There's a possibility of a race in TCP accepting code:
T1 accepts a connection C1
T2 accepts a connection C2
T1 tries to accept a connection C3, but we hit a quota,
isc_quota_cb_init() sets quota_accept_cb for the socket,
we return from accept_connection
T2 drops C2, but we race in quota_release with accepting C3 so
we don't see quota->waiting is > 0, we don't launch the callback
T1 accepts a connection C4, we are able to get the quota we clear
the quota_accept_cb from sock->quotacb
T1 drops C1, tries to call the callback which is zeroed, sigsegv.
Instead of using bind() and passing the listening socket to the children
threads using uv_export/uv_import use one thread that does the accepting,
and then passes the connected socket using uv_export/uv_import to a random
worker. The previous solution had thundering herd problems (all workers
waking up on one connection and trying to accept()), this one avoids this
and is simpler.
The tcp clients quota is simplified with isc_quota_attach_cb - a callback
is issued when the quota is available.
The rewrite of BIND 9 build system is a large work and cannot be reasonable
split into separate merge requests. Addition of the automake has a positive
effect on the readability and maintainability of the build system as it is more
declarative, it allows conditional and we are able to drop all of the custom
make code that BIND 9 developed over the years to overcome the deficiencies of
autoconf + custom Makefile.in files.
This squashed commit contains following changes:
- conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am
by using automake
- the libtool is now properly integrated with automake (the way we used it
was rather hackish as the only official way how to use libtool is via
automake
- the dynamic module loading was rewritten from a custom patchwork to libtool's
libltdl (which includes the patchwork to support module loading on different
systems internally)
- conversion of the unit test executor from kyua to automake parallel driver
- conversion of the system test executor from custom make/shell to automake
parallel driver
- The GSSAPI has been refactored, the custom SPNEGO on the basis that
all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations
support SPNEGO mechanism.
- The various defunct tests from bin/tests have been removed:
bin/tests/optional and bin/tests/pkcs11
- The text files generated from the MD files have been removed, the
MarkDown has been designed to be readable by both humans and computers
- The xsl header is now generated by a simple sed command instead of
perl helper
- The <irs/platform.h> header has been removed
- cleanups of configure.ac script to make it more simpler, addition of multiple
macros (there's still work to be done though)
- the tarball can now be prepared with `make dist`
- the system tests are partially able to run in oot build
Here's a list of unfinished work that needs to be completed in subsequent merge
requests:
- `make distcheck` doesn't yet work (because of system tests oot run is not yet
finished)
- documentation is not yet built, there's a different merge request with docbook
to sphinx-build rst conversion that needs to be rebased and adapted on top of
the automake
- msvc build is non functional yet and we need to decide whether we will just
cross-compile bind9 using mingw-w64 or fix the msvc build
- contributed dlz modules are not included neither in the autoconf nor automake
tcpdns used transport-specific functions to operate on the outer socket.
Use generic ones instead, and select the proper call in netmgr.c.
Make the missing functions (e.g. isc_nm_read) generic and add type-specific
calls (isc__nm_tcp_read). This is the preparation for netmgr TLS layer.
In tcp and udp stoplistening code we accessed libuv structures
from a different thread, which caused a shutdown crash when named
was under load. Also added additional DbC checks making sure we're
in a proper thread when accessing uv_ functions.
- isc__netievent_storage_t was to small to contain
isc__netievent__socket_streaminfo_t on Windows
- handle isc_uv_export and isc_uv_import errors properly
- rewrite isc_uv_export and isc_uv_import on Windows
If a connection was closed early (right after accept()) an assertion
that assumed that the connection was still alive could be triggered
in accept_connection. Handle those errors properly and not with
assertions, free all the resources afterwards.
- the socket stat counters have been moved from socket.h to stats.h.
- isc_nm_t now attaches to the same stats counter group as
isc_socketmgr_t, so that both managers can increment the same
set of statistics
- isc__nmsocket_init() now takes an interface as a paramter so that
the address family can be determined when initializing the socket.
- based on the address family and socket type, a group of statistics
counters will be associated with the socket - for example, UDP4Active
with IPv4 UDP sockets and TCP6Active with IPv6 TCP sockets. note
that no counters are currently associated with TCPDNS sockets; those
stats will be handled by the underlying TCP socket.
- the counters are not actually used by netmgr sockets yet; counter
increment and decrement calls will be added in a later commit.
- use UV_{TC,UD}P_IPV6ONLY for IPv6 sockets, keeping the pre-netmgr
behaviour.
- add a new listening_error bool flag which is set if the child
listener fails to start listening. This fixes a bug where named would
hang if, e.g., we failed to bind to a TCP socket.
For multithreaded TCP listening we need to pass a bound socket to all
listening threads. Instead of using uv_pipe handle passing method which
is quite complex (lots of callbacks, each of them with its own error
handling) we now use isc_uv_export() to export the socket, pass it as a
member of the isc__netievent_tcpchildlisten_t structure, and then
isc_uv_import() it in the child thread, simplifying the process
significantly.
- make tcp listening IPC pipe name saner
- put the pipe in /tmp on unices
- add pid to the pipe name to avoid conflicts between processes
- fsync directory in which the pipe resides to make sure that the
child threads will see it and be able to open it
even when worker is paused (e.g. interface reconfiguration). This is
needed to prevent deadlocks when reconfiguring interfaces - as network
manager is paused then, but we still need to stop/start listening.
- Proper handling of TCP listen errors in netmgr - bind to the socket first,
then return the error code.
When listening for TCP connections we create a socket, bind it
and then pass it over IPC to all threads - which then listen on
in and accept connections. This sounds broken, but it's the
official way of dealing with multithreaded TCP listeners in libuv,
and works on all platforms supported by libuv.
- restore support for tcp-initial-timeout, tcp-idle-timeout,
tcp-keepalive-timeout and tcp-advertised-timeout configuration
options, which were ineffective previously.
- add timeout support for TCP and TCPDNS connections to protect against
slowloris style attacks. currently, all timeouts are hard-coded.
- rework and simplify the TCPDNS state machine.
when the TCPDNS_CLIENTS_PER_CONN limit has been exceeded for a TCP
DNS connection, switch to sequential mode to ensure that memory cannot
be exhausted by too many simultaneous queries.
This is a replacement for the existing isc_socket and isc_socketmgr
implementation. It uses libuv for asynchronous network communication;
"networker" objects will be distributed across worker threads reading
incoming packets and sending them for processing.
UDP listener sockets automatically create an array of "child" sockets
so each worker can listen separately.
TCP sockets are shared amongst worker threads.
A TCPDNS socket is a wrapper around a TCP socket, which handles the
the two-byte length field at the beginning of DNS messages over TCP.
(Other wrapper socket types can be implemented in the future to handle
DNS over TLS, DNS over HTTPS, etc.)