2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-24 19:18:50 +00:00
bind/lib/dns/tests/rdata_test.c

2594 lines
78 KiB
C
Raw Normal View History

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#if HAVE_CMOCKA
Include <sched.h> where necessary for musl libc All unit tests define the UNIT_TESTING macro, which causes <cmocka.h> to replace malloc(), calloc(), realloc(), and free() with its own functions tracking memory allocations. In order for this not to break compilation, the system header declaring the prototypes for these standard functions must be included before <cmocka.h>. Normally, these prototypes are only present in <stdlib.h>, so we make sure it is included before <cmocka.h>. However, musl libc also defines the prototypes for calloc() and free() in <sched.h>, which is included by <pthread.h>, which is included e.g. by <isc/mutex.h>. Thus, unit tests including "dnstest.h" (which includes <isc/mem.h>, which includes <isc/mutex.h>) after <cmocka.h> will not compile with musl libc as for these programs, <sched.h> will be included after <cmocka.h>. Always including <cmocka.h> after all other header files is not a feasible solution as that causes the mock assertion macros defined in <isc/util.h> to mangle the contents of <cmocka.h>, thus breaking compilation. We cannot really use the __noreturn__ or analyzer_noreturn attributes with cmocka assertion functions because they do return if the tested condition is true. The problem is that what BIND unit tests do is incompatible with Clang Static Analyzer's assumptions: since we use cmocka, our custom assertion handlers are present in a shared library (i.e. it is the cmocka library that checks the assertion condition, not a macro in unit test code). Redefining cmocka's assertion macros in <isc/util.h> is an ugly hack to overcome that problem - unfortunately, this is the only way we can think of to make Clang Static Analyzer properly process unit test code. Giving up on Clang Static Analyzer being able to properly process unit test code is not a satisfactory solution. Undefining _GNU_SOURCE for unit test code could work around the problem (musl libc's <sched.h> only defines the prototypes for calloc() and free() when _GNU_SOURCE is defined), but doing that could introduce discrepancies for unit tests including entire *.c files, so it is also not a good solution. All in all, including <sched.h> before <cmocka.h> for all affected unit tests seems to be the most benign way of working around this musl libc quirk. While quite an ugly solution, it achieves our goals here, which are to keep the benefit of proper static analysis of unit test code and to fix compilation against musl libc.
2019-07-30 21:08:40 +02:00
#include <sched.h> /* IWYU pragma: keep */
#include <setjmp.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define UNIT_TESTING
#include <cmocka.h>
#include <isc/hex.h>
#include <isc/lex.h>
#include <isc/print.h>
#include <isc/stdio.h>
#include <isc/types.h>
#include <isc/util.h>
#include <dns/rdata.h>
#include "dnstest.h"
2019-02-28 18:04:02 +11:00
static bool debug = false;
/*
* An array of these structures is passed to compare_ok().
*/
struct compare_ok {
const char *text1; /* text passed to fromtext_*() */
const char *text2; /* text passed to fromtext_*() */
int answer; /* -1, 0, 1 */
int lineno; /* source line defining this RDATA */
};
typedef struct compare_ok compare_ok_t;
static int
_setup(void **state)
{
isc_result_t result;
UNUSED(state);
result = dns_test_begin(NULL, false);
assert_int_equal(result, ISC_R_SUCCESS);
return (0);
}
static int
_teardown(void **state)
{
UNUSED(state);
dns_test_end();
return (0);
}
/*
* An array of these structures is passed to check_text_ok().
*/
typedef struct text_ok {
const char *text_in; /* text passed to fromtext_*() */
const char *text_out; /* text expected from totext_*();
NULL indicates text_in is invalid */
} text_ok_t;
/*
* An array of these structures is passed to check_wire_ok().
*/
typedef struct wire_ok {
unsigned char data[512]; /* RDATA in wire format */
size_t len; /* octets of data to parse */
bool ok; /* is this RDATA valid? */
} wire_ok_t;
#define COMPARE(r1, r2, answer) \
{ \
r1, r2, answer, __LINE__ \
}
#define COMPARE_SENTINEL() \
{ \
NULL, NULL, 0, __LINE__ \
}
#define TEXT_VALID_CHANGED(data_in, data_out) \
{ \
data_in, data_out \
}
#define TEXT_VALID(data) \
{ \
data, data \
}
#define TEXT_INVALID(data) \
{ \
data, NULL \
}
#define TEXT_SENTINEL() TEXT_INVALID(NULL)
#define VARGC(...) (sizeof((unsigned char[]){ __VA_ARGS__ }))
#define WIRE_TEST(ok, ...) \
{ \
{ __VA_ARGS__ }, VARGC(__VA_ARGS__), ok \
}
#define WIRE_VALID(...) WIRE_TEST(true, __VA_ARGS__)
/*
* WIRE_INVALID() test cases must always have at least one octet specified to
* distinguish them from WIRE_SENTINEL(). Use the 'empty_ok' parameter passed
* to check_wire_ok() for indicating whether empty RDATA is allowed for a given
* RR type or not.
*/
#define WIRE_INVALID(FIRST, ...) WIRE_TEST(false, FIRST, __VA_ARGS__)
#define WIRE_SENTINEL() WIRE_TEST(false)
/*
* Call dns_rdata_fromwire() for data in 'src', which is 'srclen' octets in
* size and represents RDATA of given 'type' and 'class'. Store the resulting
* uncompressed wire form in 'dst', which is 'dstlen' octets in size, and make
* 'rdata' refer to that uncompressed wire form.
*/
static isc_result_t
wire_to_rdata(const unsigned char *src, size_t srclen, dns_rdataclass_t rdclass,
dns_rdatatype_t type, unsigned char *dst, size_t dstlen,
dns_rdata_t *rdata)
{
isc_buffer_t source, target;
dns_decompress_t dctx;
isc_result_t result;
/*
* Set up len-octet buffer pointing at data.
*/
isc_buffer_constinit(&source, src, srclen);
isc_buffer_add(&source, srclen);
isc_buffer_setactive(&source, srclen);
/*
* Initialize target buffer.
*/
isc_buffer_init(&target, dst, dstlen);
/*
* Try converting input data into uncompressed wire form.
*/
dns_decompress_init(&dctx, -1, DNS_DECOMPRESS_ANY);
result = dns_rdata_fromwire(rdata, rdclass, type, &source, &dctx, 0,
&target);
dns_decompress_invalidate(&dctx);
return (result);
}
/*
* Call dns_rdata_towire() for rdata and write to result to dst.
*/
static isc_result_t
2019-12-24 08:19:28 +11:00
rdata_towire(dns_rdata_t *rdata, unsigned char *dst, size_t dstlen,
size_t *length)
{
isc_buffer_t target;
dns_compress_t cctx;
isc_result_t result;
/*
* Initialize target buffer.
*/
isc_buffer_init(&target, dst, dstlen);
/*
* Try converting input data into uncompressed wire form.
*/
dns_compress_init(&cctx, -1, dt_mctx);
result = dns_rdata_towire(rdata, &cctx, &target);
dns_compress_invalidate(&cctx);
*length = isc_buffer_usedlength(&target);
return (result);
}
2019-12-24 08:19:28 +11:00
static isc_result_t
additionaldata_cb(void *arg, const dns_name_t *name, dns_rdatatype_t qtype)
{
2019-12-24 08:19:28 +11:00
UNUSED(arg);
UNUSED(name);
UNUSED(qtype);
return (ISC_R_SUCCESS);
}
/*
* call dns_rdata_additionaldata() for rdata.
*/
static isc_result_t
rdata_additionadata(dns_rdata_t *rdata)
{
2019-12-24 08:19:28 +11:00
return (dns_rdata_additionaldata(rdata, additionaldata_cb, NULL));
}
2019-12-24 08:43:45 +11:00
/*
* Call dns_rdata_checknames() with various owner names chosen to
* match well known forms.
*
* We are currently only checking that the calls do not trigger
* assertion failures.
*
* XXXMPA A future extention could be to record the expected
* result and the expected value of 'bad'.
*/
static void
rdata_checknames(dns_rdata_t *rdata)
{
2019-12-24 08:43:45 +11:00
dns_fixedname_t fixed, bfixed;
dns_name_t * name, *bad;
isc_result_t result;
2019-12-24 08:43:45 +11:00
name = dns_fixedname_initname(&fixed);
bad = dns_fixedname_initname(&bfixed);
(void)dns_rdata_checknames(rdata, dns_rootname, NULL);
(void)dns_rdata_checknames(rdata, dns_rootname, bad);
2019-12-24 08:43:45 +11:00
result = dns_name_fromstring(name, "example.net", 0, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
2019-12-24 08:43:45 +11:00
result = dns_name_fromstring(name, "in-addr.arpa", 0, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
2019-12-24 08:43:45 +11:00
result = dns_name_fromstring(name, "ip6.arpa", 0, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
(void)dns_rdata_checknames(rdata, name, NULL);
(void)dns_rdata_checknames(rdata, name, bad);
2019-12-24 08:43:45 +11:00
}
/*
* Test whether converting rdata to a type-specific struct and then back to
* rdata results in the same uncompressed wire form. This checks whether
* tostruct_*() and fromstruct_*() routines for given RR class and type behave
* consistently.
*
* This function is called for every correctly processed input RDATA, from both
* check_text_ok_single() and check_wire_ok_single().
*/
static void
check_struct_conversions(dns_rdata_t *rdata, size_t structsize)
{
dns_rdataclass_t rdclass = rdata->rdclass;
dns_rdatatype_t type = rdata->type;
isc_result_t result;
isc_buffer_t target;
void * rdata_struct;
char buf[1024];
rdata_struct = isc_mem_allocate(dt_mctx, structsize);
assert_non_null(rdata_struct);
/*
* Convert from uncompressed wire form into type-specific struct.
*/
result = dns_rdata_tostruct(rdata, rdata_struct, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Convert from type-specific struct into uncompressed wire form.
*/
isc_buffer_init(&target, buf, sizeof(buf));
result = dns_rdata_fromstruct(NULL, rdclass, type, rdata_struct,
&target);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure results are consistent.
