2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-23 18:49:54 +00:00
bind/lib/isc/netmgr/netmgr.c

3153 lines
77 KiB
C
Raw Normal View History

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#include <inttypes.h>
#include <unistd.h>
#include <uv.h>
#include <isc/atomic.h>
#include <isc/backtrace.h>
#include <isc/buffer.h>
#include <isc/condition.h>
#include <isc/errno.h>
#include <isc/log.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/netmgr.h>
#include <isc/print.h>
#include <isc/quota.h>
#include <isc/random.h>
#include <isc/refcount.h>
#include <isc/region.h>
#include <isc/result.h>
#include <isc/sockaddr.h>
#include <isc/stats.h>
#include <isc/strerr.h>
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
#include <isc/task.h>
#include <isc/thread.h>
#include <isc/tls.h>
#include <isc/util.h>
#include "netmgr-int.h"
#include "netmgr_p.h"
#include "openssl_shim.h"
#include "uv-compat.h"
/*%
* How many isc_nmhandles and isc_nm_uvreqs will we be
* caching for reuse in a socket.
*/
#define ISC_NM_HANDLES_STACK_SIZE 600
#define ISC_NM_REQS_STACK_SIZE 600
/*%
* Shortcut index arrays to get access to statistics counters.
*/
static const isc_statscounter_t udp4statsindex[] = {
isc_sockstatscounter_udp4open,
isc_sockstatscounter_udp4openfail,
isc_sockstatscounter_udp4close,
isc_sockstatscounter_udp4bindfail,
isc_sockstatscounter_udp4connectfail,
isc_sockstatscounter_udp4connect,
-1,
-1,
isc_sockstatscounter_udp4sendfail,
isc_sockstatscounter_udp4recvfail,
isc_sockstatscounter_udp4active
};
static const isc_statscounter_t udp6statsindex[] = {
isc_sockstatscounter_udp6open,
isc_sockstatscounter_udp6openfail,
isc_sockstatscounter_udp6close,
isc_sockstatscounter_udp6bindfail,
isc_sockstatscounter_udp6connectfail,
isc_sockstatscounter_udp6connect,
-1,
-1,
isc_sockstatscounter_udp6sendfail,
isc_sockstatscounter_udp6recvfail,
isc_sockstatscounter_udp6active
};
static const isc_statscounter_t tcp4statsindex[] = {
isc_sockstatscounter_tcp4open, isc_sockstatscounter_tcp4openfail,
isc_sockstatscounter_tcp4close, isc_sockstatscounter_tcp4bindfail,
isc_sockstatscounter_tcp4connectfail, isc_sockstatscounter_tcp4connect,
isc_sockstatscounter_tcp4acceptfail, isc_sockstatscounter_tcp4accept,
isc_sockstatscounter_tcp4sendfail, isc_sockstatscounter_tcp4recvfail,
isc_sockstatscounter_tcp4active
};
static const isc_statscounter_t tcp6statsindex[] = {
isc_sockstatscounter_tcp6open, isc_sockstatscounter_tcp6openfail,
isc_sockstatscounter_tcp6close, isc_sockstatscounter_tcp6bindfail,
isc_sockstatscounter_tcp6connectfail, isc_sockstatscounter_tcp6connect,
isc_sockstatscounter_tcp6acceptfail, isc_sockstatscounter_tcp6accept,
isc_sockstatscounter_tcp6sendfail, isc_sockstatscounter_tcp6recvfail,
isc_sockstatscounter_tcp6active
};
#if 0
/* XXX: not currently used */
static const isc_statscounter_t unixstatsindex[] = {
isc_sockstatscounter_unixopen,
isc_sockstatscounter_unixopenfail,
isc_sockstatscounter_unixclose,
isc_sockstatscounter_unixbindfail,
isc_sockstatscounter_unixconnectfail,
isc_sockstatscounter_unixconnect,
isc_sockstatscounter_unixacceptfail,
isc_sockstatscounter_unixaccept,
isc_sockstatscounter_unixsendfail,
isc_sockstatscounter_unixrecvfail,
isc_sockstatscounter_unixactive
};
#endif /* if 0 */
/*
* libuv is not thread safe, but has mechanisms to pass messages
* between threads. Each socket is owned by a thread. For UDP
* sockets we have a set of sockets for each interface and we can
* choose a sibling and send the message directly. For TCP, or if
* we're calling from a non-networking thread, we need to pass the
* request using async_cb.
*/
Complete rewrite the BIND 9 build system The rewrite of BIND 9 build system is a large work and cannot be reasonable split into separate merge requests. Addition of the automake has a positive effect on the readability and maintainability of the build system as it is more declarative, it allows conditional and we are able to drop all of the custom make code that BIND 9 developed over the years to overcome the deficiencies of autoconf + custom Makefile.in files. This squashed commit contains following changes: - conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am by using automake - the libtool is now properly integrated with automake (the way we used it was rather hackish as the only official way how to use libtool is via automake - the dynamic module loading was rewritten from a custom patchwork to libtool's libltdl (which includes the patchwork to support module loading on different systems internally) - conversion of the unit test executor from kyua to automake parallel driver - conversion of the system test executor from custom make/shell to automake parallel driver - The GSSAPI has been refactored, the custom SPNEGO on the basis that all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations support SPNEGO mechanism. - The various defunct tests from bin/tests have been removed: bin/tests/optional and bin/tests/pkcs11 - The text files generated from the MD files have been removed, the MarkDown has been designed to be readable by both humans and computers - The xsl header is now generated by a simple sed command instead of perl helper - The <irs/platform.h> header has been removed - cleanups of configure.ac script to make it more simpler, addition of multiple macros (there's still work to be done though) - the tarball can now be prepared with `make dist` - the system tests are partially able to run in oot build Here's a list of unfinished work that needs to be completed in subsequent merge requests: - `make distcheck` doesn't yet work (because of system tests oot run is not yet finished) - documentation is not yet built, there's a different merge request with docbook to sphinx-build rst conversion that needs to be rebased and adapted on top of the automake - msvc build is non functional yet and we need to decide whether we will just cross-compile bind9 using mingw-w64 or fix the msvc build - contributed dlz modules are not included neither in the autoconf nor automake
2018-08-07 16:46:53 +02:00
static thread_local int isc__nm_tid_v = ISC_NETMGR_TID_UNKNOWN;
2020-02-14 08:14:03 +01:00
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_maybe_destroy(isc_nmsocket_t *sock FLARG);
2020-02-14 08:14:03 +01:00
static void
nmhandle_free(isc_nmsocket_t *sock, isc_nmhandle_t *handle);
static isc_threadresult_t
nm_thread(isc_threadarg_t worker0);
static void
async_cb(uv_async_t *handle);
static bool
2020-02-14 08:14:03 +01:00
process_queue(isc__networker_t *worker, isc_queue_t *queue);
static bool
process_priority_queue(isc__networker_t *worker);
static void
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
process_privilege_queue(isc__networker_t *worker);
static void
process_tasks_queue(isc__networker_t *worker);
static void
process_normal_queue(isc__networker_t *worker);
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_stop(isc__networker_t *worker, isc__netievent_t *ev0);
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_pause(isc__networker_t *worker, isc__netievent_t *ev0);
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_resume(isc__networker_t *worker, isc__netievent_t *ev0);
static void
isc__nm_async_detach(isc__networker_t *worker, isc__netievent_t *ev0);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
static void
isc__nm_async_close(isc__networker_t *worker, isc__netievent_t *ev0);
/*%<
* Issue a 'handle closed' callback on the socket.
*/
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmhandle_detach_cb(isc_nmhandle_t **handlep FLARG);
int
Complete rewrite the BIND 9 build system The rewrite of BIND 9 build system is a large work and cannot be reasonable split into separate merge requests. Addition of the automake has a positive effect on the readability and maintainability of the build system as it is more declarative, it allows conditional and we are able to drop all of the custom make code that BIND 9 developed over the years to overcome the deficiencies of autoconf + custom Makefile.in files. This squashed commit contains following changes: - conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am by using automake - the libtool is now properly integrated with automake (the way we used it was rather hackish as the only official way how to use libtool is via automake - the dynamic module loading was rewritten from a custom patchwork to libtool's libltdl (which includes the patchwork to support module loading on different systems internally) - conversion of the unit test executor from kyua to automake parallel driver - conversion of the system test executor from custom make/shell to automake parallel driver - The GSSAPI has been refactored, the custom SPNEGO on the basis that all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations support SPNEGO mechanism. - The various defunct tests from bin/tests have been removed: bin/tests/optional and bin/tests/pkcs11 - The text files generated from the MD files have been removed, the MarkDown has been designed to be readable by both humans and computers - The xsl header is now generated by a simple sed command instead of perl helper - The <irs/platform.h> header has been removed - cleanups of configure.ac script to make it more simpler, addition of multiple macros (there's still work to be done though) - the tarball can now be prepared with `make dist` - the system tests are partially able to run in oot build Here's a list of unfinished work that needs to be completed in subsequent merge requests: - `make distcheck` doesn't yet work (because of system tests oot run is not yet finished) - documentation is not yet built, there's a different merge request with docbook to sphinx-build rst conversion that needs to be rebased and adapted on top of the automake - msvc build is non functional yet and we need to decide whether we will just cross-compile bind9 using mingw-w64 or fix the msvc build - contributed dlz modules are not included neither in the autoconf nor automake
2018-08-07 16:46:53 +02:00
isc_nm_tid(void) {
return (isc__nm_tid_v);
}
bool
Complete rewrite the BIND 9 build system The rewrite of BIND 9 build system is a large work and cannot be reasonable split into separate merge requests. Addition of the automake has a positive effect on the readability and maintainability of the build system as it is more declarative, it allows conditional and we are able to drop all of the custom make code that BIND 9 developed over the years to overcome the deficiencies of autoconf + custom Makefile.in files. This squashed commit contains following changes: - conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am by using automake - the libtool is now properly integrated with automake (the way we used it was rather hackish as the only official way how to use libtool is via automake - the dynamic module loading was rewritten from a custom patchwork to libtool's libltdl (which includes the patchwork to support module loading on different systems internally) - conversion of the unit test executor from kyua to automake parallel driver - conversion of the system test executor from custom make/shell to automake parallel driver - The GSSAPI has been refactored, the custom SPNEGO on the basis that all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations support SPNEGO mechanism. - The various defunct tests from bin/tests have been removed: bin/tests/optional and bin/tests/pkcs11 - The text files generated from the MD files have been removed, the MarkDown has been designed to be readable by both humans and computers - The xsl header is now generated by a simple sed command instead of perl helper - The <irs/platform.h> header has been removed - cleanups of configure.ac script to make it more simpler, addition of multiple macros (there's still work to be done though) - the tarball can now be prepared with `make dist` - the system tests are partially able to run in oot build Here's a list of unfinished work that needs to be completed in subsequent merge requests: - `make distcheck` doesn't yet work (because of system tests oot run is not yet finished) - documentation is not yet built, there's a different merge request with docbook to sphinx-build rst conversion that needs to be rebased and adapted on top of the automake - msvc build is non functional yet and we need to decide whether we will just cross-compile bind9 using mingw-w64 or fix the msvc build - contributed dlz modules are not included neither in the autoconf nor automake
2018-08-07 16:46:53 +02:00
isc__nm_in_netthread(void) {
return (isc__nm_tid_v >= 0);
}
#ifdef WIN32
static void
isc__nm_winsock_initialize(void) {
WORD wVersionRequested = MAKEWORD(2, 2);
WSADATA wsaData;
int result;
result = WSAStartup(wVersionRequested, &wsaData);
if (result != 0) {
char strbuf[ISC_STRERRORSIZE];
strerror_r(result, strbuf, sizeof(strbuf));
UNEXPECTED_ERROR(__FILE__, __LINE__,
"WSAStartup() failed with error code %lu: %s",
result, strbuf);
}
/*
* Confirm that the WinSock DLL supports version 2.2. Note that if the
* DLL supports versions greater than 2.2 in addition to 2.2, it will
* still return 2.2 in wVersion since that is the version we requested.
*/
if (LOBYTE(wsaData.wVersion) != 2 || HIBYTE(wsaData.wVersion) != 2) {
UNEXPECTED_ERROR(__FILE__, __LINE__,
"Unusable WinSock DLL version: %u.%u",
LOBYTE(wsaData.wVersion),
HIBYTE(wsaData.wVersion));
}
}
static void
isc__nm_winsock_destroy(void) {
WSACleanup();
}
#endif /* WIN32 */
void
isc__netmgr_create(isc_mem_t *mctx, uint32_t workers, isc_nm_t **netmgrp) {
isc_nm_t *mgr = NULL;
2020-02-13 14:44:37 -08:00
char name[32];
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
REQUIRE(workers > 0);
#ifdef WIN32
isc__nm_winsock_initialize();
#endif /* WIN32 */
mgr = isc_mem_get(mctx, sizeof(*mgr));
*mgr = (isc_nm_t){ .nworkers = workers };
isc_mem_attach(mctx, &mgr->mctx);
isc_mutex_init(&mgr->lock);
isc_condition_init(&mgr->wkstatecond);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
isc_condition_init(&mgr->wkpausecond);
isc_refcount_init(&mgr->references, 1);
atomic_init(&mgr->maxudp, 0);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
atomic_init(&mgr->interlocked, ISC_NETMGR_NON_INTERLOCKED);
#ifdef NETMGR_TRACE
ISC_LIST_INIT(mgr->active_sockets);
#endif
/*
* Default TCP timeout values.
* May be updated by isc_nm_tcptimeouts().
