A qp-trie is a kind of radix tree that is particularly well-suited to
DNS servers. I invented the qp-trie in 2015, based on Dan Bernstein's
crit-bit trees and Phil Bagwell's HAMT. https://dotat.at/prog/qp/
This code incorporates some new ideas that I prototyped using
NLnet Labs NSD in 2020 (optimizations for DNS names as keys)
and 2021 (custom allocator and garbage collector).
https://dotat.at/cgi/git/nsd.git
The BIND version of my qp-trie code has a number of improvements
compared to the prototype developed for NSD.
* The main omission in the prototype was the very sketchy outline of
how locking might work. Now the locking has been implemented,
using a reader/writer lock and a mutex. However, it is designed to
benefit from liburcu if that is available.
* The prototype was designed for two-version concurrency, one
version for readers and one for the writer. The new code supports
multiversion concurrency, to provide a basis for BIND's dbversion
machinery, so that updates are not blocked by long-running zone
transfers.
* There are now two kinds of transaction that modify the trie: an
`update` aims to support many very small zones without wasting
memory; a `write` avoids unnecessary allocation to help the
performance of many small changes to the cache.
* There is also a single-threaded interface for situations where
concurrent access is not necessary.
* The API makes better use of types to make it more clear which
operations are permitted when.
* The lookup table used to convert a DNS name to a qp-trie key is
now initialized by a run-time constructor instead of a programmer
using copy-and-paste. Key conversion is more flexible, so the
qp-trie can be used with keys other than DNS names.
* There has been much refactoring and re-arranging things to improve
the terminology and order of presentation in the code, and the
internal documentation has been moved from a comment into a file
of its own.
Some of the required functionality has been stripped out, to be
brought back later after the basics are known to work.
* Garbage collector performance statistics are missing.
* Fancy searches are missing, such as longest match and
nearest match.
* Iteration is missing.
* Search for update is missing, for cases where the caller needs to
know if the value object is mutable or not.