*/
assert_int_equal(isc_buffer_usedlength(&target), rdata->length);
assert_memory_equal(buf, rdata->data, rdata->length);
isc_mem_free(dt_mctx, rdata_struct);
}
/*
* Check whether converting supplied text form RDATA into uncompressed wire
* form succeeds (tests fromtext_*()). If so, try converting it back into text
* form and see if it results in the original text (tests totext_*()).
*/
static void
check_text_ok_single(const text_ok_t *text_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize)
{
unsigned char buf_fromtext[1024], buf_fromwire[1024], buf_towire[1024];
dns_rdata_t rdata = DNS_RDATA_INIT, rdata2 = DNS_RDATA_INIT;
char buf_totext[1024] = { 0 };
isc_buffer_t target;
isc_result_t result;
size_t length = 0;
/*
* Try converting text form RDATA into uncompressed wire form.
*/
result = dns_test_rdatafromstring(&rdata, rdclass, type, buf_fromtext,
sizeof(buf_fromtext),
text_ok->text_in, false);
/*
* Check whether result is as expected.
*/
if (text_ok->text_out != NULL) {
2019-02-28 18:04:02 +11:00
if (debug && result != ISC_R_SUCCESS) {
fprintf(stdout, "#'%s'\n", text_ok->text_in);
}
assert_int_equal(result, ISC_R_SUCCESS);
} else {
2019-02-28 18:04:02 +11:00
if (debug && result == ISC_R_SUCCESS) {
fprintf(stdout, "#'%s'\n", text_ok->text_in);
}
assert_int_not_equal(result, ISC_R_SUCCESS);
}
/*
* If text form RDATA was not parsed correctly, performing any
* additional checks is pointless.
*/
if (result != ISC_R_SUCCESS) {
return;
}
/*
* Try converting uncompressed wire form RDATA back into text form and
* check whether the resulting text is the same as the original one.
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
result = dns_rdata_totext(&rdata, NULL, &target);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as dns_rdata_totext()
* may attempt different output formats writing into the apparently
* unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
2019-02-28 18:04:02 +11:00
if (debug && strcmp(buf_totext, text_ok->text_out) != 0) {
fprintf(stdout, "# '%s' != '%s'\n", buf_totext,
text_ok->text_out);
2019-02-28 18:04:02 +11:00
}
assert_string_equal(buf_totext, text_ok->text_out);
/*
* Ensure that fromtext_*() output is valid input for fromwire_*().
*/
result = wire_to_rdata(rdata.data, rdata.length, rdclass, type,
buf_fromwire, sizeof(buf_fromwire), &rdata2);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, rdata2.length);
assert_memory_equal(rdata.data, buf_fromwire, rdata.length);
/*
* Ensure that fromtext_*() output is valid input for towire_*().
*/
result = rdata_towire(&rdata, buf_towire, sizeof(buf_towire), &length);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, length);
assert_memory_equal(rdata.data, buf_towire, length);
2019-12-24 08:19:28 +11:00
/*
* Test that additionaldata_*() succeeded.
*/
result = rdata_additionadata(&rdata);
assert_int_equal(result, ISC_R_SUCCESS);
2019-12-24 08:43:45 +11:00
/*
* Exercise checknames_*().
*/
rdata_checknames(&rdata);
/*
* Perform two-way conversion checks between uncompressed wire form and
* type-specific struct.
*/
check_struct_conversions(&rdata, structsize);
}
/*
* Test whether converting rdata to text form and then parsing the result of
* that conversion again results in the same uncompressed wire form. This
* checks whether totext_*() output is parsable by fromtext_*() for given RR
* class and type.
*
* This function is called for every input RDATA which is successfully parsed
* by check_wire_ok_single() and whose type is not a meta-type.
*/
static void
check_text_conversions(dns_rdata_t *rdata)
{
char buf_totext[1024] = { 0 };
unsigned char buf_fromtext[1024];
isc_result_t result;
isc_buffer_t target;
dns_rdata_t rdata2 = DNS_RDATA_INIT;
/*
* Convert uncompressed wire form RDATA into text form. This
* conversion must succeed since input RDATA was successfully
* parsed by check_wire_ok_single().
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
result = dns_rdata_totext(rdata, NULL, &target);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as dns_rdata_totext()
* may attempt different output formats writing into the apparently
* unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
2019-02-28 18:04:02 +11:00
if (debug) {
fprintf(stdout, "#'%s'\n", buf_totext);
}
/*
* Try parsing text form RDATA output by dns_rdata_totext() again.
*/
result = dns_test_rdatafromstring(&rdata2, rdata->rdclass, rdata->type,
buf_fromtext, sizeof(buf_fromtext),
buf_totext, false);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata2.length, rdata->length);
assert_memory_equal(buf_fromtext, rdata->data, rdata->length);
}
/*
* Test whether converting rdata to multi-line text form and then parsing the
* result of that conversion again results in the same uncompressed wire form.
* This checks whether multi-line totext_*() output is parsable by fromtext_*()
* for given RR class and type.
*
* This function is called for every input RDATA which is successfully parsed
* by check_wire_ok_single() and whose type is not a meta-type.
*/
static void
check_multiline_text_conversions(dns_rdata_t *rdata)
{
char buf_totext[1024] = { 0 };
unsigned char buf_fromtext[1024];
isc_result_t result;
isc_buffer_t target;
dns_rdata_t rdata2 = DNS_RDATA_INIT;
unsigned int flags;
/*
* Convert uncompressed wire form RDATA into multi-line text form.
* This conversion must succeed since input RDATA was successfully
* parsed by check_wire_ok_single().
*/
isc_buffer_init(&target, buf_totext, sizeof(buf_totext));
flags = dns_master_styleflags(&dns_master_style_default);
result = dns_rdata_tofmttext(rdata, dns_rootname, flags, 80 - 32, 4,
"\n", &target);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Ensure buf_totext is properly NUL terminated as
* dns_rdata_tofmttext() may attempt different output formats
* writing into the apparently unused part of the buffer.
*/
isc_buffer_putuint8(&target, 0);
2019-02-28 18:04:02 +11:00
if (debug) {
fprintf(stdout, "#'%s'\n", buf_totext);
}
/*
* Try parsing multi-line text form RDATA output by
* dns_rdata_tofmttext() again.
*/
result = dns_test_rdatafromstring(&rdata2, rdata->rdclass, rdata->type,
buf_fromtext, sizeof(buf_fromtext),
buf_totext, false);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata2.length, rdata->length);
assert_memory_equal(buf_fromtext, rdata->data, rdata->length);
}
/*
* Test whether supplied wire form RDATA is properly handled as being either
* valid or invalid for an RR of given rdclass and type.
*/
static void
check_wire_ok_single(const wire_ok_t *wire_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize)
{
unsigned char buf[1024], buf_towire[1024];
isc_result_t result;
dns_rdata_t rdata = DNS_RDATA_INIT;
size_t length = 0;
/*
* Try converting wire data into uncompressed wire form.
*/
result = wire_to_rdata(wire_ok->data, wire_ok->len, rdclass, type, buf,
sizeof(buf), &rdata);
/*
* Check whether result is as expected.
*/
if (wire_ok->ok) {
assert_int_equal(result, ISC_R_SUCCESS);
} else {
assert_int_not_equal(result, ISC_R_SUCCESS);
}
if (result != ISC_R_SUCCESS) {
return;
}
/*
* If data was parsed correctly, perform two-way conversion checks
* between uncompressed wire form and type-specific struct.
*
* If the RR type is not a meta-type, additionally perform two-way
* conversion checks between:
*
* - uncompressed wire form and text form,
* - uncompressed wire form and multi-line text form.
*/
check_struct_conversions(&rdata, structsize);
if (!dns_rdatatype_ismeta(rdata.type)) {
check_text_conversions(&rdata);
check_multiline_text_conversions(&rdata);
}
/*
* Ensure that fromwire_*() output is valid input for towire_*().
*/
result = rdata_towire(&rdata, buf_towire, sizeof(buf_towire), &length);
assert_int_equal(result, ISC_R_SUCCESS);
assert_int_equal(rdata.length, length);
assert_memory_equal(rdata.data, buf_towire, length);
2019-12-24 08:19:28 +11:00
/*
* Test that additionaldata_*() succeeded.
*/
result = rdata_additionadata(&rdata);
assert_int_equal(result, ISC_R_SUCCESS);
2019-12-24 08:43:45 +11:00
/*
* Exercise checknames_*().
*/
rdata_checknames(&rdata);
}
/*
* Test fromtext_*() and totext_*() routines for given RR class and type for
* each text form RDATA in the supplied array. See the comment for
* check_text_ok_single() for an explanation of how exactly these routines are
* tested.
*/
static void
check_text_ok(const text_ok_t *text_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize)
{
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; text_ok[i].text_in != NULL; i++) {
check_text_ok_single(&text_ok[i], rdclass, type, structsize);
}
}
/*
* For each wire form RDATA in the supplied array, check whether it is properly
* handled as being either valid or invalid for an RR of given rdclass and
* type, then check whether trying to process a zero-length wire data buffer
* yields the expected result. This checks whether the fromwire_*() routine
* for given RR class and type behaves as expected.
*/
static void
check_wire_ok(const wire_ok_t *wire_ok, bool empty_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type, size_t structsize)
{
wire_ok_t empty_wire = WIRE_TEST(empty_ok);
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; wire_ok[i].len != 0; i++) {
check_wire_ok_single(&wire_ok[i], rdclass, type, structsize);
}
/*
* Check empty wire data.
*/
check_wire_ok_single(&empty_wire, rdclass, type, structsize);
}
/*
* Check that two records compare as expected with dns_rdata_compare().