*/
Fix the data race in accessing the isc_nm_t timers The following TSAN report about accessing the mgr timers (mgr->init, mgr->idle, mgr->keepalive and mgr->advertised) has been fixed in this commit: ================== WARNING: ThreadSanitizer: data race (pid=2746) Read of size 4 at 0x7b440008a948 by thread T18: #0 isc__nm_tcpdns_read /home/ondrej/Projects/bind9/lib/isc/netmgr/tcpdns.c:849:25 (libisc.so.1706+0x2ba0f) #1 isc_nm_read /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:1679:3 (libisc.so.1706+0x22258) #2 tcpdns_connect_connect_cb /home/ondrej/Projects/bind9/lib/isc/tests/tcpdns_test.c:363:2 (tcpdns_test+0x4bc5fb) #3 isc__nm_async_connectcb /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:1816:2 (libisc.so.1706+0x228c9) #4 isc__nm_connectcb /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:1791:3 (libisc.so.1706+0x22713) #5 tcpdns_connect_cb /home/ondrej/Projects/bind9/lib/isc/netmgr/tcpdns.c:343:2 (libisc.so.1706+0x2d89d) #6 uv__stream_connect /home/ondrej/Projects/tsan/libuv/src/unix/stream.c:1381:5 (libuv.so.1+0x27c18) #7 uv__stream_io /home/ondrej/Projects/tsan/libuv/src/unix/stream.c:1298:5 (libuv.so.1+0x25977) #8 uv__io_poll /home/ondrej/Projects/tsan/libuv/src/unix/linux-core.c:462:11 (libuv.so.1+0x2e795) #9 uv_run /home/ondrej/Projects/tsan/libuv/src/unix/core.c:385:5 (libuv.so.1+0x158ec) #10 nm_thread /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:530:11 (libisc.so.1706+0x1c94a) Previous write of size 4 at 0x7b440008a948 by main thread: #0 isc_nm_settimeouts /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:490:12 (libisc.so.1706+0x1dda5) #1 tcpdns_recv_two /home/ondrej/Projects/bind9/lib/isc/tests/tcpdns_test.c:601:2 (tcpdns_test+0x4bad0e) #2 cmocka_run_one_test_or_fixture <null> (libcmocka.so.0+0x70be) #3 __libc_start_main /build/glibc-vjB4T1/glibc-2.28/csu/../csu/libc-start.c:308:16 (libc.so.6+0x2409a) Location is heap block of size 281 at 0x7b440008a840 allocated by main thread: #0 malloc <null> (tcpdns_test+0x42864b) #1 default_memalloc /home/ondrej/Projects/bind9/lib/isc/mem.c:713:8 (libisc.so.1706+0x6d261) #2 mem_get /home/ondrej/Projects/bind9/lib/isc/mem.c:622:8 (libisc.so.1706+0x69b9c) #3 isc___mem_get /home/ondrej/Projects/bind9/lib/isc/mem.c:1044:9 (libisc.so.1706+0x6d379) #4 isc__mem_get /home/ondrej/Projects/bind9/lib/isc/mem.c:2432:10 (libisc.so.1706+0x6889e) #5 isc_nm_start /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:203:8 (libisc.so.1706+0x1c219) #6 nm_setup /home/ondrej/Projects/bind9/lib/isc/tests/tcpdns_test.c:244:11 (tcpdns_test+0x4baaa4) #7 cmocka_run_one_test_or_fixture <null> (libcmocka.so.0+0x70fd) #8 __libc_start_main /build/glibc-vjB4T1/glibc-2.28/csu/../csu/libc-start.c:308:16 (libc.so.6+0x2409a) Thread T18 'isc-net-0000' (tid=3513, running) created by main thread at: #0 pthread_create <null> (tcpdns_test+0x429e7b) #1 isc_thread_create /home/ondrej/Projects/bind9/lib/isc/pthreads/thread.c:73:8 (libisc.so.1706+0x8476a) #2 isc_nm_start /home/ondrej/Projects/bind9/lib/isc/netmgr/netmgr.c:271:3 (libisc.so.1706+0x1c66a) #3 nm_setup /home/ondrej/Projects/bind9/lib/isc/tests/tcpdns_test.c:244:11 (tcpdns_test+0x4baaa4) #4 cmocka_run_one_test_or_fixture <null> (libcmocka.so.0+0x70fd) #5 __libc_start_main /build/glibc-vjB4T1/glibc-2.28/csu/../csu/libc-start.c:308:16 (libc.so.6+0x2409a) SUMMARY: ThreadSanitizer: data race /home/ondrej/Projects/bind9/lib/isc/netmgr/tcpdns.c:849:25 in isc__nm_tcpdns_read ================== ThreadSanitizer: reported 1 warnings
2020-12-02 09:52:39 +01:00
atomic_init(&mgr->init, 30000);
atomic_init(&mgr->idle, 30000);
atomic_init(&mgr->keepalive, 30000);
atomic_init(&mgr->advertised, 30000);
isc_mutex_init(&mgr->reqlock);
isc_mempool_create(mgr->mctx, sizeof(isc__nm_uvreq_t), &mgr->reqpool);
isc_mempool_setname(mgr->reqpool, "nm_reqpool");
isc_mempool_setfreemax(mgr->reqpool, 4096);
isc_mempool_associatelock(mgr->reqpool, &mgr->reqlock);
isc_mempool_setfillcount(mgr->reqpool, 32);
isc_mutex_init(&mgr->evlock);
isc_mempool_create(mgr->mctx, sizeof(isc__netievent_storage_t),
&mgr->evpool);
isc_mempool_setname(mgr->evpool, "nm_evpool");
isc_mempool_setfreemax(mgr->evpool, 4096);
isc_mempool_associatelock(mgr->evpool, &mgr->evlock);
isc_mempool_setfillcount(mgr->evpool, 32);
mgr->workers = isc_mem_get(mctx, workers * sizeof(isc__networker_t));
for (size_t i = 0; i < workers; i++) {
2020-02-13 14:44:37 -08:00
int r;
isc__networker_t *worker = &mgr->workers[i];
*worker = (isc__networker_t){
.mgr = mgr,
.id = i,
};
r = uv_loop_init(&worker->loop);
RUNTIME_CHECK(r == 0);
worker->loop.data = &mgr->workers[i];
r = uv_async_init(&worker->loop, &worker->async, async_cb);
RUNTIME_CHECK(r == 0);
isc_mutex_init(&worker->lock);
isc_condition_init(&worker->cond);
worker->ievents = isc_queue_new(mgr->mctx, 128);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
worker->ievents_priv = isc_queue_new(mgr->mctx, 128);
worker->ievents_task = isc_queue_new(mgr->mctx, 128);
worker->ievents_prio = isc_queue_new(mgr->mctx, 128);
worker->recvbuf = isc_mem_get(mctx, ISC_NETMGR_RECVBUF_SIZE);
worker->sendbuf = isc_mem_get(mctx, ISC_NETMGR_SENDBUF_SIZE);
/*
* We need to do this here and not in nm_thread to avoid a
* race - we could exit isc_nm_start, launch nm_destroy,
* and nm_thread would still not be up.
*/
mgr->workers_running++;
isc_thread_create(nm_thread, &mgr->workers[i], &worker->thread);
snprintf(name, sizeof(name), "isc-net-%04zu", i);
isc_thread_setname(worker->thread, name);
}
mgr->magic = NM_MAGIC;
*netmgrp = mgr;
}
/*
* Free the resources of the network manager.
*/
static void
2020-02-13 14:44:37 -08:00
nm_destroy(isc_nm_t **mgr0) {
REQUIRE(VALID_NM(*mgr0));
REQUIRE(!isc__nm_in_netthread());
isc_nm_t *mgr = *mgr0;
*mgr0 = NULL;
isc_refcount_destroy(&mgr->references);
mgr->magic = 0;
for (size_t i = 0; i < mgr->nworkers; i++) {
isc__networker_t *worker = &mgr->workers[i];
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__netievent_t *event = isc__nm_get_netievent_stop(mgr);
isc__nm_enqueue_ievent(worker, event);
}
2019-12-12 17:43:03 +11:00
LOCK(&mgr->lock);
while (mgr->workers_running > 0) {
WAIT(&mgr->wkstatecond, &mgr->lock);
}
UNLOCK(&mgr->lock);
for (size_t i = 0; i < mgr->nworkers; i++) {
isc__networker_t *worker = &mgr->workers[i];
2019-12-03 00:07:59 -08:00
isc__netievent_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
int r;
2019-12-03 00:07:59 -08:00
/* Empty the async event queues */
while ((ievent = (isc__netievent_t *)isc_queue_dequeue(
2020-02-13 14:44:37 -08:00
worker->ievents)) != NULL)
{
isc_mempool_put(mgr->evpool, ievent);
}
2019-12-03 00:07:59 -08:00
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
INSIST(isc_queue_dequeue(worker->ievents_priv) ==
(uintptr_t)NULL);
INSIST(isc_queue_dequeue(worker->ievents_task) ==
(uintptr_t)NULL);
while ((ievent = (isc__netievent_t *)isc_queue_dequeue(
2020-02-13 14:44:37 -08:00
worker->ievents_prio)) != NULL)
{
isc_mempool_put(mgr->evpool, ievent);
}
2019-12-03 00:07:59 -08:00
r = uv_loop_close(&worker->loop);
INSIST(r == 0);
2019-12-03 00:07:59 -08:00
isc_queue_destroy(worker->ievents);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
isc_queue_destroy(worker->ievents_priv);
isc_queue_destroy(worker->ievents_task);
isc_queue_destroy(worker->ievents_prio);
isc_mutex_destroy(&worker->lock);
isc_condition_destroy(&worker->cond);
isc_mem_put(mgr->mctx, worker->sendbuf,
ISC_NETMGR_SENDBUF_SIZE);
isc_mem_put(mgr->mctx, worker->recvbuf,
ISC_NETMGR_RECVBUF_SIZE);
isc_thread_join(worker->thread, NULL);
}
if (mgr->stats != NULL) {
isc_stats_detach(&mgr->stats);
}
isc_condition_destroy(&mgr->wkstatecond);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
isc_condition_destroy(&mgr->wkpausecond);
isc_mutex_destroy(&mgr->lock);
isc_mempool_destroy(&mgr->evpool);
isc_mutex_destroy(&mgr->evlock);
isc_mempool_destroy(&mgr->reqpool);
isc_mutex_destroy(&mgr->reqlock);
isc_mem_put(mgr->mctx, mgr->workers,
mgr->nworkers * sizeof(isc__networker_t));
isc_mem_putanddetach(&mgr->mctx, mgr, sizeof(*mgr));
#ifdef WIN32
isc__nm_winsock_destroy();
#endif /* WIN32 */
}
void
2020-02-13 14:44:37 -08:00
isc_nm_pause(isc_nm_t *mgr) {
REQUIRE(VALID_NM(mgr));
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
uint_fast32_t pausing = 0;
REQUIRE(!atomic_load(&mgr->paused));
isc__nm_acquire_interlocked_force(mgr);
for (size_t i = 0; i < mgr->nworkers; i++) {
isc__networker_t *worker = &mgr->workers[i];
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
if (i != (size_t)isc_nm_tid()) {
isc__netievent_resume_t *event =
isc__nm_get_netievent_pause(mgr);
pausing++;
isc__nm_enqueue_ievent(worker,
(isc__netievent_t *)event);
} else {
isc__nm_async_pause(worker, NULL);
}
}
LOCK(&mgr->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
while (mgr->workers_paused != pausing) {
WAIT(&mgr->wkstatecond, &mgr->lock);
}
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
REQUIRE(atomic_compare_exchange_strong(&mgr->paused, &(bool){ false },
true));
UNLOCK(&mgr->lock);
}
void
2020-02-13 14:44:37 -08:00
isc_nm_resume(isc_nm_t *mgr) {
REQUIRE(VALID_NM(mgr));
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
REQUIRE(atomic_load(&mgr->paused));
for (size_t i = 0; i < mgr->nworkers; i++) {
isc__networker_t *worker = &mgr->workers[i];
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
if (i != (size_t)isc_nm_tid()) {
isc__netievent_resume_t *event =
isc__nm_get_netievent_resume(mgr);
isc__nm_enqueue_ievent(worker,
(isc__netievent_t *)event);
} else {
isc__nm_async_resume(worker, NULL);
}
}
LOCK(&mgr->lock);
while (mgr->workers_paused != 0) {
WAIT(&mgr->wkstatecond, &mgr->lock);
}
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
REQUIRE(atomic_compare_exchange_strong(&mgr->paused, &(bool){ true },
false));
BROADCAST(&mgr->wkpausecond);
UNLOCK(&mgr->lock);
isc__nm_drop_interlocked(mgr);
}
void
2020-02-13 14:44:37 -08:00
isc_nm_attach(isc_nm_t *mgr, isc_nm_t **dst) {
REQUIRE(VALID_NM(mgr));
REQUIRE(dst != NULL && *dst == NULL);
isc_refcount_increment(&mgr->references);
*dst = mgr;
}
void
2020-02-13 14:44:37 -08:00
isc_nm_detach(isc_nm_t **mgr0) {
isc_nm_t *mgr = NULL;
REQUIRE(mgr0 != NULL);
REQUIRE(VALID_NM(*mgr0));
mgr = *mgr0;
*mgr0 = NULL;
if (isc_refcount_decrement(&mgr->references) == 1) {
nm_destroy(&mgr);
}
}
void
2020-02-13 14:44:37 -08:00
isc_nm_closedown(isc_nm_t *mgr) {
REQUIRE(VALID_NM(mgr));
atomic_store(&mgr->closing, true);
for (size_t i = 0; i < mgr->nworkers; i++) {
isc__netievent_t *event = NULL;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
event = isc__nm_get_netievent_shutdown(mgr);
isc__nm_enqueue_ievent(&mgr->workers[i], event);
}
}
void
isc__netmgr_destroy(isc_nm_t **netmgrp) {
isc_nm_t *mgr = NULL;
int counter = 0;
REQUIRE(VALID_NM(*netmgrp));
mgr = *netmgrp;
/*
* Close active connections.
*/
isc_nm_closedown(mgr);
/*
* Wait for the manager to be dereferenced elsewhere.
*/
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
while (isc_refcount_current(&mgr->references) > 1 && counter++ < 1000) {
uv_sleep(10);
}
#ifdef NETMGR_TRACE
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
if (isc_refcount_current(&mgr->references) > 1) {
isc__nm_dump_active(mgr);
INSIST(0);
ISC_UNREACHABLE();
}
#endif
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* Now just patiently wait
*/
while (isc_refcount_current(&mgr->references) > 1) {
uv_sleep(10);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
}
/*
* Detach final reference.
