The rewrite of BIND 9 build system is a large work and cannot be reasonable
split into separate merge requests. Addition of the automake has a positive
effect on the readability and maintainability of the build system as it is more
declarative, it allows conditional and we are able to drop all of the custom
make code that BIND 9 developed over the years to overcome the deficiencies of
autoconf + custom Makefile.in files.
This squashed commit contains following changes:
- conversion (or rather fresh rewrite) of all Makefile.in files to Makefile.am
by using automake
- the libtool is now properly integrated with automake (the way we used it
was rather hackish as the only official way how to use libtool is via
automake
- the dynamic module loading was rewritten from a custom patchwork to libtool's
libltdl (which includes the patchwork to support module loading on different
systems internally)
- conversion of the unit test executor from kyua to automake parallel driver
- conversion of the system test executor from custom make/shell to automake
parallel driver
- The GSSAPI has been refactored, the custom SPNEGO on the basis that
all major KRB5/GSSAPI (mit-krb5, heimdal and Windows) implementations
support SPNEGO mechanism.
- The various defunct tests from bin/tests have been removed:
bin/tests/optional and bin/tests/pkcs11
- The text files generated from the MD files have been removed, the
MarkDown has been designed to be readable by both humans and computers
- The xsl header is now generated by a simple sed command instead of
perl helper
- The <irs/platform.h> header has been removed
- cleanups of configure.ac script to make it more simpler, addition of multiple
macros (there's still work to be done though)
- the tarball can now be prepared with `make dist`
- the system tests are partially able to run in oot build
Here's a list of unfinished work that needs to be completed in subsequent merge
requests:
- `make distcheck` doesn't yet work (because of system tests oot run is not yet
finished)
- documentation is not yet built, there's a different merge request with docbook
to sphinx-build rst conversion that needs to be rebased and adapted on top of
the automake
- msvc build is non functional yet and we need to decide whether we will just
cross-compile bind9 using mingw-w64 or fix the msvc build
- contributed dlz modules are not included neither in the autoconf nor automake
Also disable the semantic patch as the code needs tweaks here and there because
some destroy functions might not destroy the object and return early if the
object is still in use.
The isc_buffer_allocate() function now cannot fail with ISC_R_MEMORY.
This commit removes all the checks on the return code using the semantic
patch from previous commit, as isc_buffer_allocate() now returns void.
This commit add RUNTIME_CHECK() around all simple dns_name_copy() calls where
the third argument is NULL using the semantic patch from the previous commit.
Using isc_mem_put(mctx, ...) + isc_mem_detach(mctx) required juggling with the
local variables when mctx was part of the freed object. The isc_mem_putanddetach
function can handle this case internally, but it wasn't used everywhere. This
commit apply the semantic patching plus bit of manual work to replace all such
occurrences with proper usage of isc_mem_putanddetach().
- there was a memory leak when using negotiated TSIG keys.
- TKEY responses could only be signed when using a newly negotiated
key; if an existent matching TSIG was found in in the keyring it
would not be used.
up until now, message->tsigkey could only be set during parsing
of the request, but gss-tsig allows one to be created afterward.
this commit adds a new flag to the message structure, `new_tsigkey`,
which indicates that in this case it's okay for `dns_message_settsigkey()`
to be run on a message after parsing, without hitting any assertions due
to the lack of a TSIG in the request. this allows us to keep the current
restriction in place generally, but add an exception for TKEY processing.
it's probably better to just remove the restriction entirely (see next
commit).
This commit reverts the previous change to use system provided
entropy, as (SYS_)getrandom is very slow on Linux because it is
a syscall.
The change introduced in this commit adds a new call isc_nonce_buf
that uses CSPRNG from cryptographic library provider to generate
secure data that can be and must be used for generating nonces.
Example usage would be DNS cookies.
The isc_random() API has been changed to use fast PRNG that is not
cryptographically secure, but runs entirely in user space. Two
contestants have been considered xoroshiro family of the functions
by Villa&Blackman and PCG by O'Neill. After a consideration the
xoshiro128starstar function has been used as uint32_t random number
provider because it is very fast and has good enough properties
for our usage pattern.
The other change introduced in the commit is the more extensive usage
of isc_random_uniform in places where the usage pattern was
isc_random() % n to prevent modulo bias. For usage patterns where
only 16 or 8 bits are needed (DNS Message ID), the isc_random()
functions has been renamed to isc_random32(), and isc_random16() and
isc_random8() functions have been introduced by &-ing the
isc_random32() output with 0xffff and 0xff. Please note that the
functions that uses stripped down bit count doesn't pass our
NIST SP 800-22 based random test.
- Replace external -DOPENSSL/-DPKCS11CRYPTO with properly AC_DEFINEd
HAVE_OPENSSL/HAVE_PKCS11
- Don't enforce the crypto provider from platform.h, just from dst_api.c
and configure scripts
The three functions has been modeled after the arc4random family of
functions, and they will always return random bytes.
The isc_random family of functions internally use these CSPRNG (if available):
1. getrandom() libc call (might be available on Linux and Solaris)
2. SYS_getrandom syscall (might be available on Linux, detected at runtime)
3. arc4random(), arc4random_buf() and arc4random_uniform() (available on BSDs and Mac OS X)
4. crypto library function:
4a. RAND_bytes in case OpenSSL
4b. pkcs_C_GenerateRandom() in case PKCS#11 library
Replace dns_fixedname_init() calls followed by dns_fixedname_name()
calls with calls to dns_fixedname_initname() where it is possible
without affecting current behavior and/or performance.
This patch was mostly prepared using Coccinelle and the following
semantic patch:
@@
expression fixedname, name;
@@
- dns_fixedname_init(&fixedname);
...
- name = dns_fixedname_name(&fixedname);
+ name = dns_fixedname_initname(&fixedname);
The resulting set of changes was then manually reviewed to exclude false
positives and apply minor tweaks.
It is likely that more occurrences of this pattern can be refactored in
an identical way. This commit only takes care of the low-hanging fruit.
3705. [func] "configure --enable-native-pkcs11" enables BIND
to use the PKCS#11 API for all cryptographic
functions, so that it can drive a hardware service
module directly without the need to use a modified
OpenSSL as intermediary (so long as the HSM's vendor
provides a complete-enough implementation of the
PKCS#11 interface). This has been tested successfully
with the Thales nShield HSM and with SoftHSMv2 from
the OpenDNSSEC project. [RT #29031]