*/
static void
check_compare_ok_single(const compare_ok_t *compare_ok,
dns_rdataclass_t rdclass, dns_rdatatype_t type)
{
dns_rdata_t rdata1 = DNS_RDATA_INIT, rdata2 = DNS_RDATA_INIT;
unsigned char buf1[1024], buf2[1024];
isc_result_t result;
int answer;
result = dns_test_rdatafromstring(&rdata1, rdclass, type, buf1,
sizeof(buf1), compare_ok->text1,
false);
if (result != ISC_R_SUCCESS) {
fail_msg("# line %d: '%s': expected success, got failure",
compare_ok->lineno, compare_ok->text1);
}
result = dns_test_rdatafromstring(&rdata2, rdclass, type, buf2,
sizeof(buf2), compare_ok->text2,
false);
if (result != ISC_R_SUCCESS) {
fail_msg("# line %d: '%s': expected success, got failure",
compare_ok->lineno, compare_ok->text2);
}
answer = dns_rdata_compare(&rdata1, &rdata2);
if (compare_ok->answer == 0 && answer != 0) {
fail_msg("# line %d: dns_rdata_compare('%s', '%s'): "
"expected equal, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer > 0) ? "greater than" : "less than");
}
if (compare_ok->answer < 0 && answer >= 0) {
fail_msg("# line %d: dns_rdata_compare('%s', '%s'): "
"expected less than, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer == 0) ? "equal" : "greater than");
}
if (compare_ok->answer > 0 && answer <= 0) {
fail_msg("line %d: dns_rdata_compare('%s', '%s'): "
"expected greater than, got %s",
compare_ok->lineno, compare_ok->text1,
compare_ok->text2,
(answer == 0) ? "equal" : "less than");
}
}
/*
* Check that all the records sets in compare_ok compare as expected
* with dns_rdata_compare().
*/
static void
check_compare_ok(const compare_ok_t *compare_ok, dns_rdataclass_t rdclass,
dns_rdatatype_t type)
{
size_t i;
/*
* Check all entries in the supplied array.
*/
for (i = 0; compare_ok[i].text1 != NULL; i++) {
check_compare_ok_single(&compare_ok[i], rdclass, type);
}
}
/*
* Test whether supplied sets of text form and/or wire form RDATA are handled
* as expected.
*
* The empty_ok argument denotes whether an attempt to parse a zero-length wire
* data buffer should succeed or not (it is valid for some RR types). There is
* no point in performing a similar check for empty text form RDATA, because
* dns_rdata_fromtext() returns ISC_R_UNEXPECTEDEND before calling fromtext_*()
* for the given RR class and type.
*/
static void
check_rdata(const text_ok_t *text_ok, const wire_ok_t *wire_ok,
const compare_ok_t *compare_ok, bool empty_ok,
dns_rdataclass_t rdclass, dns_rdatatype_t type, size_t structsize)
{
if (text_ok != NULL) {
check_text_ok(text_ok, rdclass, type, structsize);
}
if (wire_ok != NULL) {
check_wire_ok(wire_ok, empty_ok, rdclass, type, structsize);
}
if (compare_ok != NULL) {
check_compare_ok(compare_ok, rdclass, type);
}
}
/*
* Common tests for RR types based on KEY that require key data:
*
* - CDNSKEY (RFC 7344)
* - DNSKEY (RFC 4034)
* - RKEY (draft-reid-dnsext-rkey-00)
*/
static void
key_required(void **state, dns_rdatatype_t type, size_t size)
{
wire_ok_t wire_ok[] = { /*
* RDATA must be at least 5 octets in size:
*
* - 2 octets for Flags,
* - 1 octet for Protocol,
* - 1 octet for Algorithm,
* - Public Key must not be empty.
*
* RFC 2535 section 3.1.2 allows the Public Key
* to be empty if bits 0-1 of Flags are both
* set, but that only applies to KEY records:
* for the RR types tested here, the Public Key
* must not be empty.
*/
WIRE_INVALID(0x00),
WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_INVALID(0xc0, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, wire_ok, NULL, false, dns_rdataclass_in, type, size);
}
/* APL RDATA manipulations */
static void
apl(void **state)
{
text_ok_t text_ok[] = {
/* empty list */
TEXT_VALID(""),
/* min,max prefix IPv4 */
TEXT_VALID("1:0.0.0.0/0"), TEXT_VALID("1:127.0.0.1/32"),
/* min,max prefix IPv6 */
TEXT_VALID("2:::/0"), TEXT_VALID("2:::1/128"),
/* negated */
TEXT_VALID("!1:0.0.0.0/0"), TEXT_VALID("!1:127.0.0.1/32"),
TEXT_VALID("!2:::/0"), TEXT_VALID("!2:::1/128"),
/* bits set after prefix length - not disallowed */
TEXT_VALID("1:127.0.0.0/0"), TEXT_VALID("2:8000::/0"),
/* multiple */
TEXT_VALID("1:0.0.0.0/0 1:127.0.0.1/32"),
TEXT_VALID("1:0.0.0.0/0 !1:127.0.0.1/32"),
/* family 0, prefix 0, positive */
TEXT_VALID("\\# 4 00000000"),
/* family 0, prefix 0, negative */
TEXT_VALID("\\# 4 00000080"),
/* prefix too long */
TEXT_INVALID("1:0.0.0.0/33"), TEXT_INVALID("2:::/129"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = { /* zero length */
WIRE_VALID(),
/* prefix too big IPv4 */
WIRE_INVALID(0x00, 0x01, 33U, 0x00),
/* prefix too big IPv6 */
WIRE_INVALID(0x00, 0x02, 129U, 0x00),
/* trailing zero octet in afdpart */
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, true, dns_rdataclass_in,
dns_rdatatype_apl, sizeof(dns_rdata_in_apl_t));
}
/*
* http://broadband-forum.org/ftp/pub/approved-specs/af-saa-0069.000.pdf
*
* ATMA RRs have the following RDATA format:
*
* 1 1 1 1 1 1
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | FORMAT | |
* +--+--+--+--+--+--+--+--+ |
* / ADDRESS /
* | |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* The fields have the following meaning:
*
* * FORMAT: One octet that indicates the format of ADDRESS. The two
* possible values for FORMAT are value 0 indicating ATM End System Address
* (AESA) format and value 1 indicating E.164 format.
*
* * ADDRESS: Variable length string of octets containing the ATM address of
* the node to which this RR pertains.
*
* When the format value is 0, indicating that the address is in AESA format,
* the address is coded as described in ISO 8348/AD 2 using the preferred
* binary encoding of the ISO NSAP format. When the format value is 1,
* indicating that the address is in E.164 format, the Address/Number Digits
* appear in the order in which they would be entered on a numeric keypad.
* Digits are coded in IA5 characters with the leftmost bit of each digit set
* to 0. This ATM address appears in ATM End System Address Octets field (AESA
* format) or the Address/Number Digits field (E.164 format) of the Called
* party number information element [ATMUNI3.1]. Subaddress information is
* intentionally not included because E.164 subaddress information is used for
* routing.
*
* ATMA RRs cause no additional section processing.
*/
static void
atma(void **state)
{
text_ok_t text_ok[] = { TEXT_VALID("00"),
TEXT_VALID_CHANGED("0.0", "00"),
/*
* multiple consecutive periods
*/
TEXT_INVALID("0..0"),
/*
* trailing period
*/
TEXT_INVALID("00."),
/*
* leading period
*/
TEXT_INVALID(".00"),
/*
* Not full octets.
*/
TEXT_INVALID("000"),
/*
* E.164
*/
TEXT_VALID("+61200000000"),
/*
* E.164 with periods
*/
TEXT_VALID_CHANGED("+61.2.0000.0000", "+6120000"
"0000"),
/*
* E.164 with period at end
*/
TEXT_INVALID("+61200000000."),
/*
* E.164 with multiple consecutive periods
*/
TEXT_INVALID("+612..00000000"),
/*
* E.164 with period before the leading digit.
*/
TEXT_INVALID("+.61200000000"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
2018-10-24 16:34:40 +11:00
wire_ok_t wire_ok[] = {
/*
* Too short.
*/
WIRE_INVALID(0x00), WIRE_INVALID(0x01),
2018-10-24 16:34:40 +11:00
/*
* all digits
*/
WIRE_VALID(0x01, '6', '1', '2', '0', '0', '0'),
/*
* non digit
*/
WIRE_INVALID(0x01, '+', '6', '1', '2', '0', '0', '0'),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
2018-10-24 16:34:40 +11:00
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
2018-10-24 16:34:40 +11:00
dns_rdatatype_atma, sizeof(dns_rdata_in_atma_t));
}
2019-02-08 13:41:22 +11:00
/* AMTRELAY RDATA manipulations */
2019-02-07 18:31:03 +11:00
static void
amtrelay(void **state)
{
2019-02-07 18:31:03 +11:00
text_ok_t text_ok[] = {
TEXT_INVALID(""), TEXT_INVALID("0"), TEXT_INVALID("0 0"),
2019-02-07 18:31:03 +11:00
/* gatway type 0 */
TEXT_VALID("0 0 0"), TEXT_VALID("0 1 0"),
TEXT_INVALID("0 2 0"), /* discovery out of range */
TEXT_VALID("255 1 0"), /* max precendence */
TEXT_INVALID("256 1 0"), /* precedence out of range */
2019-02-07 18:31:03 +11:00
/* IPv4 gateway */
TEXT_INVALID("0 0 1"), /* no addresss */
2019-02-07 18:31:03 +11:00
TEXT_VALID("0 0 1 0.0.0.0"),
TEXT_INVALID("0 0 1 0.0.0.0 x"), /* extra */
TEXT_INVALID("0 0 1 0.0.0.0.0"), /* bad addresss */
TEXT_INVALID("0 0 1 ::"), /* bad addresss */
TEXT_INVALID("0 0 1 ."), /* bad addresss */
2019-02-07 18:31:03 +11:00
/* IPv6 gateway */
TEXT_INVALID("0 0 2"), /* no addresss */
TEXT_VALID("0 0 2 ::"), TEXT_INVALID("0 0 2 :: xx"), /* extra */
TEXT_INVALID("0 0 2 0.0.0.0"), /* bad addresss */
TEXT_INVALID("0 0 2 ."), /* bad addresss */
2019-02-07 18:31:03 +11:00
/* hostname gateway */
TEXT_INVALID("0 0 3"), /* no name */
2019-02-07 18:31:03 +11:00
/* IPv4 is a valid name */
TEXT_VALID_CHANGED("0 0 3 0.0.0.0", "0 0 3 0.0.0.0."),
/* IPv6 is a valid name */
TEXT_VALID_CHANGED("0 0 3 ::", "0 0 3 ::."),
TEXT_VALID_CHANGED("0 0 3 example", "0 0 3 example."),
TEXT_VALID("0 0 3 example."),
TEXT_INVALID("0 0 3 example. x"), /* extra */
/* unknown gateway */
TEXT_VALID("\\# 2 0004"), TEXT_VALID("\\# 2 0084"),
TEXT_VALID("\\# 2 007F"), TEXT_VALID("\\# 3 000400"),
TEXT_VALID("\\# 3 008400"), TEXT_VALID("\\# 3 00FF00"),
2019-02-07 18:31:03 +11:00
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
WIRE_INVALID(0x00), WIRE_VALID(0x00, 0x00),
WIRE_VALID(0x00, 0x80), WIRE_INVALID(0x00, 0x00, 0x00),
2019-02-07 18:31:03 +11:00
WIRE_INVALID(0x00, 0x80, 0x00),
WIRE_INVALID(0x00, 0x01), WIRE_INVALID(0x00, 0x01, 0x00),
2019-02-07 18:31:03 +11:00
WIRE_INVALID(0x00, 0x01, 0x00, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x01, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x02), WIRE_INVALID(0x00, 0x02, 0x00),
WIRE_VALID(0x00, 0x02, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06,
0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13, 0x14,
0x15),
WIRE_INVALID(0x00, 0x02, 0x00, 0x01, 0x02, 0x03, 0x04, 0x05,
0x06, 0x07, 0x08, 0x09, 0x10, 0x11, 0x12, 0x13,
0x14, 0x15, 0x16),
2019-02-07 18:31:03 +11:00
WIRE_INVALID(0x00, 0x03), WIRE_VALID(0x00, 0x03, 0x00),
WIRE_INVALID(0x00, 0x03, 0x00, 0x00), /* extra */
2019-02-07 18:31:03 +11:00
WIRE_VALID(0x00, 0x04), WIRE_VALID(0x00, 0x04, 0x00),
2019-02-07 18:31:03 +11:00
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
2019-02-08 13:41:22 +11:00
dns_rdatatype_amtrelay, sizeof(dns_rdata_amtrelay_t));
2019-02-07 18:31:03 +11:00
}
static void
cdnskey(void **state)
{
key_required(state, dns_rdatatype_cdnskey, sizeof(dns_rdata_cdnskey_t));
}
/*
* CSYNC tests.