*/
isc_nm_detach(netmgrp);
}
void
2020-02-13 14:44:37 -08:00
isc_nm_maxudp(isc_nm_t *mgr, uint32_t maxudp) {
REQUIRE(VALID_NM(mgr));
atomic_store(&mgr->maxudp, maxudp);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_nm_settimeouts(isc_nm_t *mgr, uint32_t init, uint32_t idle,
uint32_t keepalive, uint32_t advertised) {
REQUIRE(VALID_NM(mgr));
atomic_store(&mgr->init, init);
atomic_store(&mgr->idle, idle);
atomic_store(&mgr->keepalive, keepalive);
atomic_store(&mgr->advertised, advertised);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_nm_gettimeouts(isc_nm_t *mgr, uint32_t *initial, uint32_t *idle,
uint32_t *keepalive, uint32_t *advertised) {
REQUIRE(VALID_NM(mgr));
if (initial != NULL) {
*initial = atomic_load(&mgr->init);
}
if (idle != NULL) {
*idle = atomic_load(&mgr->idle);
}
if (keepalive != NULL) {
*keepalive = atomic_load(&mgr->keepalive);
}
if (advertised != NULL) {
*advertised = atomic_load(&mgr->advertised);
}
}
/*
* nm_thread is a single worker thread, that runs uv_run event loop
* until asked to stop.
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
*
* There are four queues for asynchronous events:
*
* 1. priority queue - netievents on the priority queue are run even when
* the taskmgr enters exclusive mode and the netmgr is paused. This
* is needed to properly start listening on the interfaces, free
* resources on shutdown, or resume from a pause.
*
* 2. privileged task queue - only privileged tasks are queued here and
* this is the first queue that gets processed when network manager
* is unpaused using isc_nm_resume(). All netmgr workers need to
* clean the privileged task queue before they all proceed to normal
* operation. Both task queues are processed when the workers are
* shutting down.
*
* 3. task queue - only (traditional) tasks are scheduled here, and this
* queue and the privileged task queue are both processed when the
* netmgr workers are finishing. This is needed to process the task
* shutdown events.
*
* 4. normal queue - this is the queue with netmgr events, e.g. reading,
* sending, callbacks, etc.
*/
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
static isc_threadresult_t
2020-02-13 14:44:37 -08:00
nm_thread(isc_threadarg_t worker0) {
isc__networker_t *worker = (isc__networker_t *)worker0;
isc_nm_t *mgr = worker->mgr;
isc__nm_tid_v = worker->id;
isc_thread_setaffinity(isc__nm_tid_v);
while (true) {
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* uv_run() runs async_cb() in a loop, which processes
* all four event queues until a "pause" or "stop" event
* is encountered. On pause, we process only priority and
* privileged events until resuming.
*/
2020-02-13 14:44:37 -08:00
int r = uv_run(&worker->loop, UV_RUN_DEFAULT);
INSIST(r > 0 || worker->finished);
if (worker->paused) {
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
INSIST(atomic_load(&mgr->interlocked) != isc_nm_tid());
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* We need to lock the worker first; otherwise
* isc_nm_resume() might slip in before WAIT() in
* the while loop starts, then the signal never
* gets delivered and we are stuck forever in the
* paused loop.
*/
LOCK(&worker->lock);
LOCK(&mgr->lock);
mgr->workers_paused++;
SIGNAL(&mgr->wkstatecond);
UNLOCK(&mgr->lock);
while (worker->paused) {
WAIT(&worker->cond, &worker->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
UNLOCK(&worker->lock);
(void)process_priority_queue(worker);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
LOCK(&worker->lock);
}
LOCK(&mgr->lock);
mgr->workers_paused--;
SIGNAL(&mgr->wkstatecond);
UNLOCK(&mgr->lock);
UNLOCK(&worker->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* All workers must run the privileged event
* queue before we resume from pause.
*/
process_privilege_queue(worker);
LOCK(&mgr->lock);
while (atomic_load(&mgr->paused)) {
WAIT(&mgr->wkpausecond, &mgr->lock);
}
UNLOCK(&mgr->lock);
}
if (r == 0) {
INSIST(worker->finished);
break;
}
INSIST(!worker->finished);
/*
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
* We've fully resumed from pause. Drain the normal
* asynchronous event queues before resuming the uv_run()
* loop. (This is not strictly necessary, it just ensures
* that all pending events are processed before another
* pause can slip in.)
*/
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
process_tasks_queue(worker);
process_normal_queue(worker);
}
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* We are shutting down. Process the task queues
* (they may include shutdown events) but do not process
* the netmgr event queue.
*/
process_privilege_queue(worker);
process_tasks_queue(worker);
LOCK(&mgr->lock);
mgr->workers_running--;
SIGNAL(&mgr->wkstatecond);
UNLOCK(&mgr->lock);
return ((isc_threadresult_t)0);
}
/*
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
* async_cb() is a universal callback for 'async' events sent to event loop.
* It's the only way to safely pass data to the libuv event loop. We use a
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
* single async event and a set of lockless queues of 'isc__netievent_t'
* structures passed from other threads.
*/
static void
2020-02-13 14:44:37 -08:00
async_cb(uv_async_t *handle) {
isc__networker_t *worker = (isc__networker_t *)handle->loop->data;
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
/*
* process_priority_queue() returns false when pausing or stopping,
* so we don't want to process the other queues in that case.
*/
if (!process_priority_queue(worker)) {
return;
}
process_privilege_queue(worker);
process_tasks_queue(worker);
process_normal_queue(worker);
}
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_stop(isc__networker_t *worker, isc__netievent_t *ev0) {
UNUSED(ev0);
worker->finished = true;
/* Close the async handler */
uv_close((uv_handle_t *)&worker->async, NULL);
}
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_pause(isc__networker_t *worker, isc__netievent_t *ev0) {
UNUSED(ev0);
REQUIRE(worker->paused == false);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
worker->paused = true;
uv_stop(&worker->loop);
}
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_async_resume(isc__networker_t *worker, isc__netievent_t *ev0) {
UNUSED(ev0);
REQUIRE(worker->paused == true);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
worker->paused = false;
}
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
void
isc_nm_task_enqueue(isc_nm_t *nm, isc_task_t *task, int threadid) {
isc__netievent_t *event = NULL;
int tid;
isc__networker_t *worker = NULL;
if (threadid == -1) {
tid = (int)isc_random_uniform(nm->nworkers);
} else {
tid = threadid % nm->nworkers;
}
worker = &nm->workers[tid];
if (isc_task_privilege(task)) {
event = (isc__netievent_t *)
isc__nm_get_netievent_privilegedtask(nm, task);
} else {
event = (isc__netievent_t *)isc__nm_get_netievent_task(nm,
task);
}
isc__nm_enqueue_ievent(worker, event);
}
#define isc__nm_async_privilegedtask(worker, ev0) \
isc__nm_async_task(worker, ev0)
static void
isc__nm_async_task(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_task_t *ievent = (isc__netievent_task_t *)ev0;
isc_result_t result;
UNUSED(worker);
result = isc_task_run(ievent->task);
switch (result) {
case ISC_R_QUOTA:
isc_nm_task_enqueue(worker->mgr, (isc_task_t *)ievent->task,
isc_nm_tid());
return;
case ISC_R_SUCCESS:
return;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
static bool
process_priority_queue(isc__networker_t *worker) {
return (process_queue(worker, worker->ievents_prio));
}
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
static void
process_privilege_queue(isc__networker_t *worker) {
(void)process_queue(worker, worker->ievents_priv);
}
static void
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
process_tasks_queue(isc__networker_t *worker) {
(void)process_queue(worker, worker->ievents_task);
}
static void
process_normal_queue(isc__networker_t *worker) {
(void)process_queue(worker, worker->ievents);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
/*
* The two macros here generate the individual cases for the process_netievent()
* function. The NETIEVENT_CASE(type) macro is the common case, and
* NETIEVENT_CASE_NOMORE(type) is a macro that causes the loop in the
* process_queue() to stop, e.g. it's only used for the netievent that
* stops/pauses processing the enqueued netievents.
*/
#define NETIEVENT_CASE(type) \
case netievent_##type: { \
isc__nm_async_##type(worker, ievent); \
isc__nm_put_netievent_##type( \
worker->mgr, (isc__netievent_##type##_t *)ievent); \
return (true); \
}
#define NETIEVENT_CASE_NOMORE(type) \
case netievent_##type: { \
isc__nm_async_##type(worker, ievent); \
isc__nm_put_netievent_##type(worker->mgr, ievent); \
return (false); \
}
static bool
process_netievent(isc__networker_t *worker, isc__netievent_t *ievent) {
REQUIRE(worker->id == isc_nm_tid());
switch (ievent->type) {
/* Don't process more ievents when we are stopping */
NETIEVENT_CASE_NOMORE(stop);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
NETIEVENT_CASE(privilegedtask);
NETIEVENT_CASE(task);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_CASE(udpconnect);
NETIEVENT_CASE(udplisten);
NETIEVENT_CASE(udpstop);
NETIEVENT_CASE(udpsend);
NETIEVENT_CASE(udpread);
NETIEVENT_CASE(udpcancel);
NETIEVENT_CASE(udpclose);
NETIEVENT_CASE(tcpaccept);
NETIEVENT_CASE(tcpconnect);
NETIEVENT_CASE(tcplisten);
NETIEVENT_CASE(tcpstartread);
NETIEVENT_CASE(tcppauseread);
NETIEVENT_CASE(tcpsend);
NETIEVENT_CASE(tcpstop);
NETIEVENT_CASE(tcpcancel);
NETIEVENT_CASE(tcpclose);
NETIEVENT_CASE(tcpdnsaccept);
NETIEVENT_CASE(tcpdnslisten);
NETIEVENT_CASE(tcpdnsconnect);
NETIEVENT_CASE(tcpdnssend);
NETIEVENT_CASE(tcpdnscancel);
NETIEVENT_CASE(tcpdnsclose);
NETIEVENT_CASE(tcpdnsread);
NETIEVENT_CASE(tcpdnsstop);
NETIEVENT_CASE(tlsstartread);
NETIEVENT_CASE(tlssend);
NETIEVENT_CASE(tlsclose);
NETIEVENT_CASE(tlsdobio);
NETIEVENT_CASE(tlscancel);
NETIEVENT_CASE(tlsdnscycle);
NETIEVENT_CASE(tlsdnsaccept);
NETIEVENT_CASE(tlsdnslisten);
NETIEVENT_CASE(tlsdnsconnect);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_CASE(tlsdnssend);
NETIEVENT_CASE(tlsdnscancel);
NETIEVENT_CASE(tlsdnsclose);
NETIEVENT_CASE(tlsdnsread);
NETIEVENT_CASE(tlsdnsstop);
NETIEVENT_CASE(tlsdnsshutdown);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_CASE(httpstop);
NETIEVENT_CASE(httpsend);
NETIEVENT_CASE(httpclose);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_CASE(connectcb);
NETIEVENT_CASE(readcb);
NETIEVENT_CASE(sendcb);
NETIEVENT_CASE(close);
NETIEVENT_CASE(detach);
NETIEVENT_CASE(shutdown);
NETIEVENT_CASE(resume);
NETIEVENT_CASE_NOMORE(pause);
default:
INSIST(0);
ISC_UNREACHABLE();
}
return (true);
}
static bool
2020-02-13 14:44:37 -08:00
process_queue(isc__networker_t *worker, isc_queue_t *queue) {
2019-12-03 00:07:59 -08:00
isc__netievent_t *ievent = NULL;
2020-02-13 14:44:37 -08:00
while ((ievent = (isc__netievent_t *)isc_queue_dequeue(queue)) != NULL)
{
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
if (!process_netievent(worker, ievent)) {
return (false);
}
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
return (true);
}
void *
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_get_netievent(isc_nm_t *mgr, isc__netievent_type type) {
isc__netievent_storage_t *event = isc_mempool_get(mgr->evpool);
*event = (isc__netievent_storage_t){ .ni.type = type };
return (event);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_put_netievent(isc_nm_t *mgr, void *ievent) {
isc_mempool_put(mgr->evpool, ievent);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_DEF(tcpclose);
NETIEVENT_SOCKET_DEF(tcplisten);
NETIEVENT_SOCKET_DEF(tcppauseread);
NETIEVENT_SOCKET_DEF(tcpstartread);
NETIEVENT_SOCKET_DEF(tcpstop);
NETIEVENT_SOCKET_DEF(tlsclose);
NETIEVENT_SOCKET_DEF(tlsconnect);
NETIEVENT_SOCKET_DEF(tlsdobio);
NETIEVENT_SOCKET_DEF(tlsstartread);
NETIEVENT_SOCKET_HANDLE_DEF(tlscancel);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_DEF(udpclose);
NETIEVENT_SOCKET_DEF(udplisten);
NETIEVENT_SOCKET_DEF(udpread);
NETIEVENT_SOCKET_DEF(udpsend);
NETIEVENT_SOCKET_DEF(udpstop);
NETIEVENT_SOCKET_DEF(tcpdnsclose);
NETIEVENT_SOCKET_DEF(tcpdnsread);
NETIEVENT_SOCKET_DEF(tcpdnsstop);
NETIEVENT_SOCKET_DEF(tcpdnslisten);
NETIEVENT_SOCKET_REQ_DEF(tcpdnsconnect);
NETIEVENT_SOCKET_REQ_DEF(tcpdnssend);
NETIEVENT_SOCKET_HANDLE_DEF(tcpdnscancel);
NETIEVENT_SOCKET_QUOTA_DEF(tcpdnsaccept);
NETIEVENT_SOCKET_DEF(tlsdnsclose);
NETIEVENT_SOCKET_DEF(tlsdnsread);
NETIEVENT_SOCKET_DEF(tlsdnsstop);
NETIEVENT_SOCKET_DEF(tlsdnslisten);
NETIEVENT_SOCKET_REQ_DEF(tlsdnsconnect);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_REQ_DEF(tlsdnssend);
NETIEVENT_SOCKET_HANDLE_DEF(tlsdnscancel);
NETIEVENT_SOCKET_QUOTA_DEF(tlsdnsaccept);
NETIEVENT_SOCKET_DEF(tlsdnscycle);
NETIEVENT_SOCKET_DEF(tlsdnsshutdown);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_DEF(httpstop);
NETIEVENT_SOCKET_REQ_DEF(httpsend);
NETIEVENT_SOCKET_DEF(httpclose);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_REQ_DEF(tcpconnect);
NETIEVENT_SOCKET_REQ_DEF(tcpsend);
NETIEVENT_SOCKET_REQ_DEF(tlssend);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETIEVENT_SOCKET_REQ_DEF(udpconnect);
NETIEVENT_SOCKET_REQ_RESULT_DEF(connectcb);
NETIEVENT_SOCKET_REQ_RESULT_DEF(readcb);
NETIEVENT_SOCKET_REQ_RESULT_DEF(sendcb);
NETIEVENT_SOCKET_DEF(detach);
NETIEVENT_SOCKET_HANDLE_DEF(tcpcancel);
NETIEVENT_SOCKET_HANDLE_DEF(udpcancel);
NETIEVENT_SOCKET_QUOTA_DEF(tcpaccept);
NETIEVENT_SOCKET_DEF(close);
NETIEVENT_DEF(pause);
NETIEVENT_DEF(resume);
NETIEVENT_DEF(shutdown);
NETIEVENT_DEF(stop);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
NETIEVENT_TASK_DEF(task);
NETIEVENT_TASK_DEF(privilegedtask);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
void
isc__nm_maybe_enqueue_ievent(isc__networker_t *worker,
isc__netievent_t *event) {
/*
* If we are already in the matching nmthread, process the ievent
* directly.
