Add server-side TLS support to netmgr - that includes moving some of the
isc_nm_ functions from tcp.c to a wrapper in netmgr.c calling a proper
tcp or tls function, and a new isc_nm_listentls() function.
Add DoT support to tcpdns - isc_nm_listentlsdns().
socket() call can return an error - e.g. EMFILE, so we need to handle
this nicely and not crash.
Additionally wrap the socket() call inside a platform independent helper
function as the Socket data type on Windows is unsigned integer:
> This means, for example, that checking for errors when the socket and
> accept functions return should not be done by comparing the return
> value with –1, or seeing if the value is negative (both common and
> legal approaches in UNIX). Instead, an application should use the
> manifest constant INVALID_SOCKET as defined in the Winsock2.h header
> file.
this function sets the read timeout for the socket associated
with a netmgr handle and, if the timer is running, resets it.
for TCPDNS sockets it also sets the read timeout and resets the
timer on the outer TCP socket.
When we are operating on the tcpdns socket, we need to double check
whether the socket or its outerhandle or its listener or its mgr is
still active and when not, bail out early.
There were more races that could happen while connecting to a
socket while closing or shutting down the same socket. This
commit introduces a .closing flag to guard the socket from
being closed twice.
There was a data race where a new event could be scheduled after
isc__nm_async_shutdown() had cleaned up all the dangling UDP/TCP
sockets from the loop.
- more logical code flow.
- propagate errors back to the caller.
- add a 'reading' flag and call the callback from failed_read_cb()
only when it the socket was actively reading.
- don't bother closing sockets that are already closing.
- UDP read timeout timer was not stopped after reading.
- improve handling of TCP connection failures.
- isc_nm_tcpdnsconnect() sets up up an outgoing TCP DNS connection.
- isc_nm_tcpconnect(), _udpconnect() and _tcpdnsconnect() now take a
timeout argument to ensure connections time out and are correctly
cleaned up on failure.
- isc_nm_read() now supports UDP; it reads a single datagram and then
stops until the next time it's called.
- isc_nm_cancelread() now runs asynchronously to prevent assertion
failure if reading is interrupted by a non-network thread (e.g.
a timeout).
- isc_nm_cancelread() can now apply to UDP sockets.
- added shim code to support UDP connection in versions of libuv
prior to 1.27, when uv_udp_connect() was added
all these functions will be used to support outgoing queries in dig,
xfrin, dispatch, etc.
1. The isc__nm_tcp_send() and isc__nm_tcp_read() was not checking
whether the socket was still alive and scheduling reads/sends on
closed socket.
2. The isc_nm_read(), isc_nm_send() and isc_nm_resumeread() have been
changed to always return the error conditions via the callbacks, so
they always succeed. This applies to all protocols (UDP, TCP and
TCPDNS).
isc_nmhandle_detach() needs to complete in the same thread
as shutdown_walk_cb() to avoid a race. Clear the caller's
pointer then pass control to the worker if necessary.
WARNING: ThreadSanitizer: data race
Write of size 8 at 0x000000000001 by thread T1:
#0 isc_nmhandle_detach lib/isc/netmgr/netmgr.c:1258:15
#1 control_command bin/named/controlconf.c:388:3
#2 dispatch lib/isc/task.c:1152:7
#3 run lib/isc/task.c:1344:2
Previous read of size 8 at 0x000000000001 by thread T2:
#0 isc_nm_pauseread lib/isc/netmgr/netmgr.c:1449:33
#1 recv_data lib/isccc/ccmsg.c:109:2
#2 isc__nm_tcp_shutdown lib/isc/netmgr/tcp.c:1157:4
#3 shutdown_walk_cb lib/isc/netmgr/netmgr.c:1515:3
#4 uv_walk <null>
#5 process_queue lib/isc/netmgr/netmgr.c:659:4
#6 process_normal_queue lib/isc/netmgr/netmgr.c:582:10
#7 process_queues lib/isc/netmgr/netmgr.c:590:8
#8 async_cb lib/isc/netmgr/netmgr.c:548:2
#9 <null> <null>
The isc__nm_tcpdns_stoplistening() would call isc__nmsocket_clearcb()
that would clear the .accept_cb from non-netmgr thread. Change the
tcpdns_stoplistening to enqueue ievent that would get processed in the
right netmgr thread to avoid locking.