*
* RFC 7477:
*
* 2.1. The CSYNC Resource Record Format
*
* 2.1.1. The CSYNC Resource Record Wire Format
*
* The CSYNC RDATA consists of the following fields:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | SOA Serial |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Flags | Type Bit Map /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Map (continued) /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 2.1.1.1. The SOA Serial Field
*
* The SOA Serial field contains a copy of the 32-bit SOA serial number
* from the child zone. If the soaminimum flag is set, parental agents
* querying children's authoritative servers MUST NOT act on data from
* zones advertising an SOA serial number less than this value. See
* [RFC1982] for properly implementing "less than" logic. If the
* soaminimum flag is not set, parental agents MUST ignore the value in
* the SOA Serial field. Clients can set the field to any value if the
* soaminimum flag is unset, such as the number zero.
*
* (...)
*
* 2.1.1.2. The Flags Field
*
* The Flags field contains 16 bits of boolean flags that define
* operations that affect the processing of the CSYNC record. The flags
* defined in this document are as follows:
*
* 0x00 0x01: "immediate"
*
* 0x00 0x02: "soaminimum"
*
* The definitions for how the flags are to be used can be found in
* Section 3.
*
* The remaining flags are reserved for use by future specifications.
* Undefined flags MUST be set to 0 by CSYNC publishers. Parental
* agents MUST NOT process a CSYNC record if it contains a 1 value for a
* flag that is unknown to or unsupported by the parental agent.
*
* 2.1.1.2.1. The Type Bit Map Field
*
* The Type Bit Map field indicates the record types to be processed by
* the parental agent, according to the procedures in Section 3. The
* Type Bit Map field is encoded in the same way as the Type Bit Map
* field of the NSEC record, described in [RFC4034], Section 4.1.2. If
* a bit has been set that a parental agent implementation does not
* understand, the parental agent MUST NOT act upon the record.
* Specifically, a parental agent must not simply copy the data, and it
* must understand the semantics associated with a bit in the Type Bit
* Map field that has been set to 1.
*/
static void
csync(void **state)
{
text_ok_t text_ok[] = { TEXT_INVALID(""),
TEXT_INVALID("0"),
TEXT_VALID("0 0"),
TEXT_VALID("0 0 A"),
TEXT_VALID("0 0 NS"),
TEXT_VALID("0 0 AAAA"),
TEXT_VALID("0 0 A AAAA"),
TEXT_VALID("0 0 A NS AAAA"),
TEXT_INVALID("0 0 A NS AAAA BOGUS"),
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = {
/*
* Short.
*/
WIRE_INVALID(0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Serial + flags only.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Bad type map.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Bad type map.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Good type map.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
0x02),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_csync, sizeof(dns_rdata_csync_t));
}
static void
dnskey(void **state)
{
key_required(state, dns_rdatatype_dnskey, sizeof(dns_rdata_dnskey_t));
}
/*
* DOA tests.
*
* draft-durand-doa-over-dns-03:
*
* 3.2. DOA RDATA Wire Format
*
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | |
* | DOA-ENTERPRISE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | |
* | DOA-TYPE |
* | |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | DOA-LOCATION | DOA-MEDIA-TYPE /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 10: / /
* / DOA-MEDIA-TYPE (continued) /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* / /
* / DOA-DATA /
* / /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* DOA-ENTERPRISE: a 32-bit unsigned integer in network order.
*
* DOA-TYPE: a 32-bit unsigned integer in network order.
*
* DOA-LOCATION: an 8-bit unsigned integer.
*
* DOA-MEDIA-TYPE: A <character-string> (see [RFC1035]). The first
* octet of the <character-string> contains the number of characters to
* follow.
*
* DOA-DATA: A variable length blob of binary data. The length of the
* DOA-DATA is not contained within the wire format of the RR and has to
* be computed from the RDLENGTH of the entire RR once other fields have
* been taken into account.
*
* 3.3. DOA RDATA Presentation Format
*
* The DOA-ENTERPRISE field is presented as an unsigned 32-bit decimal
* integer with range 0 - 4,294,967,295.
*
* The DOA-TYPE field is presented as an unsigned 32-bit decimal integer
* with range 0 - 4,294,967,295.
*
* The DOA-LOCATION field is presented as an unsigned 8-bit decimal
* integer with range 0 - 255.
*
* The DOA-MEDIA-TYPE field is presented as a single <character-string>.
*
* The DOA-DATA is presented as Base64 encoded data [RFC4648] unless the
* DOA-DATA is empty in which case it is presented as a single dash
* character ("-", ASCII 45). White space is permitted within Base64
* data.
*/
static void
doa(void **state)
{
text_ok_t text_ok[] = {
/*
* Valid, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" Zm9v"),
/*
* Valid, non-empty DOA-DATA with whitespace in between.
*/
TEXT_VALID_CHANGED("0 0 1 \"text/plain\" Zm 9v", "0 0 1 "
"\"text/"
"plain\" "
"Zm9v"),
/*
* Valid, unquoted DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID_CHANGED("0 0 1 text/plain Zm9v", "0 0 1 "
"\"text/plain\" "
"Zm9v"),
/*
* Invalid, quoted non-empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"Zm9v\""),
/*
* Valid, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"text/plain\" -"),
/*
* Invalid, quoted empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\" \"-\""),
/*
* Invalid, missing "-" in empty DOA-DATA.
*/
TEXT_INVALID("0 0 1 \"text/plain\""),
/*
* Valid, undefined DOA-LOCATION.
*/
TEXT_VALID("0 0 100 \"text/plain\" Zm9v"),
/*
* Invalid, DOA-LOCATION too big.
*/
TEXT_INVALID("0 0 256 \"text/plain\" ZM9v"),
/*
* Valid, empty DOA-MEDIA-TYPE, non-empty DOA-DATA.
*/
TEXT_VALID("0 0 2 \"\" aHR0cHM6Ly93d3cuaXNjLm9yZy8="),
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
TEXT_VALID("0 0 1 \"\" -"),
/*
* Valid, DOA-MEDIA-TYPE with a space.
*/
TEXT_VALID("0 0 1 \"plain text\" Zm9v"),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
TEXT_INVALID("1234567890 1234567890 1"),
/*
* Valid, DOA-DATA over 255 octets.
*/
TEXT_VALID("1234567890 1234567890 1 \"image/gif\" "
"R0lGODlhKAAZAOMCAGZmZgBmmf///zOZzMz//5nM/zNmmWbM"
"/5nMzMzMzACZ/////////////////////yH5BAEKAA8ALAAA"
"AAAoABkAAATH8IFJK5U2a4337F5ogRkpnoCJrly7PrCKyh8c"
"3HgAhzT35MDbbtO7/IJIHbGiOiaTxVTpSVWWLqNq1UVyapNS"
"1wd3OAxug0LhnCubcVhsxysQnOt4ATpvvzHlFzl1AwODhWeF"
"AgRpen5/UhheAYMFdUB4SFcpGEGGdQeCAqBBLTuSk30EeXd9"
"pEsAbKGxjHqDSE0Sp6ixN4N1BJmbc7lIhmsBich1awPAjkY1"
"SZR8bJWrz382SGqIBQQFQd4IsUTaX+ceuudPEQA7"),
/*
* Invalid, bad Base64 in DOA-DATA.
*/
TEXT_INVALID("1234567890 1234567890 1 \"image/gif\" R0lGODl"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Valid, empty DOA-MEDIA-TYPE, empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x00),
/*
* Invalid, missing DOA-MEDIA-TYPE.
*/
WIRE_INVALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78,
0x01),
/*
* Invalid, malformed DOA-MEDIA-TYPE length.
*/
WIRE_INVALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78,
0x01, 0xff),
/*
* Valid, empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x03, 0x66, 0x6f, 0x6f),
/*
* Valid, non-empty DOA-DATA.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x03, 0x66, 0x6f, 0x6f, 0x62, 0x61, 0x72),
/*
* Valid, DOA-DATA over 255 octets.