*/
if (worker->id == isc_nm_tid()) {
process_netievent(worker, event);
return;
}
isc__nm_enqueue_ievent(worker, event);
}
void
2020-02-13 14:44:37 -08:00
isc__nm_enqueue_ievent(isc__networker_t *worker, isc__netievent_t *event) {
if (event->type > netievent_prio) {
/*
* We need to make sure this signal will be delivered and
* the queue will be processed.
*/
LOCK(&worker->lock);
isc_queue_enqueue(worker->ievents_prio, (uintptr_t)event);
SIGNAL(&worker->cond);
UNLOCK(&worker->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
} else if (event->type == netievent_privilegedtask) {
isc_queue_enqueue(worker->ievents_priv, (uintptr_t)event);
} else if (event->type == netievent_task) {
isc_queue_enqueue(worker->ievents_task, (uintptr_t)event);
} else {
isc_queue_enqueue(worker->ievents, (uintptr_t)event);
}
uv_async_send(&worker->async);
}
bool
2020-02-13 14:44:37 -08:00
isc__nmsocket_active(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
if (sock->parent != NULL) {
return (atomic_load(&sock->parent->active));
}
return (atomic_load(&sock->active));
}
bool
isc__nmsocket_deactivate(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
if (sock->parent != NULL) {
return (atomic_compare_exchange_strong(&sock->parent->active,
&(bool){ true }, false));
}
return (atomic_compare_exchange_strong(&sock->active, &(bool){ true },
false));
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_attach(isc_nmsocket_t *sock, isc_nmsocket_t **target FLARG) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(target != NULL && *target == NULL);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_nmsocket_t *rsock = NULL;
if (sock->parent != NULL) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
rsock = sock->parent;
INSIST(rsock->parent == NULL); /* sanity check */
} else {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
rsock = sock;
}
NETMGR_TRACE_LOG("isc__nmsocket_attach():%p->references = %" PRIuFAST32
"\n",
rsock, isc_refcount_current(&rsock->references) + 1);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_refcount_increment0(&rsock->references);
*target = sock;
}
/*
* Free all resources inside a socket (including its children if any).
*/
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_cleanup(isc_nmsocket_t *sock, bool dofree FLARG) {
2020-02-13 14:44:37 -08:00
isc_nmhandle_t *handle = NULL;
isc__nm_uvreq_t *uvreq = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(!isc__nmsocket_active(sock));
NETMGR_TRACE_LOG("nmsocket_cleanup():%p->references = %" PRIuFAST32
"\n",
sock, isc_refcount_current(&sock->references));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
atomic_store(&sock->destroying, true);
if (sock->parent == NULL && sock->children != NULL) {
/*
* We shouldn't be here unless there are no active handles,
* so we can clean up and free the children.
*/
for (size_t i = 0; i < sock->nchildren; i++) {
if (!atomic_load(&sock->children[i].destroying)) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_cleanup(&sock->children[i],
false FLARG_PASS);
}
}
/*
* This was a parent socket; free the children.
*/
isc_mem_put(sock->mgr->mctx, sock->children,
sock->nchildren * sizeof(*sock));
sock->children = NULL;
sock->nchildren = 0;
}
if (sock->statsindex != NULL) {
isc__nm_decstats(sock->mgr, sock->statsindex[STATID_ACTIVE]);
}
sock->statichandle = NULL;
if (sock->outerhandle != NULL) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nmhandle_detach(&sock->outerhandle FLARG_PASS);
}
if (sock->outer != NULL) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_detach(&sock->outer FLARG_PASS);
}
while ((handle = isc_astack_pop(sock->inactivehandles)) != NULL) {
nmhandle_free(sock, handle);
}
if (sock->buf != NULL) {
isc_mem_free(sock->mgr->mctx, sock->buf);
}
if (sock->quota != NULL) {
isc_quota_detach(&sock->quota);
}
sock->pquota = NULL;
isc_astack_destroy(sock->inactivehandles);
while ((uvreq = isc_astack_pop(sock->inactivereqs)) != NULL) {
isc_mempool_put(sock->mgr->reqpool, uvreq);
}
isc_astack_destroy(sock->inactivereqs);
sock->magic = 0;
isc_mem_free(sock->mgr->mctx, sock->ah_frees);
isc_mem_free(sock->mgr->mctx, sock->ah_handles);
isc_mutex_destroy(&sock->lock);
isc_condition_destroy(&sock->cond);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_condition_destroy(&sock->scond);
isc__nm_tls_cleanup_data(sock);
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
isc__nm_http_cleanup_data(sock);
#ifdef NETMGR_TRACE
LOCK(&sock->mgr->lock);
ISC_LIST_UNLINK(sock->mgr->active_sockets, sock, active_link);
UNLOCK(&sock->mgr->lock);
#endif
if (dofree) {
isc_nm_t *mgr = sock->mgr;
isc_mem_put(mgr->mctx, sock, sizeof(*sock));
isc_nm_detach(&mgr);
} else {
isc_nm_detach(&sock->mgr);
}
}
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_maybe_destroy(isc_nmsocket_t *sock FLARG) {
2020-02-13 14:44:37 -08:00
int active_handles;
bool destroy = false;
NETMGR_TRACE_LOG("%s():%p->references = %" PRIuFAST32 "\n", __func__,
sock, isc_refcount_current(&sock->references));
if (sock->parent != NULL) {
/*
* This is a child socket and cannot be destroyed except
* as a side effect of destroying the parent, so let's go
* see if the parent is ready to be destroyed.
*/
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_maybe_destroy(sock->parent FLARG_PASS);
return;
}
/*
* This is a parent socket (or a standalone). See whether the
* children have active handles before deciding whether to
* accept destruction.
*/
LOCK(&sock->lock);
if (atomic_load(&sock->active) || atomic_load(&sock->destroying) ||
2020-02-13 14:44:37 -08:00
!atomic_load(&sock->closed) || atomic_load(&sock->references) != 0)
{
UNLOCK(&sock->lock);
return;
}
active_handles = atomic_load(&sock->ah);
if (sock->children != NULL) {
for (size_t i = 0; i < sock->nchildren; i++) {
LOCK(&sock->children[i].lock);
active_handles += atomic_load(&sock->children[i].ah);
UNLOCK(&sock->children[i].lock);
}
}
if (active_handles == 0 || sock->statichandle != NULL) {
destroy = true;
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
NETMGR_TRACE_LOG("%s:%p->active_handles = %d, .statichandle = %p\n",
__func__, sock, active_handles, sock->statichandle);
if (destroy) {
atomic_store(&sock->destroying, true);
UNLOCK(&sock->lock);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_cleanup(sock, true FLARG_PASS);
} else {
UNLOCK(&sock->lock);
}
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_prep_destroy(isc_nmsocket_t *sock FLARG) {
REQUIRE(sock->parent == NULL);
NETMGR_TRACE_LOG("isc___nmsocket_prep_destroy():%p->references = "
"%" PRIuFAST32 "\n",
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
sock, isc_refcount_current(&sock->references));
/*
* The final external reference to the socket is gone. We can try
* destroying the socket, but we have to wait for all the inflight
* handles to finish first.
*/
atomic_store(&sock->active, false);
/*
* If the socket has children, they'll need to be marked inactive
* so they can be cleaned up too.
*/
if (sock->children != NULL) {
for (size_t i = 0; i < sock->nchildren; i++) {
atomic_store(&sock->children[i].active, false);
}
}
/*
* If we're here then we already stopped listening; otherwise
* we'd have a hanging reference from the listening process.
*
* If it's a regular socket we may need to close it.
*/
if (!atomic_load(&sock->closed)) {
switch (sock->type) {
case isc_nm_udpsocket:
isc__nm_udp_close(sock);
return;
case isc_nm_tcpsocket:
isc__nm_tcp_close(sock);
return;
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_close(sock);
return;
case isc_nm_tlssocket:
isc__nm_tls_close(sock);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_close(sock);
return;
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
case isc_nm_httpsocket:
isc__nm_http_close(sock);
return;
default:
break;
}
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmsocket_maybe_destroy(sock FLARG_PASS);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_detach(isc_nmsocket_t **sockp FLARG) {
REQUIRE(sockp != NULL && *sockp != NULL);
REQUIRE(VALID_NMSOCK(*sockp));
isc_nmsocket_t *sock = *sockp, *rsock = NULL;
*sockp = NULL;
/*
* If the socket is a part of a set (a child socket) we are
* counting references for the whole set at the parent.