The SO_REUSEADDR, SO_REUSEPORT and SO_REUSEPORT_LB has different meaning
on different platform. In this commit, we split the function to set the
reuse of address/port and setting the load-balancing into separate
functions.
The libuv library already have multiplatform support for setting
SO_REUSEADDR and SO_REUSEPORT that allows binding to the same address
and port, but unfortunately, when used after the load-balancing socket
options have been already set, it overrides the previous setting, so we
need our own helper function to enable the SO_REUSEADDR/SO_REUSEPORT
first and then enable the load-balancing socket option.
On POSIX based systems both uv_os_sock_t and uv_os_fd_t are both typedef
to int. That's not true on Windows, where uv_os_sock_t is SOCKET and
uv_os_fd_t is HANDLE and they differ in level of indirection.
The isc__nm_socket_freebind() has been refactored to match other
isc__nm_socket_...() helper functions and take uv_os_fd_t and
sa_family_t as function arguments.
The isc_nm_pause(), isc_nm_resume() and finishing the nm_thread() from
nm_destroy() has been refactored, so all use the netievents instead of
directly touching the worker structure members. This allows us to
remove most of the locking as the .paused and .finished members are
always accessed from the matching nm_thread.
When shutting down the nm_thread(), instead of issuing uv_stop(), we
just shutdown the .async handler, so all uv_loop_t events are properly
finished first and uv_run() ends gracefully with no outstanding active
handles in the loop.
If NETMGR_TRACE is defined, we now maintain a list of active sockets
in the netmgr object and a list of active handles in each socket
object; by walking the list and printing `backtrace` in a debugger
we can see where they were created, to assist in in debugging of
reference counting errors.
On shutdown, if netmgr finds there are still active sockets after
waiting, isc__nm_dump_active() will be called to log the list of
active sockets and their underlying handles, along with some details
about them.
- rename isc_nmsocket_t->tcphandle to statichandle
- cancelread functions now take handles instead of sockets
- add a 'client' flag in socket objects, currently unused, to
indicate whether it is to be used as a client or server socket
Each worker has a receive buffer with space for 20 DNS messages of up
to 2^16 bytes each, and the allocator function passed to uv_read_start()
or uv_udp_recv_start() will reserve a portion of it for use by sockets.
UDP can use recvmmsg() and so it needs that entire space, but TCP reads
one message at a time.
This commit introduces separate allocator functions for TCP and UDP
setting different buffer size limits, so that libuv will provide the
correct buffer sizes to each of them.
When a new IPv6 interface/address appears it's first in a tentative
state - in which we cannot bind to it, yet it's already being reported
by the route socket. Because of that BIND9 is unable to listen on any
newly detected IPv6 addresses. Fix it by setting IP_FREEBIND option (or
equivalent option on other OSes) and then retrying bind() call.
We erroneously tried to destroy a socket after issuing
isc__nm_tcp{,dns}_close. Under some (race) circumstances we could get
nm_socket_cleanup to be called twice for the same socket, causing an
access to a dead memory.
the blackhole ACL was accidentally disabled with respect to client
queries during the netmgr conversion.
in order to make this work for TCP, it was necessary to add a return
code to the accept callback functions passed to isc_nm_listentcp() and
isc_nm_listentcpdns().
isc__nm_tcpdns_send() was not asynchronous and accessed socket
internal fields in an unsafe manner, which could lead to a race
condition and subsequent crash. Fix it by moving tcpdns processing
to a proper netmgr thread.
The isc_nm_cancelread() function cancels reading on a connected
socket and calls its read callback function with a 'result'
parameter of ISC_R_CANCELED.
the isc_nm_tcpconnect() function establishes a client connection via
TCP. once the connection is esablished, a callback function will be
called with a newly created network manager handle.