*/
WIRE_VALID(0x12, 0x34, 0x56, 0x78, 0x12, 0x34, 0x56, 0x78, 0x01,
0x06, 0x62, 0x69, 0x6e, 0x61, 0x72, 0x79, 0x00, 0x66,
0x99, 0xff, 0xff, 0xff, 0x33, 0x99, 0xcc, 0xcc, 0xff,
0xff, 0x99, 0xcc, 0xff, 0x33, 0x66, 0x99, 0x66, 0xcc,
0xff, 0x99, 0xcc, 0xcc, 0xcc, 0xcc, 0xcc, 0x00, 0x99,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x21, 0xf9,
0x04, 0x01, 0x0a, 0x00, 0x0f, 0x00, 0x2c, 0x00, 0x00,
0x00, 0x00, 0x28, 0x00, 0x19, 0x00, 0x00, 0x04, 0xc7,
0xf0, 0x81, 0x49, 0x2b, 0x95, 0x36, 0x6b, 0x8d, 0xf7,
0xec, 0x5e, 0x68, 0x81, 0x19, 0x29, 0x9e, 0x80, 0x89,
0xae, 0x5c, 0xbb, 0x3e, 0xb0, 0x8a, 0xca, 0x1f, 0x1c,
0xdc, 0x78, 0x00, 0x87, 0x34, 0xf7, 0xe4, 0xc0, 0xdb,
0x6e, 0xd3, 0xbb, 0xfc, 0x82, 0x48, 0x1d, 0xb1, 0xa2,
0x3a, 0x26, 0x93, 0xc5, 0x54, 0xe9, 0x49, 0x55, 0x96,
0x2e, 0xa3, 0x6a, 0xd5, 0x45, 0x72, 0x6a, 0x93, 0x52,
0xd7, 0x07, 0x77, 0x38, 0x0c, 0x6e, 0x83, 0x42, 0xe1,
0x9c, 0x2b, 0x9b, 0x71, 0x58, 0x6c, 0xc7, 0x2b, 0x10,
0x9c, 0xeb, 0x78, 0x01, 0x3a, 0x6f, 0xbf, 0x31, 0xe5,
0x17, 0x39, 0x75, 0x03, 0x03, 0x83, 0x85, 0x67, 0x85,
0x02, 0x04, 0x69, 0x7a, 0x7e, 0x7f, 0x52, 0x18, 0x5e,
0x01, 0x83, 0x05, 0x75, 0x40, 0x78, 0x48, 0x57, 0x29,
0x18, 0x41, 0x86, 0x75, 0x07, 0x82, 0x02, 0xa0, 0x41,
0x2d, 0x3b, 0x92, 0x93, 0x7d, 0x04, 0x79, 0x77, 0x7d,
0xa4, 0x4b, 0x00, 0x6c, 0xa1, 0xb1, 0x8c, 0x7a, 0x83,
0x48, 0x4d, 0x12, 0xa7, 0xa8, 0xb1, 0x37, 0x83, 0x75,
0x04, 0x99, 0x9b, 0x73, 0xb9, 0x48, 0x86, 0x6b, 0x01,
0x89, 0xc8, 0x75, 0x6b, 0x03, 0xc0, 0x8e, 0x46, 0x35,
0x49, 0x94, 0x7c, 0x6c, 0x95, 0xab, 0xcf, 0x7f, 0x36,
0x48, 0x6a, 0x88, 0x05, 0x04, 0x05, 0x41, 0xde, 0x08,
0xb1, 0x44, 0xda, 0x5f, 0xe7, 0x1e, 0xba, 0xe7, 0x4f,
0x11, 0x00, 0x3b),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_doa, sizeof(dns_rdata_doa_t));
}
2019-02-27 15:33:37 +11:00
/*
* DS tests.
*
* RFC 4034:
*
* 5.1. DS RDATA Wire Format
*
* The RDATA for a DS RR consists of a 2 octet Key Tag field, a 1 octet
* Algorithm field, a 1 octet Digest Type field, and a Digest field.
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Key Tag | Algorithm | Digest Type |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / /
* / Digest /
* / /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 5.1.1. The Key Tag Field
*
* The Key Tag field lists the key tag of the DNSKEY RR referred to by
* the DS record, in network byte order.
*
* The Key Tag used by the DS RR is identical to the Key Tag used by
* RRSIG RRs. Appendix B describes how to compute a Key Tag.
*
* 5.1.2. The Algorithm Field
*
* The Algorithm field lists the algorithm number of the DNSKEY RR
* referred to by the DS record.
*
* The algorithm number used by the DS RR is identical to the algorithm
* number used by RRSIG and DNSKEY RRs. Appendix A.1 lists the
* algorithm number types.
*
* 5.1.3. The Digest Type Field
*
* The DS RR refers to a DNSKEY RR by including a digest of that DNSKEY
* RR. The Digest Type field identifies the algorithm used to construct
* the digest. Appendix A.2 lists the possible digest algorithm types.
*
* 5.1.4. The Digest Field
*
* The DS record refers to a DNSKEY RR by including a digest of that
* DNSKEY RR.
*
* The digest is calculated by concatenating the canonical form of the
* fully qualified owner name of the DNSKEY RR with the DNSKEY RDATA,
* and then applying the digest algorithm.
*
* digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
*
* "|" denotes concatenation
*
* DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
*
* The size of the digest may vary depending on the digest algorithm and
* DNSKEY RR size. As of the time of this writing, the only defined
* digest algorithm is SHA-1, which produces a 20 octet digest.
*/
static void
ds(void **state)
{
2019-02-27 15:33:37 +11:00
text_ok_t text_ok[] = {
/*
* Invalid, empty record.
*/
TEXT_INVALID(""),
/*
* Invalid, no algorithm.
*/
TEXT_INVALID("0"),
/*
* Invalid, no digest type.
*/
TEXT_INVALID("0 0"),
/*
* Invalid, no digest.
*/
TEXT_INVALID("0 0 0"),
/*
* Valid, 1-octet digest for a reserved digest type.
*/
TEXT_VALID("0 0 0 00"),
/*
* Invalid, short SHA-1 digest.
*/
TEXT_INVALID("0 0 1 00"),
TEXT_INVALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B"),
/*
* Valid, 20-octet SHA-1 digest.
*/
TEXT_VALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B6A"),
/*
* Invalid, excessively long SHA-1 digest.
*/
TEXT_INVALID("0 0 1 4FDCE83016EDD29077621FE568F8DADDB5809B"
"6A00"),
/*
* Invalid, short SHA-256 digest.
*/
TEXT_INVALID("0 0 2 00"),
TEXT_INVALID("0 0 2 D001BD422FFDA9B745425B71DC17D007E69186"
"9BD59C5F237D9BF85434C313"),
/*
* Valid, 32-octet SHA-256 digest.
*/
TEXT_VALID_CHANGED("0 0 2 "
"D001BD422FFDA9B745425B71DC17D007E691869B"
"D59C5F237D9BF85434C3133F",
"0 0 2 "
"D001BD422FFDA9B745425B71DC17D007E691869B"
"D59C5F237D9BF854 34C3133F"),
2019-02-27 15:33:37 +11:00
/*
* Invalid, excessively long SHA-256 digest.
*/
TEXT_INVALID("0 0 2 D001BD422FFDA9B745425B71DC17D007E69186"
"9BD59C5F237D9BF85434C3133F00"),
/*
* Valid, GOST is no longer supported, hence no length checks.
*/
TEXT_VALID("0 0 3 00"),
/*
* Invalid, short SHA-384 digest.
*/
TEXT_INVALID("0 0 4 00"),
TEXT_INVALID("0 0 4 AC748D6C5AA652904A8763D64B7DFFFFA98152"
"BE12128D238BEBB4814B648F5A841E15CAA2DE348891"
"A37A699F65E5"),
/*
* Valid, 48-octet SHA-384 digest.
*/
TEXT_VALID_CHANGED("0 0 4 "
"AC748D6C5AA652904A8763D64B7DFFFFA98152BE"
"12128D238BEBB4814B648F5A841E15CAA2DE348891A"
"37A"
"699F65E54D",
"0 0 4 "
"AC748D6C5AA652904A8763D64B7DFFFFA98152BE"
"12128D238BEBB481 "
"4B648F5A841E15CAA2DE348891A37A"
"699F65E54D"),
2019-02-27 15:33:37 +11:00
/*
* Invalid, excessively long SHA-384 digest.
*/
TEXT_INVALID("0 0 4 AC748D6C5AA652904A8763D64B7DFFFFA98152"
"BE12128D238BEBB4814B648F5A841E15CAA2DE348891"
"A37A699F65E54D00"),
/*
* Valid, 1-octet digest for an unassigned digest type.
*/
TEXT_VALID("0 0 5 00"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = {
/*
* Invalid, truncated key tag.