*/
if (sock->parent != NULL) {
rsock = sock->parent;
INSIST(rsock->parent == NULL); /* Sanity check */
} else {
rsock = sock;
}
NETMGR_TRACE_LOG("isc__nmsocket_detach():%p->references = %" PRIuFAST32
"\n",
rsock, isc_refcount_current(&rsock->references) - 1);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
if (isc_refcount_decrement(&rsock->references) == 1) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_prep_destroy(rsock FLARG_PASS);
}
}
void
isc_nmsocket_close(isc_nmsocket_t **sockp) {
REQUIRE(sockp != NULL);
REQUIRE(VALID_NMSOCK(*sockp));
REQUIRE((*sockp)->type == isc_nm_udplistener ||
(*sockp)->type == isc_nm_tcplistener ||
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
(*sockp)->type == isc_nm_tcpdnslistener ||
(*sockp)->type == isc_nm_tlsdnslistener ||
(*sockp)->type == isc_nm_tlslistener ||
(*sockp)->type == isc_nm_httplistener);
isc__nmsocket_detach(sockp);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_init(isc_nmsocket_t *sock, isc_nm_t *mgr, isc_nmsocket_type type,
isc_nmiface_t *iface FLARG) {
uint16_t family;
REQUIRE(sock != NULL);
REQUIRE(mgr != NULL);
REQUIRE(iface != NULL);
family = iface->addr.type.sa.sa_family;
*sock = (isc_nmsocket_t){ .type = type,
.iface = iface,
.fd = -1,
.ah_size = 32,
.inactivehandles = isc_astack_new(
mgr->mctx, ISC_NM_HANDLES_STACK_SIZE),
.inactivereqs = isc_astack_new(
mgr->mctx, ISC_NM_REQS_STACK_SIZE) };
#if NETMGR_TRACE
sock->backtrace_size = isc_backtrace(sock->backtrace, TRACE_SIZE);
ISC_LINK_INIT(sock, active_link);
ISC_LIST_INIT(sock->active_handles);
LOCK(&mgr->lock);
ISC_LIST_APPEND(mgr->active_sockets, sock, active_link);
UNLOCK(&mgr->lock);
#endif
isc_nm_attach(mgr, &sock->mgr);
sock->uv_handle.handle.data = sock;
2020-02-13 14:44:37 -08:00
sock->ah_frees = isc_mem_allocate(mgr->mctx,
sock->ah_size * sizeof(size_t));
sock->ah_handles = isc_mem_allocate(
mgr->mctx, sock->ah_size * sizeof(isc_nmhandle_t *));
ISC_LINK_INIT(&sock->quotacb, link);
for (size_t i = 0; i < 32; i++) {
sock->ah_frees[i] = i;
sock->ah_handles[i] = NULL;
}
switch (type) {
case isc_nm_udpsocket:
case isc_nm_udplistener:
if (family == AF_INET) {
sock->statsindex = udp4statsindex;
} else {
sock->statsindex = udp6statsindex;
}
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_ACTIVE]);
break;
case isc_nm_tcpsocket:
case isc_nm_tcplistener:
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tcpdnssocket:
case isc_nm_tcpdnslistener:
case isc_nm_tlsdnssocket:
case isc_nm_tlsdnslistener:
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
case isc_nm_httpsocket:
case isc_nm_httplistener:
if (family == AF_INET) {
sock->statsindex = tcp4statsindex;
} else {
sock->statsindex = tcp6statsindex;
}
isc__nm_incstats(sock->mgr, sock->statsindex[STATID_ACTIVE]);
break;
default:
break;
}
isc_mutex_init(&sock->lock);
isc_condition_init(&sock->cond);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc_condition_init(&sock->scond);
isc_refcount_init(&sock->references, 1);
memset(&sock->tlsstream, 0, sizeof(sock->tlsstream));
NETMGR_TRACE_LOG("isc__nmsocket_init():%p->references = %" PRIuFAST32
"\n",
sock, isc_refcount_current(&sock->references));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
atomic_init(&sock->active, true);
atomic_init(&sock->sequential, false);
atomic_init(&sock->readpaused, false);
atomic_init(&sock->closing, false);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
atomic_store(&sock->active_child_connections, 0);
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
isc__nm_http_initsocket(sock);
sock->magic = NMSOCK_MAGIC;
}
void
isc__nmsocket_clearcb(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(!isc__nm_in_netthread() || sock->tid == isc_nm_tid());
sock->recv_cb = NULL;
sock->recv_cbarg = NULL;
sock->accept_cb = NULL;
sock->accept_cbarg = NULL;
sock->connect_cb = NULL;
sock->connect_cbarg = NULL;
}
void
2020-02-13 14:44:37 -08:00
isc__nm_free_uvbuf(isc_nmsocket_t *sock, const uv_buf_t *buf) {
isc__networker_t *worker = NULL;
REQUIRE(VALID_NMSOCK(sock));
if (buf->base == NULL) {
/* Empty buffer: might happen in case of error. */
return;
}
worker = &sock->mgr->workers[sock->tid];
2019-11-15 13:22:13 -08:00
REQUIRE(worker->recvbuf_inuse);
if (sock->type == isc_nm_udpsocket && buf->base > worker->recvbuf &&
buf->base <= worker->recvbuf + ISC_NETMGR_RECVBUF_SIZE)
{
/* Can happen in case of out-of-order recvmmsg in libuv1.36 */
return;
}
2019-11-15 13:22:13 -08:00
REQUIRE(buf->base == worker->recvbuf);
worker->recvbuf_inuse = false;
}
static isc_nmhandle_t *
2020-02-13 14:44:37 -08:00
alloc_handle(isc_nmsocket_t *sock) {
isc_nmhandle_t *handle =
isc_mem_get(sock->mgr->mctx,
sizeof(isc_nmhandle_t) + sock->extrahandlesize);
*handle = (isc_nmhandle_t){ .magic = NMHANDLE_MAGIC };
#ifdef NETMGR_TRACE
ISC_LINK_INIT(handle, active_link);
#endif
isc_refcount_init(&handle->references, 1);
return (handle);
}
isc_nmhandle_t *
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmhandle_get(isc_nmsocket_t *sock, isc_sockaddr_t *peer,
isc_sockaddr_t *local FLARG) {
isc_nmhandle_t *handle = NULL;
2020-02-13 14:44:37 -08:00
size_t handlenum;
int pos;
REQUIRE(VALID_NMSOCK(sock));
handle = isc_astack_pop(sock->inactivehandles);
if (handle == NULL) {
handle = alloc_handle(sock);
} else {
isc_refcount_init(&handle->references, 1);
INSIST(VALID_NMHANDLE(handle));
}
NETMGR_TRACE_LOG(
"isc__nmhandle_get():handle %p->references = %" PRIuFAST32 "\n",
handle, isc_refcount_current(&handle->references));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_attach(sock, &handle->sock FLARG_PASS);
#if NETMGR_TRACE
handle->backtrace_size = isc_backtrace(handle->backtrace, TRACE_SIZE);
#endif
if (peer != NULL) {
memmove(&handle->peer, peer, sizeof(isc_sockaddr_t));
} else {
memmove(&handle->peer, &sock->peer, sizeof(isc_sockaddr_t));
}
if (local != NULL) {
memmove(&handle->local, local, sizeof(isc_sockaddr_t));
} else if (sock->iface != NULL) {
memmove(&handle->local, &sock->iface->addr,
sizeof(isc_sockaddr_t));
} else {
INSIST(0);
ISC_UNREACHABLE();
}
LOCK(&sock->lock);
/* We need to add this handle to the list of active handles */
if ((size_t)atomic_load(&sock->ah) == sock->ah_size) {
sock->ah_frees =
isc_mem_reallocate(sock->mgr->mctx, sock->ah_frees,
sock->ah_size * 2 * sizeof(size_t));
sock->ah_handles = isc_mem_reallocate(
sock->mgr->mctx, sock->ah_handles,
sock->ah_size * 2 * sizeof(isc_nmhandle_t *));
for (size_t i = sock->ah_size; i < sock->ah_size * 2; i++) {
sock->ah_frees[i] = i;
sock->ah_handles[i] = NULL;
}
sock->ah_size *= 2;
}
handlenum = atomic_fetch_add(&sock->ah, 1);
pos = sock->ah_frees[handlenum];
INSIST(sock->ah_handles[pos] == NULL);
sock->ah_handles[pos] = handle;
handle->ah_pos = pos;
#ifdef NETMGR_TRACE
ISC_LIST_APPEND(sock->active_handles, handle, active_link);
#endif
UNLOCK(&sock->lock);
switch (sock->type) {
case isc_nm_udpsocket:
case isc_nm_tcpdnssocket:
case isc_nm_tlsdnssocket:
if (!atomic_load(&sock->client)) {
break;
}
/* fallthrough */
case isc_nm_tcpsocket:
case isc_nm_tlssocket:
INSIST(sock->statichandle == NULL);
/*
* statichandle must be assigned, not attached;
* otherwise, if a handle was detached elsewhere
* it could never reach 0 references, and the
* handle and socket would never be freed.
*/
sock->statichandle = handle;
break;
default:
break;
}
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
if (sock->type == isc_nm_httpsocket && sock->h2.session) {
isc__nm_httpsession_attach(sock->h2.session,
&handle->httpsession);
}
return (handle);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nmhandle_attach(isc_nmhandle_t *handle, isc_nmhandle_t **handlep FLARG) {
REQUIRE(VALID_NMHANDLE(handle));
REQUIRE(handlep != NULL && *handlep == NULL);
NETMGR_TRACE_LOG("isc__nmhandle_attach():handle %p->references = "
"%" PRIuFAST32 "\n",
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
handle, isc_refcount_current(&handle->references) + 1);
isc_refcount_increment(&handle->references);
*handlep = handle;
}
bool
2020-02-13 14:44:37 -08:00
isc_nmhandle_is_stream(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
return (handle->sock->type == isc_nm_tcpsocket ||
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
handle->sock->type == isc_nm_tcpdnssocket ||
handle->sock->type == isc_nm_tlssocket ||
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
handle->sock->type == isc_nm_tlsdnssocket);
}
static void
2020-02-13 14:44:37 -08:00
nmhandle_free(isc_nmsocket_t *sock, isc_nmhandle_t *handle) {
size_t extra = sock->extrahandlesize;
isc_refcount_destroy(&handle->references);
if (handle->dofree != NULL) {
handle->dofree(handle->opaque);
}
*handle = (isc_nmhandle_t){ .magic = 0 };
isc_mem_put(sock->mgr->mctx, handle, sizeof(isc_nmhandle_t) + extra);
}
static void
2020-02-13 14:44:37 -08:00
nmhandle_deactivate(isc_nmsocket_t *sock, isc_nmhandle_t *handle) {
size_t handlenum;
bool reuse = false;
/*
* We do all of this under lock to avoid races with socket
* destruction. We have to do this now, because at this point the
* socket is either unused or still attached to event->sock.
*/
LOCK(&sock->lock);
INSIST(sock->ah_handles[handle->ah_pos] == handle);
INSIST(sock->ah_size > handle->ah_pos);
INSIST(atomic_load(&sock->ah) > 0);
#ifdef NETMGR_TRACE
ISC_LIST_UNLINK(sock->active_handles, handle, active_link);
#endif
sock->ah_handles[handle->ah_pos] = NULL;
handlenum = atomic_fetch_sub(&sock->ah, 1) - 1;
sock->ah_frees[handlenum] = handle->ah_pos;
handle->ah_pos = 0;
if (atomic_load(&sock->active)) {
reuse = isc_astack_trypush(sock->inactivehandles, handle);
}
if (!reuse) {
nmhandle_free(sock, handle);
}
UNLOCK(&sock->lock);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nmhandle_detach(isc_nmhandle_t **handlep FLARG) {
isc_nmsocket_t *sock = NULL;
isc_nmhandle_t *handle = NULL;
REQUIRE(handlep != NULL);
REQUIRE(VALID_NMHANDLE(*handlep));
handle = *handlep;
*handlep = NULL;
sock = handle->sock;
if (sock->tid == isc_nm_tid()) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmhandle_detach_cb(&handle FLARG_PASS);
} else {
isc__netievent_detach_t *event =
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_get_netievent_detach(sock->mgr, sock);
/*
* we are using implicit "attach" as the last reference
* need to be destroyed explicitly in the async callback
*/
event->handle = handle;
FLARG_IEVENT_PASS(event);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)event);
}
}
void
isc__nmsocket_shutdown(isc_nmsocket_t *sock);
static void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmhandle_detach_cb(isc_nmhandle_t **handlep FLARG) {
isc_nmsocket_t *sock = NULL;
isc_nmhandle_t *handle = NULL;
REQUIRE(handlep != NULL);
REQUIRE(VALID_NMHANDLE(*handlep));
handle = *handlep;
*handlep = NULL;
NETMGR_TRACE_LOG("isc__nmhandle_detach():%p->references = %" PRIuFAST32
"\n",
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
handle, isc_refcount_current(&handle->references) - 1);
if (isc_refcount_decrement(&handle->references) > 1) {
return;
}
/* We need an acquire memory barrier here */
(void)isc_refcount_current(&handle->references);
sock = handle->sock;
handle->sock = NULL;
if (handle->doreset != NULL) {
handle->doreset(handle->opaque);
}
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
if (sock->type == isc_nm_httpsocket && handle->httpsession != NULL) {
isc__nm_httpsession_detach(&handle->httpsession);
}
nmhandle_deactivate(sock, handle);
/*
* The handle is gone now. If the socket has a callback configured
* for that (e.g., to perform cleanup after request processing),
* call it now, or schedule it to run asynchronously.
*/
if (sock->closehandle_cb != NULL) {
if (sock->tid == isc_nm_tid()) {
sock->closehandle_cb(sock);
} else {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__netievent_close_t *event =
isc__nm_get_netievent_close(sock->mgr, sock);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)event);
}
}
if (handle == sock->statichandle) {
/* statichandle is assigned, not attached. */
sock->statichandle = NULL;
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_detach(&sock FLARG_PASS);
}
void *
2020-02-13 14:44:37 -08:00
isc_nmhandle_getdata(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
return (handle->opaque);
}
void
isc_nmhandle_setdata(isc_nmhandle_t *handle, void *arg,
2020-02-13 14:44:37 -08:00
isc_nm_opaquecb_t doreset, isc_nm_opaquecb_t dofree) {
REQUIRE(VALID_NMHANDLE(handle));
handle->opaque = arg;
handle->doreset = doreset;
handle->dofree = dofree;
}
void
isc__nm_alloc_dnsbuf(isc_nmsocket_t *sock, size_t len) {
REQUIRE(len <= NM_BIG_BUF);
if (sock->buf == NULL) {
/* We don't have the buffer at all */
size_t alloc_len = len < NM_REG_BUF ? NM_REG_BUF : NM_BIG_BUF;
sock->buf = isc_mem_allocate(sock->mgr->mctx, alloc_len);
sock->buf_size = alloc_len;
} else {
/* We have the buffer but it's too small */
sock->buf = isc_mem_reallocate(sock->mgr->mctx, sock->buf,
NM_BIG_BUF);
sock->buf_size = NM_BIG_BUF;
}
}
void
isc__nm_failed_send_cb(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_result_t eresult) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(req));
if (req->cb.send != NULL) {
isc__nm_sendcb(sock, req, eresult, true);
} else {
isc__nm_uvreq_put(&req, sock);
}
}
void
isc__nm_failed_accept_cb(isc_nmsocket_t *sock, isc_result_t eresult) {
REQUIRE(sock->accepting);
REQUIRE(sock->server);
/*
* Detach the quota early to make room for other connections;
* otherwise it'd be detached later asynchronously, and clog
* the quota unnecessarily.