A TCPDNS socket creates a handle for each complete DNS message.
Previously, when all the handles were disconnected, the socket
would be closed, but the wrapped TCP socket might still have
more to read.
Now, when a connection is established, the TCPDNS socket creates
a reference to itself by attaching itself to sock->self. This
reference isn't cleared until the connection is closed via
EOF, timeout, or server shutdown. This allows the socket to remain
open even when there are no active handles for it.
- isc__nmhandle_get() now attaches to the sock in the nmhandle object.
the caller is responsible for dereferencing the original socket
pointer when necessary.
- tcpdns listener sockets attach sock->outer to the outer tcp listener
socket. tcpdns connected sockets attach sock->outerhandle to the handle
for the tcp connected socket.
- only listener sockets need to be attached/detached directly. connected
sockets should only be accessed and reference-counted via their
associated handles.
there is no need for a caller to reference-count socket objects.
they need tto be able tto close listener sockets (i.e., those
returned by isc_nm_listen{udp,tcp,tcpdns}), and an isc_nmsocket_close()
function has been added for that. other sockets are only accessed via
handles.
Instead of using bind() and passing the listening socket to the children
threads using uv_export/uv_import use one thread that does the accepting,
and then passes the connected socket using uv_export/uv_import to a random
worker. The previous solution had thundering herd problems (all workers
waking up on one connection and trying to accept()), this one avoids this
and is simpler.
The tcp clients quota is simplified with isc_quota_attach_cb - a callback
is issued when the quota is available.
We could have a race between handle closing and processing async
callback. Deactivate the handle before issuing the callback - we
have the socket referenced anyway so it's not a problem.
tcpdns used transport-specific functions to operate on the outer socket.
Use generic ones instead, and select the proper call in netmgr.c.
Make the missing functions (e.g. isc_nm_read) generic and add type-specific
calls (isc__nm_tcp_read). This is the preparation for netmgr TLS layer.
Upcoming version of libuv will suport uv_recvmmsg and uv_sendmmsg. To
use uv_recvmmsg we need to provide a larger buffer and be able to
properly free it.
In tcp and udp stoplistening code we accessed libuv structures
from a different thread, which caused a shutdown crash when named
was under load. Also added additional DbC checks making sure we're
in a proper thread when accessing uv_ functions.
We had a race in which n UDP socket could have been already closing
by libuv but we still sent data to it. Mark socket as not-active
when stopping listening and verify that socket is not active when
trying to send data to it.
We pass interface as an opaque argument to tcpdns listening socket.
If we stop listening on an interface but still have in-flight connections
the opaque 'interface' is not properly reference counted, and we might
hit a dead memory. We put just a single source of truth in a listening
socket and make the child sockets use that instead of copying the
value from listening socket. We clean the callback when we stop listening.
- isc__netievent_storage_t was to small to contain
isc__netievent__socket_streaminfo_t on Windows
- handle isc_uv_export and isc_uv_import errors properly
- rewrite isc_uv_export and isc_uv_import on Windows
- the socket stat counters have been moved from socket.h to stats.h.
- isc_nm_t now attaches to the same stats counter group as
isc_socketmgr_t, so that both managers can increment the same
set of statistics
- isc__nmsocket_init() now takes an interface as a paramter so that
the address family can be determined when initializing the socket.
- based on the address family and socket type, a group of statistics
counters will be associated with the socket - for example, UDP4Active
with IPv4 UDP sockets and TCP6Active with IPv6 TCP sockets. note
that no counters are currently associated with TCPDNS sockets; those
stats will be handled by the underlying TCP socket.
- the counters are not actually used by netmgr sockets yet; counter
increment and decrement calls will be added in a later commit.
- use UV_{TC,UD}P_IPV6ONLY for IPv6 sockets, keeping the pre-netmgr
behaviour.
- add a new listening_error bool flag which is set if the child
listener fails to start listening. This fixes a bug where named would
hang if, e.g., we failed to bind to a TCP socket.