*/
WIRE_INVALID(0x00),
/*
* Invalid, no algorithm.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Invalid, no digest type.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Invalid, no digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Valid, 1-octet digest for a reserved digest type.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Invalid, short SHA-1 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30,
0x16, 0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5,
0x68, 0xF8, 0xDA, 0xDD, 0xB5, 0x80, 0x9B),
/*
* Valid, 20-octet SHA-1 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30, 0x16,
0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5, 0x68, 0xF8,
0xDA, 0xDD, 0xB5, 0x80, 0x9B, 0x6A),
2019-02-27 15:33:37 +11:00
/*
* Invalid, excessively long SHA-1 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x01, 0x4F, 0xDC, 0xE8, 0x30,
0x16, 0xED, 0xD2, 0x90, 0x77, 0x62, 0x1F, 0xE5,
0x68, 0xF8, 0xDA, 0xDD, 0xB5, 0x80, 0x9B, 0x6A,
0x00),
/*
* Invalid, short SHA-256 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42,
0x2F, 0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71,
0xDC, 0x17, 0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B,
0xD5, 0x9C, 0x5F, 0x23, 0x7D, 0x9B, 0xF8, 0x54,
0x34, 0xC3, 0x13),
/*
* Valid, 32-octet SHA-256 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42, 0x2F,
0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71, 0xDC, 0x17,
0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B, 0xD5, 0x9C, 0x5F,
0x23, 0x7D, 0x9B, 0xF8, 0x54, 0x34, 0xC3, 0x13,
0x3F),
2019-02-27 15:33:37 +11:00
/*
* Invalid, excessively long SHA-256 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x02, 0xD0, 0x01, 0xBD, 0x42,
0x2F, 0xFD, 0xA9, 0xB7, 0x45, 0x42, 0x5B, 0x71,
0xDC, 0x17, 0xD0, 0x07, 0xE6, 0x91, 0x86, 0x9B,
0xD5, 0x9C, 0x5F, 0x23, 0x7D, 0x9B, 0xF8, 0x54,
0x34, 0xC3, 0x13, 0x3F, 0x00),
/*
* Valid, GOST is no longer supported, hence no length checks.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x03, 0x00),
/*
* Invalid, short SHA-384 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C,
0x5A, 0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6,
0x4B, 0x7D, 0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE,
0x12, 0x12, 0x8D, 0x23, 0x8B, 0xEB, 0xB4, 0x81,
0x4B, 0x64, 0x8F, 0x5A, 0x84, 0x1E, 0x15, 0xCA,
0xA2, 0xDE, 0x34, 0x88, 0x91, 0xA3, 0x7A, 0x69,
0x9F, 0x65, 0xE5),
/*
* Valid, 48-octet SHA-384 digest.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C, 0x5A,
0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6, 0x4B, 0x7D,
0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE, 0x12, 0x12, 0x8D,
0x23, 0x8B, 0xEB, 0xB4, 0x81, 0x4B, 0x64, 0x8F, 0x5A,
0x84, 0x1E, 0x15, 0xCA, 0xA2, 0xDE, 0x34, 0x88, 0x91,
0xA3, 0x7A, 0x69, 0x9F, 0x65, 0xE5, 0x4D),
2019-02-27 15:33:37 +11:00
/*
* Invalid, excessively long SHA-384 digest.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x04, 0xAC, 0x74, 0x8D, 0x6C,
0x5A, 0xA6, 0x52, 0x90, 0x4A, 0x87, 0x63, 0xD6,
0x4B, 0x7D, 0xFF, 0xFF, 0xA9, 0x81, 0x52, 0xBE,
0x12, 0x12, 0x8D, 0x23, 0x8B, 0xEB, 0xB4, 0x81,
0x4B, 0x64, 0x8F, 0x5A, 0x84, 0x1E, 0x15, 0xCA,
0xA2, 0xDE, 0x34, 0x88, 0x91, 0xA3, 0x7A, 0x69,
0x9F, 0x65, 0xE5, 0x4D, 0x00),
WIRE_VALID(0x00, 0x00, 0x04, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_ds, sizeof(dns_rdata_ds_t));
}
/*
* EDNS Client Subnet tests.
*
* RFC 7871:
*
* 6. Option Format
*
* This protocol uses an EDNS0 [RFC6891] option to include client
* address information in DNS messages. The option is structured as
* follows:
*
* +0 (MSB) +1 (LSB)
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 0: | OPTION-CODE |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 2: | OPTION-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 4: | FAMILY |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 6: | SOURCE PREFIX-LENGTH | SCOPE PREFIX-LENGTH |
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
* 8: | ADDRESS... /
* +---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+---+
*
* o (Defined in [RFC6891]) OPTION-CODE, 2 octets, for ECS is 8 (0x00
* 0x08).
*
* o (Defined in [RFC6891]) OPTION-LENGTH, 2 octets, contains the
* length of the payload (everything after OPTION-LENGTH) in octets.
*
* o FAMILY, 2 octets, indicates the family of the address contained in
* the option, using address family codes as assigned by IANA in
* Address Family Numbers [Address_Family_Numbers].
*
* The format of the address part depends on the value of FAMILY. This
* document only defines the format for FAMILY 1 (IPv4) and FAMILY 2
* (IPv6), which are as follows:
*
* o SOURCE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS to be used for the lookup.
* In responses, it mirrors the same value as in the queries.
*
* o SCOPE PREFIX-LENGTH, an unsigned octet representing the leftmost
* number of significant bits of ADDRESS that the response covers.
* In queries, it MUST be set to 0.
*
* o ADDRESS, variable number of octets, contains either an IPv4 or
* IPv6 address, depending on FAMILY, which MUST be truncated to the
* number of bits indicated by the SOURCE PREFIX-LENGTH field,
* padding with 0 bits to pad to the end of the last octet needed.
*
* o A server receiving an ECS option that uses either too few or too
* many ADDRESS octets, or that has non-zero ADDRESS bits set beyond
* SOURCE PREFIX-LENGTH, SHOULD return FORMERR to reject the packet,
* as a signal to the software developer making the request to fix
* their implementation.
*
* All fields are in network byte order ("big-endian", per [RFC1700],
* Data Notation).
*/
static void
edns_client_subnet(void **state)
{
wire_ok_t wire_ok[] = {
/*
* Option code with no content.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x00),
/*
* Option code family 0, source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00),
/*
* Option code family 1 (IPv4), source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x01, 0x00, 0x00),
/*
* Option code family 2 (IPv6) , source 0, scope 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x04, 0x00, 0x02, 0x00, 0x00),
/*
* Extra octet.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x05, 0x00, 0x00, 0x00, 0x00,
0x00),
/*
* Source too long for IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 8, 0x00, 0x01, 33, 0x00, 0x00,
0x00, 0x00, 0x00),
/*
* Source too long for IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 20, 0x00, 0x02, 129, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Scope too long for IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 8, 0x00, 0x01, 0x00, 33, 0x00,
0x00, 0x00, 0x00),
/*
* Scope too long for IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 20, 0x00, 0x02, 0x00, 129, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_VALID(0x00, 0x08, 0x00, 4, 0x00, 0x00, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 5, 0x00, 0x00, 0x01, 0x00, 0x00),
/*
* When family=0, source and scope should be 0.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 5, 0x00, 0x00, 0x00, 0x01, 0x00),
/*
* Length too short for source IPv4.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 7, 0x00, 0x01, 32, 0x00, 0x00,
0x00, 0x00),
/*
* Length too short for source IPv6.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 19, 0x00, 0x02, 128, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, wire_ok, NULL, true, dns_rdataclass_in,
dns_rdatatype_opt, sizeof(dns_rdata_opt_t));
}
2018-10-25 15:27:06 +11:00
/*
* http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
*
* The RDATA portion of both the NIMLOC and EID records contains
* uninterpreted binary data. The representation in the text master file
* is an even number of hex characters (0 to 9, a to f), case is not
* significant. For readability, whitespace may be included in the value
* field and should be ignored when reading a master file.
*/
static void
eid(void **state)
{
text_ok_t text_ok[] = { TEXT_VALID("AABBCC"),
TEXT_VALID_CHANGED("AA bb cc", "AABBCC"),
TEXT_INVALID("aab"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_VALID(0x00), WIRE_VALID(0xAA, 0xBB, 0xCC),
/*
* Sentinel.
*/
WIRE_SENTINEL() };
2018-10-25 15:27:06 +11:00
UNUSED(state);
2018-10-25 15:27:06 +11:00
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
2018-10-25 15:27:06 +11:00
dns_rdatatype_eid, sizeof(dns_rdata_in_eid_t));
}
/*
* test that an oversized HIP record will be rejected
*/
static void
hip(void **state)
{
unsigned char hipwire[DNS_RDATA_MAXLENGTH] = { 0x01, 0x00, 0x00, 0x01,
0x00, 0x00, 0x04, 0x41,
0x42, 0x43, 0x44, 0x00 };
unsigned char buf[1024 * 1024];
dns_rdata_t rdata = DNS_RDATA_INIT;
isc_result_t result;
size_t i;
UNUSED(state);
/*
* Fill the rest of input buffer with compression pointers.
*/
for (i = 12; i < sizeof(hipwire) - 2; i += 2) {
hipwire[i] = 0xc0;
hipwire[i + 1] = 0x06;
}
result = wire_to_rdata(hipwire, sizeof(hipwire), dns_rdataclass_in,
dns_rdatatype_hip, buf, sizeof(buf), &rdata);
assert_int_equal(result, DNS_R_FORMERR);
}
/*
* ISDN tests.
*
* RFC 1183:
*
* 3.2. The ISDN RR
*
* The ISDN RR is defined with mnemonic ISDN and type code 20 (decimal).
*
* An ISDN (Integrated Service Digital Network) number is simply a
* telephone number. The intent of the members of the CCITT is to
* upgrade all telephone and data network service to a common service.
*
* The numbering plan (E.163/E.164) is the same as the familiar
* international plan for POTS (an un-official acronym, meaning Plain
* Old Telephone Service). In E.166, CCITT says "An E.163/E.164
* telephony subscriber may become an ISDN subscriber without a number
* change."
*
* ISDN has the following format:
*
* <owner> <ttl> <class> ISDN <ISDN-address> <sa>
*
* The <ISDN-address> field is required; <sa> is optional.
*
* <ISDN-address> identifies the ISDN number of <owner> and DDI (Direct
* Dial In) if any, as defined by E.164 [8] and E.163 [7], the ISDN and
* PSTN (Public Switched Telephone Network) numbering plan. E.163
* defines the country codes, and E.164 the form of the addresses. Its
* format in master files is a <character-string> syntactically
* identical to that used in TXT and HINFO.
*
* <sa> specifies the subaddress (SA). The format of <sa> in master
* files is a <character-string> syntactically identical to that used in
* TXT and HINFO.
*
* The format of ISDN is class insensitive. ISDN RRs cause no
* additional section processing.
*
* The <ISDN-address> is a string of characters, normally decimal
* digits, beginning with the E.163 country code and ending with the DDI
* if any. Note that ISDN, in Q.931, permits any IA5 character in the
* general case.
*
* The <sa> is a string of hexadecimal digits. For digits 0-9, the
* concrete encoding in the Q.931 call setup information element is
* identical to BCD.
*
* For example:
*
* Relay.Prime.COM. IN ISDN 150862028003217
* sh.Prime.COM. IN ISDN 150862028003217 004
*
* (Note: "1" is the country code for the North American Integrated
* Numbering Area, i.e., the system of "area codes" familiar to people
* in those countries.)
*
* The RR data is the ASCII representation of the digits. It is encoded
* as one or two <character-string>s, i.e., count followed by
* characters.
*/
static void
isdn(void **state)
{
wire_ok_t wire_ok[] = { /*
* "".
*/
WIRE_VALID(0x00),
/*
* "\001".