*/
if (sock->quota != NULL) {
isc_quota_detach(&sock->quota);
}
isc__nmsocket_detach(&sock->server);
sock->accepting = false;
switch (eresult) {
case ISC_R_NOTCONNECTED:
/* IGNORE: The client disconnected before we could accept */
break;
default:
isc_log_write(isc_lctx, ISC_LOGCATEGORY_GENERAL,
ISC_LOGMODULE_NETMGR, ISC_LOG_ERROR,
"Accepting TCP connection failed: %s",
isc_result_totext(eresult));
}
}
void
isc__nm_failed_connect_cb(isc_nmsocket_t *sock, isc__nm_uvreq_t *req,
isc_result_t eresult, bool async) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(req));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(req->cb.connect != NULL);
isc__nmsocket_timer_stop(sock);
uv_handle_set_data((uv_handle_t *)&sock->timer, sock);
INSIST(atomic_compare_exchange_strong(&sock->connecting,
&(bool){ true }, false));
isc__nmsocket_clearcb(sock);
isc__nm_connectcb(sock, req, eresult, async);
isc__nmsocket_prep_destroy(sock);
}
void
isc__nm_failed_read_cb(isc_nmsocket_t *sock, isc_result_t result, bool async) {
REQUIRE(VALID_NMSOCK(sock));
switch (sock->type) {
case isc_nm_udpsocket:
isc__nm_udp_failed_read_cb(sock, result);
return;
case isc_nm_tcpsocket:
isc__nm_tcp_failed_read_cb(sock, result);
return;
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_failed_read_cb(sock, result);
return;
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_failed_read_cb(sock, result, async);
return;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc__nmsocket_connecttimeout_cb(uv_timer_t *timer) {
uv_connect_t *uvreq = uv_handle_get_data((uv_handle_t *)timer);
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)uvreq->handle);
isc__nm_uvreq_t *req = uv_handle_get_data((uv_handle_t *)uvreq);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(atomic_load(&sock->connecting));
REQUIRE(VALID_UVREQ(req));
REQUIRE(VALID_NMHANDLE(req->handle));
isc__nmsocket_timer_stop(sock);
if (sock->tls.pending_req != NULL) {
REQUIRE(req == sock->tls.pending_req);
sock->tls.pending_req = NULL;
}
/* Call the connect callback directly */
req->cb.connect(req->handle, ISC_R_TIMEDOUT, req->cbarg);
/* Timer is not running, cleanup and shutdown everything */
if (!isc__nmsocket_timer_running(sock)) {
INSIST(atomic_compare_exchange_strong(&sock->connecting,
&(bool){ true }, false));
isc__nm_uvreq_put(&req, sock);
isc__nmsocket_clearcb(sock);
isc__nmsocket_shutdown(sock);
}
}
static void
isc__nmsocket_readtimeout_cb(uv_timer_t *timer) {
isc_nmsocket_t *sock = uv_handle_get_data((uv_handle_t *)timer);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(sock->reading);
if (atomic_load(&sock->client)) {
uv_timer_stop(timer);
if (sock->recv_cb != NULL) {
isc__nm_uvreq_t *req = isc__nm_get_read_req(sock, NULL);
isc__nm_readcb(sock, req, ISC_R_TIMEDOUT);
}
if (!isc__nmsocket_timer_running(sock)) {
isc__nmsocket_clearcb(sock);
isc__nm_failed_read_cb(sock, ISC_R_CANCELED, false);
}
} else {
isc__nm_failed_read_cb(sock, ISC_R_TIMEDOUT, false);
}
}
void
isc__nmsocket_timer_restart(isc_nmsocket_t *sock) {
int r = 0;
REQUIRE(VALID_NMSOCK(sock));
if (atomic_load(&sock->connecting)) {
if (sock->connect_timeout == 0) {
return;
}
r = uv_timer_start(&sock->timer,
isc__nmsocket_connecttimeout_cb,
sock->connect_timeout + 10, 0);
} else {
if (sock->read_timeout == 0) {
return;
}
r = uv_timer_start(&sock->timer, isc__nmsocket_readtimeout_cb,
sock->read_timeout, 0);
}
RUNTIME_CHECK(r == 0);
}
bool
isc__nmsocket_timer_running(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
return (uv_is_active((uv_handle_t *)&sock->timer));
}
void
isc__nmsocket_timer_start(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
if (isc__nmsocket_timer_running(sock)) {
return;
}
isc__nmsocket_timer_restart(sock);
}
void
isc__nmsocket_timer_stop(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
/* uv_timer_stop() is idempotent, no need to check if running */
int r = uv_timer_stop(&sock->timer);
RUNTIME_CHECK(r == 0);
}
isc__nm_uvreq_t *
isc__nm_get_read_req(isc_nmsocket_t *sock, isc_sockaddr_t *sockaddr) {
isc__nm_uvreq_t *req = NULL;
req = isc__nm_uvreq_get(sock->mgr, sock);
req->cb.recv = sock->recv_cb;
req->cbarg = sock->recv_cbarg;
switch (sock->type) {
case isc_nm_tcpsocket:
case isc_nm_tlssocket:
isc_nmhandle_attach(sock->statichandle, &req->handle);
break;
default:
if (atomic_load(&sock->client)) {
isc_nmhandle_attach(sock->statichandle, &req->handle);
} else {
req->handle = isc__nmhandle_get(sock, sockaddr, NULL);
}
break;
}
return (req);
}
/*%<
* Allocator for read operations. Limited to size 2^16.
*
* Note this doesn't actually allocate anything, it just assigns the
* worker's receive buffer to a socket, and marks it as "in use".
*/
void
isc__nm_alloc_cb(uv_handle_t *handle, size_t size, uv_buf_t *buf) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
isc__networker_t *worker = NULL;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(isc__nm_in_netthread());
switch (sock->type) {
case isc_nm_udpsocket:
REQUIRE(size <= ISC_NETMGR_RECVBUF_SIZE);
size = ISC_NETMGR_RECVBUF_SIZE;
break;
case isc_nm_tcpsocket:
case isc_nm_tcpdnssocket:
break;
case isc_nm_tlsdnssocket:
/*
* We need to limit the individual chunks to be read, so the
* BIO_write() will always succeed and the consumed before the
* next readcb is called.
*/
if (size >= ISC_NETMGR_TLSBUF_SIZE) {
size = ISC_NETMGR_TLSBUF_SIZE;
}
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
worker = &sock->mgr->workers[sock->tid];
INSIST(!worker->recvbuf_inuse || sock->type == isc_nm_udpsocket);
buf->base = worker->recvbuf;
buf->len = size;
worker->recvbuf_inuse = true;
}
void
isc__nm_start_reading(isc_nmsocket_t *sock) {
int r;
if (sock->reading) {
return;
}
switch (sock->type) {
case isc_nm_udpsocket:
r = uv_udp_recv_start(&sock->uv_handle.udp, isc__nm_alloc_cb,
isc__nm_udp_read_cb);
break;
case isc_nm_tcpsocket:
r = uv_read_start(&sock->uv_handle.stream, isc__nm_alloc_cb,
isc__nm_tcp_read_cb);
break;
case isc_nm_tcpdnssocket:
r = uv_read_start(&sock->uv_handle.stream, isc__nm_alloc_cb,
isc__nm_tcpdns_read_cb);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnssocket:
r = uv_read_start(&sock->uv_handle.stream, isc__nm_alloc_cb,
isc__nm_tlsdns_read_cb);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
RUNTIME_CHECK(r == 0);
sock->reading = true;
}
void
isc__nm_stop_reading(isc_nmsocket_t *sock) {
int r;
if (!sock->reading) {
return;
}
switch (sock->type) {
case isc_nm_udpsocket:
r = uv_udp_recv_stop(&sock->uv_handle.udp);
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
break;
case isc_nm_tcpsocket:
case isc_nm_tcpdnssocket:
case isc_nm_tlsdnssocket:
r = uv_read_stop(&sock->uv_handle.stream);
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
RUNTIME_CHECK(r == 0);
sock->reading = false;
}
bool
isc__nm_closing(isc_nmsocket_t *sock) {
return (atomic_load(&sock->mgr->closing));
}
bool
isc__nmsocket_closing(isc_nmsocket_t *sock) {
return (!isc__nmsocket_active(sock) || atomic_load(&sock->closing) ||
atomic_load(&sock->mgr->closing) ||
(sock->server != NULL && !isc__nmsocket_active(sock->server)));
}
static isc_result_t
processbuffer(isc_nmsocket_t *sock) {
switch (sock->type) {
case isc_nm_tcpdnssocket:
return (isc__nm_tcpdns_processbuffer(sock));
case isc_nm_tlsdnssocket:
return (isc__nm_tlsdns_processbuffer(sock));
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
/*
* Process a DNS message.
*
* If we only have an incomplete DNS message, we don't touch any
* timers. If we do have a full message, reset the timer.
*
* Stop reading if this is a client socket, or if the server socket
* has been set to sequential mode, or the number of queries we are
* processing simultaneously has reached the clients-per-connection
* limit. In this case we'll be called again by resume_processing()
* later.
*/
void
isc__nm_process_sock_buffer(isc_nmsocket_t *sock) {
for (;;) {
int_fast32_t ah = atomic_load(&sock->ah);
isc_result_t result = processbuffer(sock);
switch (result) {
case ISC_R_NOMORE:
/*
* Don't reset the timer until we have a
* full DNS message.
*/
isc__nm_start_reading(sock);
/*
* Start the timer only if there are no externally used
* active handles, there's always one active handle
* attached internally to sock->recv_handle in
* accept_connection()
*/
if (ah == 1) {
isc__nmsocket_timer_start(sock);
}
return;
case ISC_R_CANCELED:
isc__nmsocket_timer_stop(sock);
isc__nm_stop_reading(sock);
return;
case ISC_R_SUCCESS:
/*
* Stop the timer on the successful message read, this
* also allows to restart the timer when we have no more
* data.
*/
isc__nmsocket_timer_stop(sock);
if (atomic_load(&sock->client) ||
atomic_load(&sock->sequential) ||
ah >= STREAM_CLIENTS_PER_CONN)
{
isc__nm_stop_reading(sock);
return;
}
break;
default:
INSIST(0);
}
}
}
void
isc__nm_resume_processing(void *arg) {
isc_nmsocket_t *sock = (isc_nmsocket_t *)arg;
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(!atomic_load(&sock->client));
if (isc__nmsocket_closing(sock)) {
return;
}
isc__nm_process_sock_buffer(sock);
}
void
isc_nmhandle_cleartimeout(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
REQUIRE(VALID_NMSOCK(handle->sock));
switch (handle->sock->type) {
case isc_nm_httpsocket:
isc__nm_http_cleartimeout(handle);
return;
case isc_nm_tlssocket:
isc__nm_tls_cleartimeout(handle);
return;
default:
handle->sock->read_timeout = 0;
if (uv_is_active((uv_handle_t *)&handle->sock->timer)) {
isc__nmsocket_timer_stop(handle->sock);
}
}
}
void
isc_nmhandle_settimeout(isc_nmhandle_t *handle, uint32_t timeout) {
REQUIRE(VALID_NMHANDLE(handle));
REQUIRE(VALID_NMSOCK(handle->sock));
switch (handle->sock->type) {
case isc_nm_httpsocket:
isc__nm_http_settimeout(handle, timeout);
return;
case isc_nm_tlssocket:
isc__nm_tls_settimeout(handle, timeout);
return;
default:
handle->sock->read_timeout = timeout;
isc__nmsocket_timer_restart(handle->sock);
}
}
void *
2020-02-13 14:44:37 -08:00
isc_nmhandle_getextra(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
return (handle->extra);
}
isc_sockaddr_t
2020-02-13 14:44:37 -08:00
isc_nmhandle_peeraddr(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
return (handle->peer);
}
isc_sockaddr_t
2020-02-13 14:44:37 -08:00
isc_nmhandle_localaddr(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
return (handle->local);
}
isc_nm_t *
2020-02-13 14:44:37 -08:00
isc_nmhandle_netmgr(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
REQUIRE(VALID_NMSOCK(handle->sock));
return (handle->sock->mgr);
}
isc__nm_uvreq_t *
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nm_uvreq_get(isc_nm_t *mgr, isc_nmsocket_t *sock FLARG) {
isc__nm_uvreq_t *req = NULL;
REQUIRE(VALID_NM(mgr));
REQUIRE(VALID_NMSOCK(sock));
if (sock != NULL && isc__nmsocket_active(sock)) {
/* Try to reuse one */
req = isc_astack_pop(sock->inactivereqs);
}
if (req == NULL) {
req = isc_mempool_get(mgr->reqpool);
}
*req = (isc__nm_uvreq_t){ .magic = 0 };
ISC_LINK_INIT(req, link);
req->uv_req.req.data = req;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_attach(sock, &req->sock FLARG_PASS);
req->magic = UVREQ_MAGIC;
return (req);
}
void
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nm_uvreq_put(isc__nm_uvreq_t **req0, isc_nmsocket_t *sock FLARG) {
isc__nm_uvreq_t *req = NULL;
2020-02-13 14:44:37 -08:00
isc_nmhandle_t *handle = NULL;
REQUIRE(req0 != NULL);
REQUIRE(VALID_UVREQ(*req0));
req = *req0;
*req0 = NULL;
INSIST(sock == req->sock);
req->magic = 0;
/*
* We need to save this first to make sure that handle,
* sock, and the netmgr won't all disappear.
*/
handle = req->handle;
req->handle = NULL;
if (!isc__nmsocket_active(sock) ||
!isc_astack_trypush(sock->inactivereqs, req)) {
isc_mempool_put(sock->mgr->reqpool, req);
}
if (handle != NULL) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nmhandle_detach(&handle FLARG_PASS);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc___nmsocket_detach(&sock FLARG_PASS);
}
void
isc_nm_send(isc_nmhandle_t *handle, isc_region_t *region, isc_nm_cb_t cb,
2020-02-13 14:44:37 -08:00
void *cbarg) {
REQUIRE(VALID_NMHANDLE(handle));
switch (handle->sock->type) {
case isc_nm_udpsocket:
case isc_nm_udplistener:
isc__nm_udp_send(handle, region, cb, cbarg);
break;
case isc_nm_tcpsocket:
isc__nm_tcp_send(handle, region, cb, cbarg);
break;
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_send(handle, region, cb, cbarg);
break;
case isc_nm_tlssocket:
isc__nm_tls_send(handle, region, cb, cbarg);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_send(handle, region, cb, cbarg);
break;
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
case isc_nm_httpsocket:
isc__nm_http_send(handle, region, cb, cbarg);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc_nm_read(isc_nmhandle_t *handle, isc_nm_recv_cb_t cb, void *cbarg) {
REQUIRE(VALID_NMHANDLE(handle));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
/*
* This is always called via callback (from accept or connect), and
* caller must attach to the handle, so the references always need to be
* at least 2.
