Meson is a modern build system that has seen a rise in adoption and some
version of it is available in almost every platform supported.
Compared to automake, meson has the following advantages:
* Meson provides a significant boost to the build and configuration time
by better exploiting parallelism.
* Meson is subjectively considered to be better in readability.
These merits alone justify experimenting with meson as a way of
improving development time and ergonomics. However, there are some
compromises to ensure the transition goes relatively smooth:
* The system tests currently rely on various files within the source
directory. Changing this requirement is a non-trivial task that can't
be currently justified. Currently the last compiled build directory
writes into the source tree which is in turn used by pytest.
* The minimum version supported has been fixed at 0.61. Increasing this
value will require choosing a baseline of distributions that can
package with meson. On the contrary, there will likely be an attempt
to decrease this value to ensure almost universal support for building
BIND 9 with meson.
Since BIND 9 headers are not longer public, there's no reason to keep
the ISC_LANG_BEGINDECL and ISC_LANG_ENDDECL macros to support including
them from C++ projects.
removed references in code comments, doc/dev documentation, etc, to
isc_task, isc_timer_reset(), and isc_timertype_inactive. also removed a
coccinelle patch related to isc_timer_reset() that was no longer needed.
Historically, the inline keyword was a strong suggestion to the compiler
that it should inline the function marked inline. As compilers became
better at optimising, this functionality has receded, and using inline
as a suggestion to inline a function is obsolete. The compiler will
happily ignore it and inline something else entirely if it finds that's
a better optimisation.
Therefore, remove all the occurences of the inline keyword with static
functions inside single compilation unit and leave the decision whether
to inline a function or not entirely on the compiler
NOTE: We keep the usage the inline keyword when the purpose is to change
the linkage behaviour.
Previously, the unreachable code paths would have to be tagged with:
INSIST(0);
ISC_UNREACHABLE();
There was also older parts of the code that used comment annotation:
/* NOTREACHED */
Unify the handling of unreachable code paths to just use:
UNREACHABLE();
The UNREACHABLE() macro now asserts when reached and also uses
__builtin_unreachable(); when such builtin is available in the compiler.
Gcc 7+ and Clang 10+ have implemented __attribute__((fallthrough)) which
is explicit version of the /* FALLTHROUGH */ comment we are currently
using.
Add and apply FALLTHROUGH macro that uses the attribute if available,
but does nothing on older compilers.
In one case (lib/dns/zone.c), using the macro revealed that we were
using the /* FALLTHROUGH */ comment in wrong place, remove that comment.
From an attacker's point of view, a VLA declaration is essentially a
primitive for performing arbitrary arithmetic on the stack pointer. If
the attacker can control the size of a VLA they have a very powerful
tool for causing memory corruption.
To mitigate this kind of attack, and the more general class of stack
clash vulnerabilities, C compilers insert extra code when allocating a
VLA to probe the growing stack one page at a time. If these probes hit
the stack guard page, the program will crash.
From the point of view of a C programmer, there are a few things to
consider about VLAs:
* If it is important to handle allocation failures in a controlled
manner, don't use VLAs. You can use VLAs if it is OK for
unreasonable inputs to cause an uncontrolled crash.
* If the VLA is known to be smaller than some known fixed size,
use a fixed size array and a run-time check to ensure it is large
enough. This will be more efficient than the compiler's stack
probes that need to cope with arbitrary-size VLAs.
* If the VLA might be large, allocate it on the heap. The heap
allocator can allocate multiple pages in one shot, whereas the
stack clash probes work one page at a time.
Most of the existing uses of VLAs in BIND are in test code where they
are benign, but there was one instance in `named`, in the GSS-TSIG
verification code, which has now been removed.
This commit adjusts the style guide and the C compiler flags to allow
VLAs in test code but not elsewhere.
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
The Windows support has been completely removed from the source tree
and BIND 9 now no longer supports native compilation on Windows.
We might consider reviewing mingw-w64 port if contributed by external
party, but no development efforts will be put into making BIND 9 compile
and run on Windows again.
This commit changes the taskmgr to run the individual tasks on the
netmgr internal workers. While an effort has been put into keeping the
taskmgr interface intact, couple of changes have been made:
* The taskmgr has no concept of universal privileged mode - rather the
tasks are either privileged or unprivileged (normal). The privileged
tasks are run as a first thing when the netmgr is unpaused. There
are now four different queues in in the netmgr:
1. priority queue - netievent on the priority queue are run even when
the taskmgr enter exclusive mode and netmgr is paused. This is
needed to properly start listening on the interfaces, free
resources and resume.
2. privileged task queue - only privileged tasks are queued here and
this is the first queue that gets processed when network manager
is unpaused using isc_nm_resume(). All netmgr workers need to
clean the privileged task queue before they all proceed normal
operation. Both task queues are processed when the workers are
finished.
3. task queue - only (traditional) task are scheduled here and this
queue along with privileged task queues are process when the
netmgr workers are finishing. This is needed to process the task
shutdown events.
4. normal queue - this is the queue with netmgr events, e.g. reading,
sending, callbacks and pretty much everything is processed here.
* The isc_taskmgr_create() now requires initialized netmgr (isc_nm_t)
object.
* The isc_nm_destroy() function now waits for indefinite time, but it
will print out the active objects when in tracing mode
(-DNETMGR_TRACE=1 and -DNETMGR_TRACE_VERBOSE=1), the netmgr has been
made a little bit more asynchronous and it might take longer time to
shutdown all the active networking connections.
* Previously, the isc_nm_stoplistening() was a synchronous operation.
This has been changed and the isc_nm_stoplistening() just schedules
the child sockets to stop listening and exits. This was needed to
prevent a deadlock as the the (traditional) tasks are now executed on
the netmgr threads.
* The socket selection logic in isc__nm_udp_send() was flawed, but
fortunatelly, it was broken, so we never hit the problem where we
created uvreq_t on a socket from nmhandle_t, but then a different
socket could be picked up and then we were trying to run the send
callback on a socket that had different threadid than currently
running.