*/
WIRE_VALID(0x01, 0x01),
/*
* "\001" "".
*/
WIRE_VALID(0x01, 0x01, 0x00),
/*
* "\001" "\001".
*/
WIRE_VALID(0x01, 0x01, 0x01, 0x01),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_isdn, sizeof(dns_rdata_isdn_t));
}
/*
* KEY tests.
*/
static void
key(void **state)
{
wire_ok_t wire_ok[] = { /*
* RDATA is comprised of:
*
* - 2 octets for Flags,
* - 1 octet for Protocol,
* - 1 octet for Algorithm,
* - variable number of octets for Public Key.
*
* RFC 2535 section 3.1.2 states that if bits
* 0-1 of Flags are both set, the RR stops after
* the algorithm octet and thus its length must
* be 4 octets. In any other case, though, the
* Public Key part must not be empty.
*/
WIRE_INVALID(0x00),
WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_VALID(0xc0, 0x00, 0x00, 0x00),
WIRE_INVALID(0xc0, 0x00, 0x00, 0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_key, sizeof(dns_rdata_key_t));
}
2018-10-25 15:27:06 +11:00
/*
* http://ana-3.lcs.mit.edu/~jnc/nimrod/dns.txt
*
* The RDATA portion of both the NIMLOC and EID records contains
* uninterpreted binary data. The representation in the text master file
* is an even number of hex characters (0 to 9, a to f), case is not
* significant. For readability, whitespace may be included in the value
* field and should be ignored when reading a master file.
*/
static void
nimloc(void **state)
{
text_ok_t text_ok[] = { TEXT_VALID("AABBCC"),
TEXT_VALID_CHANGED("AA bb cc", "AABBCC"),
TEXT_INVALID("aab"),
/*
* Sentinel.
*/
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_VALID(0x00), WIRE_VALID(0xAA, 0xBB, 0xCC),
/*
* Sentinel.
*/
WIRE_SENTINEL() };
2018-10-25 15:27:06 +11:00
UNUSED(state);
2018-10-25 15:27:06 +11:00
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
2018-10-25 15:27:06 +11:00
dns_rdatatype_nimloc, sizeof(dns_rdata_in_nimloc_t));
}
/*
* NSEC tests.
*
* RFC 4034:
*
* 4.1. NSEC RDATA Wire Format
*
* The RDATA of the NSEC RR is as shown below:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Next Domain Name /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* / Type Bit Maps /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 4.1.1. The Next Domain Name Field
*
* The Next Domain field contains the next owner name (in the canonical
* ordering of the zone) that has authoritative data or contains a
* delegation point NS RRset; see Section 6.1 for an explanation of
* canonical ordering. The value of the Next Domain Name field in the
* last NSEC record in the zone is the name of the zone apex (the owner
* name of the zone's SOA RR). This indicates that the owner name of
* the NSEC RR is the last name in the canonical ordering of the zone.
*
* A sender MUST NOT use DNS name compression on the Next Domain Name
* field when transmitting an NSEC RR.
*
* Owner names of RRsets for which the given zone is not authoritative
* (such as glue records) MUST NOT be listed in the Next Domain Name
* unless at least one authoritative RRset exists at the same owner
* name.
*
* 4.1.2. The Type Bit Maps Field
*
* The Type Bit Maps field identifies the RRset types that exist at the
* NSEC RR's owner name.
*
* The RR type space is split into 256 window blocks, each representing
* the low-order 8 bits of the 16-bit RR type space. Each block that
* has at least one active RR type is encoded using a single octet
* window number (from 0 to 255), a single octet bitmap length (from 1
* to 32) indicating the number of octets used for the window block's
* bitmap, and up to 32 octets (256 bits) of bitmap.
*
* Blocks are present in the NSEC RR RDATA in increasing numerical
* order.
*
* Type Bit Maps Field = ( Window Block # | Bitmap Length | Bitmap )+
*
* where "|" denotes concatenation.
*
* Each bitmap encodes the low-order 8 bits of RR types within the
* window block, in network bit order. The first bit is bit 0. For
* window block 0, bit 1 corresponds to RR type 1 (A), bit 2 corresponds
* to RR type 2 (NS), and so forth. For window block 1, bit 1
* corresponds to RR type 257, and bit 2 to RR type 258. If a bit is
* set, it indicates that an RRset of that type is present for the NSEC
* RR's owner name. If a bit is clear, it indicates that no RRset of
* that type is present for the NSEC RR's owner name.
*
* Bits representing pseudo-types MUST be clear, as they do not appear
* in zone data. If encountered, they MUST be ignored upon being read.
*/
static void
nsec(void **state)
{
text_ok_t text_ok[] = { TEXT_INVALID(""), TEXT_INVALID("."),
TEXT_VALID(". RRSIG"), TEXT_SENTINEL() };
wire_ok_t wire_ok[] = { WIRE_INVALID(0x00), WIRE_INVALID(0x00, 0x00),
WIRE_INVALID(0x00, 0x00, 0x00),
WIRE_VALID(0x00, 0x00, 0x01, 0x02),
WIRE_SENTINEL() };
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_nsec, sizeof(dns_rdata_nsec_t));
}
2018-05-24 10:27:33 +05:30
/*
* NSEC3 tests.
*
* RFC 5155.
*/
static void
nsec3(void **state)
{
text_ok_t text_ok[] = { TEXT_INVALID(""),
TEXT_INVALID("."),
TEXT_INVALID(". RRSIG"),
TEXT_INVALID("1 0 10 76931F"),
TEXT_INVALID("1 0 10 76931F "
"IMQ912BREQP1POLAH3RMONG&"
"UED541AS"),
TEXT_INVALID("1 0 10 76931F "
"IMQ912BREQP1POLAH3RMONGAUED541AS "
"A RRSIG BADTYPE"),
TEXT_VALID("1 0 10 76931F "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM A "
"RRSIG"),
TEXT_VALID("1 0 10 76931F "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM"),
TEXT_VALID("1 0 10 - "
"AJHVGTICN6K0VDA53GCHFMT219SRRQLM"),
TEXT_SENTINEL() };
2018-05-24 10:27:33 +05:30
UNUSED(state);
2018-05-24 10:27:33 +05:30
check_rdata(text_ok, NULL, NULL, false, dns_rdataclass_in,
2018-05-24 10:27:33 +05:30
dns_rdatatype_nsec3, sizeof(dns_rdata_nsec3_t));
}
/* NXT RDATA manipulations */
static void
nxt(void **state)
{
compare_ok_t compare_ok[] = {
COMPARE("a. A SIG", "a. A SIG", 0),
/*
* Records that differ only in the case of the next
* name should be equal.
*/
COMPARE("A. A SIG", "a. A SIG", 0),
/*
* Sorting on name field.
*/
COMPARE("A. A SIG", "b. A SIG", -1),
COMPARE("b. A SIG", "A. A SIG", 1),
/* bit map differs */
COMPARE("b. A SIG", "b. A AAAA SIG", -1),
/* order of bit map does not matter */
COMPARE("b. A SIG AAAA", "b. A AAAA SIG", 0), COMPARE_SENTINEL()
};
UNUSED(state);
check_rdata(NULL, NULL, compare_ok, false, dns_rdataclass_in,
dns_rdatatype_nxt, sizeof(dns_rdata_nxt_t));
}
static void
rkey(void **state)
{
text_ok_t text_ok[] = { /*
* Valid, flags set to 0 and a key is present.
*/
TEXT_VALID("0 0 0 aaaa"),
/*
* Invalid, non-zero flags.
*/
TEXT_INVALID("1 0 0 aaaa"),
TEXT_INVALID("65535 0 0 aaaa"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
2019-03-24 17:48:22 +11:00
};
wire_ok_t wire_ok[] = { /*
* Valid, flags set to 0 and a key is present.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Invalid, non-zero flags.
*/
WIRE_INVALID(0x00, 0x01, 0x00, 0x00, 0x00),
WIRE_INVALID(0xff, 0xff, 0x00, 0x00, 0x00),
/*
* Sentinel.
*/
WIRE_SENTINEL()
2019-03-24 17:48:22 +11:00
};
key_required(state, dns_rdatatype_rkey, sizeof(dns_rdata_rkey_t));
2019-03-24 17:48:22 +11:00
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_rkey, sizeof(dns_rdata_rkey_t));
}
/* SSHFP RDATA manipulations */
static void
sshfp(void **state)
{
text_ok_t text_ok[] = { TEXT_INVALID(""), /* too short */
TEXT_INVALID("0"), /* reserved, too short */
TEXT_VALID("0 0"), /* no finger print */
TEXT_VALID("0 0 AA"), /* reserved */
TEXT_INVALID("0 1 AA"), /* too short SHA 1
digest */
TEXT_INVALID("0 2 AA"), /* too short SHA 256
digest */
TEXT_VALID("0 3 AA"), /* unknown finger print
type */
/* good length SHA 1 digest */
TEXT_VALID("1 1 "
"00112233445566778899AABBCCDDEEFF171"
"81920"),
/* good length SHA 256 digest */
TEXT_VALID("4 2 "
"A87F1B687AC0E57D2A081A2F282672334D9"
"0ED316D2B818CA9580EA3 84D92401"),
/*
* totext splits the fingerprint into chunks and
* emits uppercase hex.