*/
REQUIRE(isc_refcount_current(&handle->references) >= 2);
switch (handle->sock->type) {
case isc_nm_udpsocket:
isc__nm_udp_read(handle, cb, cbarg);
break;
case isc_nm_tcpsocket:
isc__nm_tcp_read(handle, cb, cbarg);
break;
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_read(handle, cb, cbarg);
break;
case isc_nm_tlssocket:
isc__nm_tls_read(handle, cb, cbarg);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_read(handle, cb, cbarg);
break;
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
case isc_nm_httpsocket:
isc__nm_http_read(handle, cb, cbarg);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc_nm_cancelread(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
switch (handle->sock->type) {
case isc_nm_udpsocket:
isc__nm_udp_cancelread(handle);
break;
case isc_nm_tcpsocket:
isc__nm_tcp_cancelread(handle);
break;
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_cancelread(handle);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_cancelread(handle);
break;
case isc_nm_tlssocket:
isc__nm_tls_cancelread(handle);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc_nm_pauseread(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
isc_nmsocket_t *sock = handle->sock;
switch (sock->type) {
case isc_nm_tcpsocket:
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_tcp_pauseread(handle);
break;
case isc_nm_tlssocket:
isc__nm_tls_pauseread(handle);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc_nm_resumeread(isc_nmhandle_t *handle) {
REQUIRE(VALID_NMHANDLE(handle));
isc_nmsocket_t *sock = handle->sock;
switch (sock->type) {
case isc_nm_tcpsocket:
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
isc__nm_tcp_resumeread(handle);
break;
case isc_nm_tlssocket:
isc__nm_tls_resumeread(handle);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc_nm_stoplistening(isc_nmsocket_t *sock) {
REQUIRE(VALID_NMSOCK(sock));
switch (sock->type) {
case isc_nm_udplistener:
isc__nm_udp_stoplistening(sock);
break;
case isc_nm_tcpdnslistener:
isc__nm_tcpdns_stoplistening(sock);
break;
case isc_nm_tcplistener:
isc__nm_tcp_stoplistening(sock);
break;
case isc_nm_tlslistener:
isc__nm_tls_stoplistening(sock);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnslistener:
isc__nm_tlsdns_stoplistening(sock);
break;
case isc_nm_httplistener:
isc__nm_http_stoplistening(sock);
break;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
void
isc__nm_connectcb(isc_nmsocket_t *sock, isc__nm_uvreq_t *uvreq,
isc_result_t eresult, bool async) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
if (!async) {
isc__netievent_connectcb_t ievent = { .sock = sock,
.req = uvreq,
.result = eresult };
isc__nm_async_connectcb(NULL, (isc__netievent_t *)&ievent);
} else {
isc__netievent_connectcb_t *ievent =
isc__nm_get_netievent_connectcb(sock->mgr, sock, uvreq,
eresult);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
}
void
isc__nm_async_connectcb(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_connectcb_t *ievent = (isc__netievent_connectcb_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc__nm_uvreq_t *uvreq = ievent->req;
isc_result_t eresult = ievent->result;
UNUSED(worker);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
REQUIRE(ievent->sock->tid == isc_nm_tid());
REQUIRE(uvreq->cb.connect != NULL);
uvreq->cb.connect(uvreq->handle, eresult, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
}
void
isc__nm_readcb(isc_nmsocket_t *sock, isc__nm_uvreq_t *uvreq,
isc_result_t eresult) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
if (eresult == ISC_R_SUCCESS || eresult == ISC_R_TIMEDOUT) {
isc__netievent_readcb_t ievent = { .sock = sock,
.req = uvreq,
.result = eresult };
isc__nm_async_readcb(NULL, (isc__netievent_t *)&ievent);
} else {
isc__netievent_readcb_t *ievent = isc__nm_get_netievent_readcb(
sock->mgr, sock, uvreq, eresult);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
}
void
isc__nm_async_readcb(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_readcb_t *ievent = (isc__netievent_readcb_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc__nm_uvreq_t *uvreq = ievent->req;
isc_result_t eresult = ievent->result;
isc_region_t region = { .base = (unsigned char *)uvreq->uvbuf.base,
.length = uvreq->uvbuf.len };
UNUSED(worker);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
REQUIRE(sock->tid == isc_nm_tid());
uvreq->cb.recv(uvreq->handle, eresult, &region, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
}
void
isc__nm_sendcb(isc_nmsocket_t *sock, isc__nm_uvreq_t *uvreq,
isc_result_t eresult, bool async) {
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
if (!async) {
isc__netievent_sendcb_t ievent = { .sock = sock,
.req = uvreq,
.result = eresult };
isc__nm_async_sendcb(NULL, (isc__netievent_t *)&ievent);
return;
}
isc__netievent_sendcb_t *ievent =
isc__nm_get_netievent_sendcb(sock->mgr, sock, uvreq, eresult);
isc__nm_enqueue_ievent(&sock->mgr->workers[sock->tid],
(isc__netievent_t *)ievent);
}
void
isc__nm_async_sendcb(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_sendcb_t *ievent = (isc__netievent_sendcb_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
isc__nm_uvreq_t *uvreq = ievent->req;
isc_result_t eresult = ievent->result;
UNUSED(worker);
REQUIRE(VALID_NMSOCK(sock));
REQUIRE(VALID_UVREQ(uvreq));
REQUIRE(VALID_NMHANDLE(uvreq->handle));
REQUIRE(sock->tid == isc_nm_tid());
uvreq->cb.send(uvreq->handle, eresult, uvreq->cbarg);
isc__nm_uvreq_put(&uvreq, sock);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
static void
isc__nm_async_close(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_close_t *ievent = (isc__netievent_close_t *)ev0;
isc_nmsocket_t *sock = ievent->sock;
REQUIRE(VALID_NMSOCK(ievent->sock));
REQUIRE(sock->tid == isc_nm_tid());
REQUIRE(sock->closehandle_cb != NULL);
UNUSED(worker);
ievent->sock->closehandle_cb(sock);
}
void
isc__nm_async_detach(isc__networker_t *worker, isc__netievent_t *ev0) {
isc__netievent_detach_t *ievent = (isc__netievent_detach_t *)ev0;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
FLARG_IEVENT(ievent);
REQUIRE(VALID_NMSOCK(ievent->sock));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
REQUIRE(VALID_NMHANDLE(ievent->handle));
REQUIRE(ievent->sock->tid == isc_nm_tid());
UNUSED(worker);
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
nmhandle_detach_cb(&ievent->handle FLARG_PASS);
}
void
isc__nmsocket_shutdown(isc_nmsocket_t *sock) {
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
REQUIRE(VALID_NMSOCK(sock));
switch (sock->type) {
case isc_nm_udpsocket:
isc__nm_udp_shutdown(sock);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tcpsocket:
isc__nm_tcp_shutdown(sock);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tcpdnssocket:
isc__nm_tcpdns_shutdown(sock);
break;
case isc_nm_tlsdnssocket:
isc__nm_tlsdns_shutdown(sock);
break;
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_udplistener:
case isc_nm_tcplistener:
case isc_nm_tcpdnslistener:
case isc_nm_tlsdnslistener:
return;
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
static void
shutdown_walk_cb(uv_handle_t *handle, void *arg) {
isc_nmsocket_t *sock = uv_handle_get_data(handle);
UNUSED(arg);
if (uv_is_closing(handle)) {
return;
}
switch (handle->type) {
case UV_UDP:
case UV_TCP:
break;
default:
return;
}
isc__nmsocket_shutdown(sock);
}
void
2020-02-13 14:44:37 -08:00
isc__nm_async_shutdown(isc__networker_t *worker, isc__netievent_t *ev0) {
UNUSED(ev0);
uv_walk(&worker->loop, shutdown_walk_cb, NULL);
}
bool
2020-02-13 14:44:37 -08:00
isc__nm_acquire_interlocked(isc_nm_t *mgr) {
LOCK(&mgr->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
bool success = atomic_compare_exchange_strong(
&mgr->interlocked, &(int){ ISC_NETMGR_NON_INTERLOCKED },
isc_nm_tid());
UNLOCK(&mgr->lock);
return (success);
}
void
2020-02-13 14:44:37 -08:00
isc__nm_drop_interlocked(isc_nm_t *mgr) {
LOCK(&mgr->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
int tid = atomic_exchange(&mgr->interlocked,
ISC_NETMGR_NON_INTERLOCKED);
INSIST(tid != ISC_NETMGR_NON_INTERLOCKED);
BROADCAST(&mgr->wkstatecond);
UNLOCK(&mgr->lock);
}
void
2020-02-13 14:44:37 -08:00
isc__nm_acquire_interlocked_force(isc_nm_t *mgr) {
LOCK(&mgr->lock);
Refactor taskmgr to run on top of netmgr This commit changes the taskmgr to run the individual tasks on the netmgr internal workers. While an effort has been put into keeping the taskmgr interface intact, couple of changes have been made: * The taskmgr has no concept of universal privileged mode - rather the tasks are either privileged or unprivileged (normal). The privileged tasks are run as a first thing when the netmgr is unpaused. There are now four different queues in in the netmgr: 1. priority queue - netievent on the priority queue are run even when the taskmgr enter exclusive mode and netmgr is paused. This is needed to properly start listening on the interfaces, free resources and resume. 2. privileged task queue - only privileged tasks are queued here and this is the first queue that gets processed when network manager is unpaused using isc_nm_resume(). All netmgr workers need to clean the privileged task queue before they all proceed normal operation. Both task queues are processed when the workers are finished. 3. task queue - only (traditional) task are scheduled here and this queue along with privileged task queues are process when the netmgr workers are finishing. This is needed to process the task shutdown events. 4. normal queue - this is the queue with netmgr events, e.g. reading, sending, callbacks and pretty much everything is processed here. * The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t) object. * The isc_nm_destroy() function now waits for indefinite time, but it will print out the active objects when in tracing mode (-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been made a little bit more asynchronous and it might take longer time to shutdown all the active networking connections. * Previously, the isc_nm_stoplistening() was a synchronous operation. This has been changed and the isc_nm_stoplistening() just schedules the child sockets to stop listening and exits. This was needed to prevent a deadlock as the the (traditional) tasks are now executed on the netmgr threads. * The socket selection logic in isc__nm_udp_send() was flawed, but fortunatelly, it was broken, so we never hit the problem where we created uvreq_t on a socket from nmhandle_t, but then a different socket could be picked up and then we were trying to run the send callback on a socket that had different threadid than currently running.
2021-04-09 11:31:19 +02:00
while (!atomic_compare_exchange_strong(
&mgr->interlocked, &(int){ ISC_NETMGR_NON_INTERLOCKED },
isc_nm_tid()))
2020-02-13 14:44:37 -08:00
{
WAIT(&mgr->wkstatecond, &mgr->lock);
}
UNLOCK(&mgr->lock);
}
void
2020-02-13 14:44:37 -08:00
isc_nm_setstats(isc_nm_t *mgr, isc_stats_t *stats) {
REQUIRE(VALID_NM(mgr));
REQUIRE(mgr->stats == NULL);
REQUIRE(isc_stats_ncounters(stats) == isc_sockstatscounter_max);
isc_stats_attach(stats, &mgr->stats);
}
void
2020-02-13 14:44:37 -08:00
isc__nm_incstats(isc_nm_t *mgr, isc_statscounter_t counterid) {
REQUIRE(VALID_NM(mgr));
REQUIRE(counterid != -1);
if (mgr->stats != NULL) {
isc_stats_increment(mgr->stats, counterid);
}
}
void
2020-02-13 14:44:37 -08:00
isc__nm_decstats(isc_nm_t *mgr, isc_statscounter_t counterid) {
REQUIRE(VALID_NM(mgr));
REQUIRE(counterid != -1);
if (mgr->stats != NULL) {
isc_stats_decrement(mgr->stats, counterid);
}
}
isc_result_t
isc__nm_socket(int domain, int type, int protocol, uv_os_sock_t *sockp) {
#ifdef WIN32
SOCKET sock;
sock = socket(domain, type, protocol);
if (sock == INVALID_SOCKET) {
char strbuf[ISC_STRERRORSIZE];
DWORD socket_errno = WSAGetLastError();
switch (socket_errno) {
case WSAEMFILE:
case WSAENOBUFS:
return (ISC_R_NORESOURCES);
case WSAEPROTONOSUPPORT:
case WSAEPFNOSUPPORT:
case WSAEAFNOSUPPORT:
return (ISC_R_FAMILYNOSUPPORT);
default:
strerror_r(socket_errno, strbuf, sizeof(strbuf));
UNEXPECTED_ERROR(
__FILE__, __LINE__,
"socket() failed with error code %lu: %s",
socket_errno, strbuf);
return (ISC_R_UNEXPECTED);
}
}
#else
int sock = socket(domain, type, protocol);
if (sock < 0) {
return (isc_errno_toresult(errno));
}
#endif
*sockp = (uv_os_sock_t)sock;
return (ISC_R_SUCCESS);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
void
isc__nm_closesocket(uv_os_sock_t sock) {
#ifdef WIN32
closesocket(sock);
#else
close(sock);
#endif
}
#define setsockopt_on(socket, level, name) \
setsockopt(socket, level, name, &(int){ 1 }, sizeof(int))
#define setsockopt_off(socket, level, name) \
setsockopt(socket, level, name, &(int){ 1 }, sizeof(int))
isc_result_t
isc__nm_socket_freebind(uv_os_sock_t fd, sa_family_t sa_family) {
/*
* Set the IP_FREEBIND (or equivalent option) on the uv_handle.
*/
#ifdef IP_FREEBIND
UNUSED(sa_family);
if (setsockopt_on(fd, IPPROTO_IP, IP_FREEBIND) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#elif defined(IP_BINDANY) || defined(IPV6_BINDANY)
if (sa_family == AF_INET) {
#if defined(IP_BINDANY)
if (setsockopt_on(fd, IPPROTO_IP, IP_BINDANY) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#endif
} else if (sa_family == AF_INET6) {
#if defined(IPV6_BINDANY)
if (setsockopt_on(fd, IPPROTO_IPV6, IPV6_BINDANY) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#endif
}
return (ISC_R_NOTIMPLEMENTED);
#elif defined(SO_BINDANY)
UNUSED(sa_family);
if (setsockopt_on(fd, SOL_SOCKET, SO_BINDANY) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#else
UNUSED(fd);
UNUSED(sa_family);
return (ISC_R_NOTIMPLEMENTED);
#endif
}
isc_result_t
isc__nm_socket_reuse(uv_os_sock_t fd) {
/*
* Generally, the SO_REUSEADDR socket option allows reuse of
* local addresses.
*
* On the BSDs, SO_REUSEPORT implies SO_REUSEADDR but with some
* additional refinements for programs that use multicast.
*
* On Linux, SO_REUSEPORT has different semantics: it _shares_ the port
* rather than steal it from the current listener, so we don't use it
* here, but rather in isc__nm_socket_reuse_lb().
*
* On Windows, it also allows a socket to forcibly bind to a port in use
* by another socket.
