leaf below this node is greater than the one we
* wanted, so the previous leaf is the predecessor.
*/
prevleaf(it);
}
}
/*
* When searching for a requested name in dns_qp_lookup(), we might add
* a leaf node to the chain, then subsequently determine that it was a
* dead end. When this happens, the chain can be left holding a node
* that is *not* an ancestor of the requested name. We correct for that
* here.
*/
static void
fix_chain(dns_qpchain_t *chain, size_t offset) {
while (chain->len > 0 && chain->chain[chain->len - 1].offset >= offset)
{
chain->len--;
chain->chain[chain->len].node = NULL;
chain->chain[chain->len].offset = 0;
}
}
isc_result_t
dns_qp_lookup(dns_qpreadable_t qpr, const dns_name_t *name,
dns_namespace_t space, dns_name_t *foundname, dns_qpiter_t *iter,
dns_qpchain_t *chain, void **pval_r, uint32_t *ival_r) {
dns_qpreader_t *qp = dns_qpreader(qpr);
dns_qpkey_t search, found;
size_t searchlen, foundlen;
size_t offset = 0;
dns_qpnode_t *n = NULL;
dns_qpshift_t bit = SHIFT_NOBYTE;
dns_qpchain_t oc;
dns_qpiter_t it;
bool matched = false;
bool setiter = true;
REQUIRE(QP_VALID(qp));
REQUIRE(foundname == NULL || ISC_MAGIC_VALID(name, DNS_NAME_MAGIC));
searchlen = dns_qpkey_fromname(search, name, space);
if (chain == NULL) {
chain = &oc;
}
if (iter == NULL) {
iter = &it;
setiter = false;
}
dns_qpchain_init(qp, chain);
dns_qpiter_init(qp, iter);
n = get_root(qp);
if (n == NULL) {
return ISC_R_NOTFOUND;
}
iter->stack[0] = n;
/*
* Like `dns_qp_insert()`, we must find a leaf. However, we don't make a
* second pass: instead, we keep track of any leaves with shorter keys
* that we discover along the way. (In general, qp-trie searches can be
* one-pass, by recording their traversal, or two-pass, for less stack
* memory usage.)
*/
while (is_branch(n)) {
prefetch_twigs(qp, n);
offset = branch_key_offset(n);
bit = qpkey_bit(search, searchlen, offset);
dns_qpnode_t *twigs = branch_twigs(qp, n);
/*
* A shorter key that can be a parent domain always has a
* leaf node at SHIFT_NOBYTE (indicating end of its key)
* where our search key has a normal character immediately
* after a label separator.
*
* Note 1: It is OK if `off - 1` underflows: it will
* become SIZE_MAX, which is greater than `searchlen`, so
* `qpkey_bit()` will return SHIFT_NOBYTE, which is what we
* want when `off == 0`.
*
* Note 2: If SHIFT_NOBYTE twig is present, it will always
* be in position 0, the first location in 'twigs'.
*/
if (bit != SHIFT_NOBYTE && branch_has_twig(n, SHIFT_NOBYTE) &&
qpkey_bit(search, searchlen, offset - 1) == SHIFT_NOBYTE &&
!is_branch(twigs))
{
add_link(chain, twigs, offset);
}
matched = branch_has_twig(n, bit);
if (matched) {
/*
* found a match: if it's a branch, we keep
* searching, and if it's a leaf, we drop out of
* the loop.
*/
n = branch_twig_ptr(qp, n, bit);
} else {
/*
* this branch is a dead end, and the predecessor
* doesn't matter. now we just need to find a leaf
* to end on so that qpkey_leaf() will work below.
*/
n = anyleaf(qp, twigs);
}
iter->stack[++iter->sp] = n;
}
if (setiter) {
/*
* we found a leaf, but it might not be the leaf we wanted.
* if it isn't, and if the caller passed us an iterator,
* then we might need to reposition it.
*/
fix_iterator(qp, iter, search, searchlen);
n = iter->stack[iter->sp];
}
/* at this point, n can only be a leaf node */
INSIST(!is_branch(n));
foundlen = leaf_qpkey(qp, n, found);
offset = qpkey_compare(search, searchlen, found, foundlen);
/* the search ended with an exact or partial match */
if (offset == QPKEY_EQUAL || offset == foundlen) {
isc_result_t result = ISC_R_SUCCESS;
if (offset == foundlen) {
fix_chain(chain, offset);
result = DNS_R_PARTIALMATCH;
}
add_link(chain, n, offset);
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return result;
}
/*
* the requested name was not found, but if an ancestor
* was, we can retrieve that from the chain.
*/
int len = chain->len;
while (len-- > 0) {
if (offset >= chain->chain[len].offset) {
n = chain->chain[len].node;
SET_IF_NOT_NULL(pval_r, leaf_pval(n));
SET_IF_NOT_NULL(ival_r, leaf_ival(n));
maybe_set_name(qp, n, foundname);
return DNS_R_PARTIALMATCH;
} else {
/*
* oops, during the search we found and added
* a leaf that's longer than the requested
* name; remove it from the chain.
*/
chain->len--;
}
}
/* nothing was found at all */
return ISC_R_NOTFOUND;
}
Add a qp-trie data structure A qp-trie is a kind of radix tree that is particularly well-suited to DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/ This code incorporates some new ideas that I prototyped using NLnet Labs NSD in 2020 (optimizations for DNS names as keys) and 2021 (custom allocator and garbage collector). https://dotat.at/cgi/git/nsd.git The BIND version of my qp-trie code has a number of improvements compared to the prototype developed for NSD. * The main omission in the prototype was the very sketchy outline of how locking might work. Now the locking has been implemented, using a reader/writer lock and a mutex. However, it is designed to benefit from liburcu if that is available. * The prototype was designed for two-version concurrency, one version for readers and one for the writer. The new code supports multiversion concurrency, to provide a basis for BIND's dbversion machinery, so that updates are not blocked by long-running zone transfers. * There are now two kinds of transaction that modify the trie: an `update` aims to support many very small zones without wasting memory; a `write` avoids unnecessary allocation to help the performance of many small changes to the cache. * There is also a single-threaded interface for situations where concurrent access is not necessary. * The API makes better use of types to make it more clear which operations are permitted when. * The lookup table used to convert a DNS name to a qp-trie key is now initialized by a run-time constructor instead of a programmer using copy-and-paste. Key conversion is more flexible, so the qp-trie can be used with keys other than DNS names. * There has been much refactoring and re-arranging things to improve the terminology and order of presentation in the code, and the internal documentation has been moved from a comment into a file of its own. Some of the required functionality has been stripped out, to be brought back later after the basics are known to work. * Garbage collector performance statistics are missing. * Fancy searches are missing, such as longest match and nearest match. * Iteration is missing. * Search for update is missing, for cases where the caller needs to know if the value object is mutable or not.
2022-05-09 14:31:35 +01:00
/**********************************************************************/