*/
TEXT_VALID_CHANGED("1 2 "
"00112233445566778899aabbccd"
"deeff "
"00112233445566778899AABBCCD"
"DEEFF",
"1 2 "
"00112233445566778899AABBCCD"
"DEEFF"
"00112233445566778899AABB "
"CCDDEEFF"),
TEXT_SENTINEL() };
wire_ok_t wire_ok[] = {
WIRE_INVALID(0x00), /* reserved too short */
WIRE_VALID(0x00, 0x00), /* reserved no finger print */
WIRE_VALID(0x00, 0x00, 0x00), /* reserved */
/* too short SHA 1 digests */
WIRE_INVALID(0x00, 0x01), WIRE_INVALID(0x00, 0x01, 0x00),
WIRE_INVALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19),
/* good length SHA 1 digest */
WIRE_VALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x17, 0x18, 0x19, 0x20),
/* too long SHA 1 digest */
WIRE_INVALID(0x00, 0x01, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21),
/* too short SHA 256 digests */
WIRE_INVALID(0x00, 0x02), WIRE_INVALID(0x00, 0x02, 0x00),
WIRE_INVALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30,
0x31),
/* good length SHA 256 digest */
WIRE_VALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66,
0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD, 0xEE, 0xFF,
0x17, 0x18, 0x19, 0x20, 0x21, 0x22, 0x23, 0x24, 0x25,
0x26, 0x27, 0x28, 0x29, 0x30, 0x31, 0x32),
/* too long SHA 256 digest */
WIRE_INVALID(0x00, 0x02, 0x00, 0x11, 0x22, 0x33, 0x44, 0x55,
0x66, 0x77, 0x88, 0x99, 0xAA, 0xBB, 0xCC, 0xDD,
0xEE, 0xFF, 0x17, 0x18, 0x19, 0x20, 0x21, 0x22,
0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x30,
0x31, 0x32, 0x33),
/* unknown digest, * no fingerprint */
WIRE_VALID(0x00, 0x03), WIRE_VALID(0x00, 0x03, 0x00), /* unknown
digest
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_sshfp, sizeof(dns_rdata_sshfp_t));
}
/*
* WKS tests.
*
* RFC 1035:
*
* 3.4.2. WKS RDATA format
*
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | ADDRESS |
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
* | PROTOCOL | |
* +--+--+--+--+--+--+--+--+ |
* | |
* / <BIT MAP> /
* / /
* +--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
*
* where:
*
* ADDRESS An 32 bit Internet address
*
* PROTOCOL An 8 bit IP protocol number
*
* <BIT MAP> A variable length bit map. The bit map must be a
* multiple of 8 bits long.
*
* The WKS record is used to describe the well known services supported by
* a particular protocol on a particular internet address. The PROTOCOL
* field specifies an IP protocol number, and the bit map has one bit per
* port of the specified protocol. The first bit corresponds to port 0,
* the second to port 1, etc. If the bit map does not include a bit for a
* protocol of interest, that bit is assumed zero. The appropriate values
* and mnemonics for ports and protocols are specified in [RFC-1010].
*
* For example, if PROTOCOL=TCP (6), the 26th bit corresponds to TCP port
* 25 (SMTP). If this bit is set, a SMTP server should be listening on TCP
* port 25; if zero, SMTP service is not supported on the specified
* address.
*/
static void
wks(void **state)
{
text_ok_t text_ok[] = { /*
* Valid, IPv4 address in dotted-quad form.
*/
TEXT_VALID("127.0.0.1 6"),
/*
* Invalid, IPv4 address not in dotted-quad
* form.
*/
TEXT_INVALID("127.1 6"),
/*
* Sentinel.
*/
TEXT_SENTINEL()
};
wire_ok_t wire_ok[] = { /*
* Too short.
*/
WIRE_INVALID(0x00, 0x08, 0x00, 0x00),
/*
* Minimal TCP.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 6),
/*
* Minimal UDP.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 17),
/*
* Minimal other.
*/
WIRE_VALID(0x00, 0x08, 0x00, 0x00, 1),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_wks, sizeof(dns_rdata_in_wks_t));
}
2019-02-07 12:33:53 -08:00
/*
* ZONEMD tests.
*
* Excerpted from draft-wessels-dns-zone-digest:
*
* The ZONEMD RDATA wire format is encoded as follows:
*
* 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3
* 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Serial |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
* | Digest Type | Reserved | |
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
* | Digest |
* / /
* / /
* +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
*
* 2.1.1. The Serial Field
*
* The Serial field is a 32-bit unsigned integer in network order. It
* is equal to the serial number from the zone's SOA record
*
* 2.1.2. The Digest Type Field
*
* The Digest Type field is an 8-bit unsigned integer that identifies
* the algorithm used to construct the digest.
*
* At the time of this writing, SHA384, with value 1, is the only Digest
* Type defined for ZONEMD records.
*
* 2.1.3. The Reserved Field
*
* The Reserved field is an 8-bit unsigned integer, which is always set
* to zero.
*
* 2.1.4. The Digest Field
*
* The Digest field is a variable-length sequence of octets containing
* the message digest.
*/
static void
zonemd(void **state)
{
text_ok_t text_ok[] = { TEXT_INVALID(""),
TEXT_INVALID("0"),
TEXT_INVALID("0 0"),
TEXT_INVALID("0 0 0"),
TEXT_INVALID("99999999 0 0"),
TEXT_INVALID("2019020700 0 0"),
TEXT_INVALID("2019020700 1 0 DEADBEEF"),
TEXT_VALID("2019020700 2 0 DEADBEEF"),
TEXT_VALID("2019020700 255 0 DEADBEEF"),
TEXT_INVALID("2019020700 256 0 DEADBEEF"),
TEXT_VALID("2019020700 2 255 DEADBEEF"),
TEXT_INVALID("2019020700 2 256 DEADBEEF"),
TEXT_VALID("2019020700 1 0 "
"7162D2BB75C047A53DE98767C9192BEB"
"14DB01E7E2267135DAF0230A 19BA4A31"
"6AF6BF64AA5C7BAE24B2992850300509"),
TEXT_SENTINEL() };
2019-02-07 12:33:53 -08:00
wire_ok_t wire_ok[] = {
/*
* Short.
*/
WIRE_INVALID(0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00),
/*
* Short.
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00),
/*
* Short.
2019-02-07 12:33:53 -08:00
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
2019-02-07 12:33:53 -08:00
/*
* Minimal, one-octet hash for an undefined digest type.
2019-02-07 12:33:53 -08:00
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00),
2019-02-07 12:33:53 -08:00
/*
* SHA-384 is defined, so we insist there be a digest of
* the expected length.
2019-02-07 12:33:53 -08:00
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00),
2019-02-07 12:33:53 -08:00
/*
* 48-octet digest, valid for SHA-384.
2019-02-07 12:33:53 -08:00
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa,
0xce),
2019-02-07 12:33:53 -08:00
/*
* 56-octet digest, too long for SHA-384.
2019-02-07 12:33:53 -08:00
*/
WIRE_INVALID(0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef,
0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad,
0xbe, 0xef, 0xfa, 0xce),
/*
* 56-octet digest, valid for an undefined digest type.
*/
WIRE_VALID(0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe,
0xef, 0xfa, 0xce, 0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce,
2019-02-07 12:33:53 -08:00
0xde, 0xad, 0xbe, 0xef, 0xfa, 0xce),
/*
* Sentinel.
*/
WIRE_SENTINEL()
};
UNUSED(state);
check_rdata(text_ok, wire_ok, NULL, false, dns_rdataclass_in,
dns_rdatatype_zonemd, sizeof(dns_rdata_zonemd_t));
}
static void
atcname(void **state)
{
unsigned int i;
UNUSED(state);
#define UNR "# Unexpected result from dns_rdatatype_atcname for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_atcname((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_nsec:
case dns_rdatatype_key:
case dns_rdatatype_rrsig:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
static void
atparent(void **state)
{
unsigned int i;
UNUSED(state);
#define UNR "# Unexpected result from dns_rdatatype_atparent for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_atparent((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_ds:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
static void
iszonecutauth(void **state)
{
unsigned int i;
UNUSED(state);
#define UNR "# Unexpected result from dns_rdatatype_iszonecutauth for type %u\n"
for (i = 0; i < 0xffffU; i++) {
bool tf = dns_rdatatype_iszonecutauth((dns_rdatatype_t)i);
switch (i) {
case dns_rdatatype_ns:
case dns_rdatatype_ds:
case dns_rdatatype_nsec:
case dns_rdatatype_key:
case dns_rdatatype_rrsig:
if (!tf) {
print_message(UNR, i);
}
assert_true(tf);
break;
default:
if (tf) {
print_message(UNR, i);
}
assert_false(tf);
break;
}
}
#undef UNR
}
int
main(int argc, char **argv)
{
const struct CMUnitTest tests[] = {
2019-02-08 13:41:22 +11:00
cmocka_unit_test_setup_teardown(amtrelay, _setup, _teardown),
cmocka_unit_test_setup_teardown(apl, _setup, _teardown),
cmocka_unit_test_setup_teardown(atma, _setup, _teardown),
cmocka_unit_test_setup_teardown(cdnskey, _setup, _teardown),
cmocka_unit_test_setup_teardown(csync, _setup, _teardown),
cmocka_unit_test_setup_teardown(doa, _setup, _teardown),
cmocka_unit_test_setup_teardown(dnskey, _setup, _teardown),
2019-02-27 15:33:37 +11:00
cmocka_unit_test_setup_teardown(ds, _setup, _teardown),
cmocka_unit_test_setup_teardown(eid, _setup, _teardown),
cmocka_unit_test_setup_teardown(edns_client_subnet, _setup,
_teardown),
cmocka_unit_test_setup_teardown(hip, _setup, _teardown),
cmocka_unit_test_setup_teardown(isdn, _setup, _teardown),
cmocka_unit_test_setup_teardown(key, _setup, _teardown),
cmocka_unit_test_setup_teardown(nimloc, _setup, _teardown),
cmocka_unit_test_setup_teardown(nsec, _setup, _teardown),
cmocka_unit_test_setup_teardown(nsec3, _setup, _teardown),
cmocka_unit_test_setup_teardown(nxt, _setup, _teardown),
cmocka_unit_test_setup_teardown(sshfp, _setup, _teardown),
cmocka_unit_test_setup_teardown(wks, _setup, _teardown),
cmocka_unit_test_setup_teardown(rkey, _setup, _teardown),
2019-02-07 12:33:53 -08:00
cmocka_unit_test_setup_teardown(zonemd, _setup, _teardown),
cmocka_unit_test_setup_teardown(atcname, NULL, NULL),
cmocka_unit_test_setup_teardown(atparent, NULL, NULL),
cmocka_unit_test_setup_teardown(iszonecutauth, NULL, NULL),
};
2019-02-28 18:04:02 +11:00
UNUSED(argv);
if (argc > 1) {
debug = true;
}
return (cmocka_run_group_tests(tests, NULL, NULL));
}
#else /* HAVE_CMOCKA */
#include <stdio.h>
int
main(void)
{
printf("1..0 # Skipped: cmocka not available\n");
return (0);
}
#endif