*/
#if defined(SO_REUSEPORT) && !defined(__linux__)
if (setsockopt_on(fd, SOL_SOCKET, SO_REUSEPORT) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#elif defined(SO_REUSEADDR)
if (setsockopt_on(fd, SOL_SOCKET, SO_REUSEADDR) == -1) {
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#else
UNUSED(fd);
return (ISC_R_NOTIMPLEMENTED);
#endif
}
isc_result_t
isc__nm_socket_reuse_lb(uv_os_sock_t fd) {
/*
* On FreeBSD 12+, SO_REUSEPORT_LB socket option allows sockets to be
* bound to an identical socket address. For UDP sockets, the use of
* this option can provide better distribution of incoming datagrams to
* multiple processes (or threads) as compared to the traditional
* technique of having multiple processes compete to receive datagrams
* on the same socket.
*
* On Linux, the same thing is achieved simply with SO_REUSEPORT.
*/
#if defined(SO_REUSEPORT_LB)
if (setsockopt_on(fd, SOL_SOCKET, SO_REUSEPORT_LB) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#elif defined(SO_REUSEPORT) && defined(__linux__)
if (setsockopt_on(fd, SOL_SOCKET, SO_REUSEPORT) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#else
UNUSED(fd);
return (ISC_R_NOTIMPLEMENTED);
#endif
}
isc_result_t
isc__nm_socket_incoming_cpu(uv_os_sock_t fd) {
#ifdef SO_INCOMING_CPU
if (setsockopt_on(fd, SOL_SOCKET, SO_INCOMING_CPU) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#else
UNUSED(fd);
#endif
return (ISC_R_NOTIMPLEMENTED);
}
isc_result_t
isc__nm_socket_dontfrag(uv_os_sock_t fd, sa_family_t sa_family) {
/*
* Set the Don't Fragment flag on IP packets
*/
if (sa_family == AF_INET6) {
#if defined(IPV6_DONTFRAG)
if (setsockopt_off(fd, IPPROTO_IPV6, IPV6_DONTFRAG) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#elif defined(IPV6_MTU_DISCOVER) && defined(IP_PMTUDISC_OMIT)
if (setsockopt(fd, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&(int){ IP_PMTUDISC_OMIT }, sizeof(int)) == -1)
{
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#elif defined(IPV6_MTU_DISCOVER) && defined(IP_PMTUDISC_DONT)
if (setsockopt(fd, IPPROTO_IPV6, IPV6_MTU_DISCOVER,
&(int){ IP_PMTUDISC_DONT }, sizeof(int)) == -1)
{
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#else
UNUSED(fd);
#endif
} else if (sa_family == AF_INET) {
#if defined(IP_DONTFRAG)
if (setsockopt_off(fd, IPPROTO_IP, IP_DONTFRAG) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#elif defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_OMIT)
if (setsockopt(fd, IPPROTO_IP, IP_MTU_DISCOVER,
&(int){ IP_PMTUDISC_OMIT }, sizeof(int)) == -1)
{
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#elif defined(IP_MTU_DISCOVER) && defined(IP_PMTUDISC_DONT)
if (setsockopt(fd, IPPROTO_IP, IP_MTU_DISCOVER,
&(int){ IP_PMTUDISC_DONT }, sizeof(int)) == -1)
{
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#else
UNUSED(fd);
#endif
} else {
return (ISC_R_FAMILYNOSUPPORT);
}
return (ISC_R_NOTIMPLEMENTED);
}
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
#if defined(_WIN32)
#define TIMEOUT_TYPE DWORD
#define TIMEOUT_DIV 1000
#define TIMEOUT_OPTNAME TCP_MAXRT
#elif defined(TCP_CONNECTIONTIMEOUT)
#define TIMEOUT_TYPE int
#define TIMEOUT_DIV 1000
#define TIMEOUT_OPTNAME TCP_CONNECTIONTIMEOUT
#elif defined(TCP_RXT_CONNDROPTIME)
#define TIMEOUT_TYPE int
#define TIMEOUT_DIV 1000
#define TIMEOUT_OPTNAME TCP_RXT_CONNDROPTIME
#elif defined(TCP_USER_TIMEOUT)
#define TIMEOUT_TYPE unsigned int
#define TIMEOUT_DIV 1
#define TIMEOUT_OPTNAME TCP_USER_TIMEOUT
#elif defined(TCP_KEEPINIT)
#define TIMEOUT_TYPE int
#define TIMEOUT_DIV 1000
#define TIMEOUT_OPTNAME TCP_KEEPINIT
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
#endif
isc_result_t
isc__nm_socket_connectiontimeout(uv_os_sock_t fd, int timeout_ms) {
#if defined(TIMEOUT_OPTNAME)
TIMEOUT_TYPE timeout = timeout_ms / TIMEOUT_DIV;
if (timeout == 0) {
timeout = 1;
}
if (setsockopt(fd, IPPROTO_TCP, TIMEOUT_OPTNAME, &timeout,
sizeof(timeout)) == -1)
{
return (ISC_R_FAILURE);
}
return (ISC_R_SUCCESS);
#else
UNUSED(fd);
UNUSED(timeout_ms);
return (ISC_R_SUCCESS);
#endif
}
isc_result_t
isc__nm_socket_tcp_nodelay(uv_os_sock_t fd) {
#ifdef TCP_NODELAY
if (setsockopt_on(fd, IPPROTO_TCP, TCP_NODELAY) == -1) {
return (ISC_R_FAILURE);
} else {
return (ISC_R_SUCCESS);
}
#else
UNUSED(fd);
return (ISC_R_SUCCESS);
#endif
}
#ifdef NETMGR_TRACE
/*
* Dump all active sockets in netmgr. We output to stderr
* as the logger might be already shut down.
*/
static const char *
nmsocket_type_totext(isc_nmsocket_type type) {
switch (type) {
case isc_nm_udpsocket:
return ("isc_nm_udpsocket");
case isc_nm_udplistener:
return ("isc_nm_udplistener");
case isc_nm_tcpsocket:
return ("isc_nm_tcpsocket");
case isc_nm_tcplistener:
return ("isc_nm_tcplistener");
case isc_nm_tcpdnslistener:
return ("isc_nm_tcpdnslistener");
case isc_nm_tcpdnssocket:
return ("isc_nm_tcpdnssocket");
case isc_nm_tlssocket:
return ("isc_nm_tlssocket");
case isc_nm_tlslistener:
return ("isc_nm_tlslistener");
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
case isc_nm_tlsdnslistener:
return ("isc_nm_tlsdnslistener");
case isc_nm_tlsdnssocket:
return ("isc_nm_tlsdnssocket");
case isc_nm_httplistener:
return ("isc_nm_httplistener");
refactor outgoing HTTP connection support - style, cleanup, and removal of unnecessary code. - combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint() into one function, renamed isc_http_endpoint(). - moved isc_nm_http_connect_send_request() into doh_test.c as a helper function; remove it from the public API. - renamed isc_http2 and isc_nm_http2 types and functions to just isc_http and isc_nm_http, for consistency with other existing names. - shortened a number of long names. - the caller is now responsible for determining the peer address. in isc_nm_httpconnect(); this eliminates the need to parse the URI and the dependency on an external resolver. - the caller is also now responsible for creating the SSL client context, for consistency with isc_nm_tlsdnsconnect(). - added setter functions for HTTP/2 ALPN. instead of setting up ALPN in isc_tlsctx_createclient(), we now have a function isc_tlsctx_enable_http2client_alpn() that can be run from isc_nm_httpconnect(). - refactored isc_nm_httprequest() into separate read and send functions. isc_nm_send() or isc_nm_read() is called on an http socket, it will be stored until a corresponding isc_nm_read() or _send() arrives; when we have both halves of the pair the HTTP request will be initiated. - isc_nm_httprequest() is renamed isc__nm_http_request() for use as an internal helper function by the DoH unit test. (eventually doh_test should be rewritten to use read and send, and this function should be removed.) - added implementations of isc__nm_tls_settimeout() and isc__nm_http_settimeout(). - increased NGHTTP2 header block length for client connections to 128K. - use isc_mem_t for internal memory allocations inside nghttp2, to help track memory leaks. - send "Cache-Control" header in requests and responses. (note: currently we try to bypass HTTP caching proxies, but ideally we should interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
2021-02-03 16:59:49 -08:00
case isc_nm_httpsocket:
return ("isc_nm_httpsocket");
default:
INSIST(0);
ISC_UNREACHABLE();
}
}
static void
nmhandle_dump(isc_nmhandle_t *handle) {
fprintf(stderr, "Active handle %p, refs %" PRIuFAST32 "\n", handle,
isc_refcount_current(&handle->references));
fprintf(stderr, "Created by:\n");
isc_backtrace_symbols_fd(handle->backtrace, handle->backtrace_size,
STDERR_FILENO);
fprintf(stderr, "\n\n");
}
static void
nmsocket_dump(isc_nmsocket_t *sock) {
isc_nmhandle_t *handle = NULL;
LOCK(&sock->lock);
fprintf(stderr, "\n=================\n");
fprintf(stderr, "Active %s socket %p, type %s, refs %" PRIuFAST32 "\n",
atomic_load(&sock->client) ? "client" : "server", sock,
nmsocket_type_totext(sock->type),
isc_refcount_current(&sock->references));
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
fprintf(stderr,
"Parent %p, listener %p, server %p, statichandle = %p\n",
sock->parent, sock->listener, sock->server, sock->statichandle);
fprintf(stderr, "Flags:%s%s%s%s%s\n",
atomic_load(&sock->active) ? " active" : "",
atomic_load(&sock->closing) ? " closing" : "",
atomic_load(&sock->destroying) ? " destroying" : "",
atomic_load(&sock->connecting) ? " connecting" : "",
Refactor netmgr and add more unit tests This is a part of the works that intends to make the netmgr stable, testable, maintainable and tested. It contains a numerous changes to the netmgr code and unfortunately, it was not possible to split this into smaller chunks as the work here needs to be committed as a complete works. NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and tcpdns.c and it should be a subject to refactoring in the future. The changes that are included in this commit are listed here (extensively, but not exclusively): * The netmgr_test unit test was split into individual tests (udp_test, tcp_test, tcpdns_test and newly added tcp_quota_test) * The udp_test and tcp_test has been extended to allow programatic failures from the libuv API. Unfortunately, we can't use cmocka mock() and will_return(), so we emulate the behaviour with #define and including the netmgr/{udp,tcp}.c source file directly. * The netievents that we put on the nm queue have variable number of members, out of these the isc_nmsocket_t and isc_nmhandle_t always needs to be attached before enqueueing the netievent_<foo> and detached after we have called the isc_nm_async_<foo> to ensure that the socket (handle) doesn't disappear between scheduling the event and actually executing the event. * Cancelling the in-flight TCP connection using libuv requires to call uv_close() on the original uv_tcp_t handle which just breaks too many assumptions we have in the netmgr code. Instead of using uv_timer for TCP connection timeouts, we use platform specific socket option. * Fix the synchronization between {nm,async}_{listentcp,tcpconnect} When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was waiting for socket to either end up with error (that path was fine) or to be listening or connected using condition variable and mutex. Several things could happen: 0. everything is ok 1. the waiting thread would miss the SIGNAL() - because the enqueued event would be processed faster than we could start WAIT()ing. In case the operation would end up with error, it would be ok, as the error variable would be unchanged. 2. the waiting thread miss the sock->{connected,listening} = `true` would be set to `false` in the tcp_{listen,connect}close_cb() as the connection would be so short lived that the socket would be closed before we could even start WAIT()ing * The tcpdns has been converted to using libuv directly. Previously, the tcpdns protocol used tcp protocol from netmgr, this proved to be very complicated to understand, fix and make changes to. The new tcpdns protocol is modeled in a similar way how tcp netmgr protocol. Closes: #2194, #2283, #2318, #2266, #2034, #1920 * The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to pass accepted TCP sockets between netthreads, but instead (similar to UDP) uses per netthread uv_loop listener. This greatly reduces the complexity as the socket is always run in the associated nm and uv loops, and we are also not touching the libuv internals. There's an unfortunate side effect though, the new code requires support for load-balanced sockets from the operating system for both UDP and TCP (see #2137). If the operating system doesn't support the load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB on FreeBSD 12+), the number of netthreads is limited to 1. * The netmgr has now two debugging #ifdefs: 1. Already existing NETMGR_TRACE prints any dangling nmsockets and nmhandles before triggering assertion failure. This options would reduce performance when enabled, but in theory, it could be enabled on low-performance systems. 2. New NETMGR_TRACE_VERBOSE option has been added that enables extensive netmgr logging that allows the software engineer to precisely track any attach/detach operations on the nmsockets and nmhandles. This is not suitable for any kind of production machine, only for debugging. * The tlsdns netmgr protocol has been split from the tcpdns and it still uses the old method of stacking the netmgr boxes on top of each other. We will have to refactor the tlsdns netmgr protocol to use the same approach - build the stack using only libuv and openssl. * Limit but not assert the tcp buffer size in tcp_alloc_cb Closes: #2061
2020-11-12 10:32:18 +01:00
sock->accepting ? " accepting" : "");
fprintf(stderr, "Created by:\n");
isc_backtrace_symbols_fd(sock->backtrace, sock->backtrace_size,
STDERR_FILENO);
fprintf(stderr, "\n");
for (handle = ISC_LIST_HEAD(sock->active_handles); handle != NULL;
handle = ISC_LIST_NEXT(handle, active_link))
{
static bool first = true;
if (first) {
fprintf(stderr, "Active handles:\n");
first = false;
}
nmhandle_dump(handle);
}
fprintf(stderr, "\n");
UNLOCK(&sock->lock);
}
void
isc__nm_dump_active(isc_nm_t *nm) {
isc_nmsocket_t *sock = NULL;
REQUIRE(VALID_NM(nm));
LOCK(&nm->lock);
for (sock = ISC_LIST_HEAD(nm->active_sockets); sock != NULL;
sock = ISC_LIST_NEXT(sock, active_link))
{
static bool first = true;
if (first) {
fprintf(stderr, "Outstanding sockets\n");
first = false;
}
nmsocket_dump(sock);
}
UNLOCK(&nm->lock);
}
#endif