This commit ensures that Stream DNS code attempts to disable Nagle's
algorithm regardless of underlying stream transport (TCP or TLS), as
we are not interested in trading latency for throughout when dealing
with DNS messages.
This commit ensures that Nagle's algorithm is disabled by default for
TLS connections on best effort basis, just like other networking
software (e.g. NGINX) does, as, in the case of TLS, we are not
interested in trading latency for throughput, rather vice versa.
We attempt to disable it as early as we can, right after TCP
connections establishment, as an attempt to speed up handshake
handling.
This commit adds ability to turn the Nagle's algorithm on or off via
connections handle. It adds the isc_nmhandle_set_tcp_nodelay()
function as the public interface for this functionality.
This commit adds an initial implementation of isc_nm_streamdnssocket
transport: a unified transport for DNS over stream protocols messages,
which is capable of replacing both TCP DNS and TLS DNS
transports. Currently, the interface it provides is a unified set of
interfaces provided by both of the transports it attempts to replace.
The transport is built around "isc_dnsbuffer_t" and
"isc_dnsstream_assembler_t" objects and attempts to minimise both the
number of memory allocations during network transfers as well as
memory usage.
The added function provides the interface for getting an ALPN tag
negotiated during TLS connection establishment.
The new function can be used by higher level transports.
This commit adds manual read timer control mode, similarly to TCP.
This way the read timer can be controlled manually using:
* isc__nmsocket_timer_start();
* isc__nmsocket_timer_stop();
* isc__nmsocket_timer_restart().
The change is required to make it possible to implement more
sophisticated read timer control policies in DNS transports, built on
top of TLS.
This commit adds a manual read timer control mode to the TCP
code (adding isc__nmhandle_set_manual_timer() as the interface to it).
Manual read timer control mode suppresses read timer restarting the
read timer when receiving any amount of data. This way the read timer
can be controlled manually using:
* isc__nmsocket_timer_start();
* isc__nmsocket_timer_stop();
* isc__nmsocket_timer_restart().
The change is required to make it possible to implement more
sophisticated read timer control policies in DNS transports, built on
top of TCP.
This commit adds implementation of isc__nmsocket_timer_restart() and
isc__nmsocket_timer_stop() for generic TLS code in order to make its
interface more compatible with that of TCP.
This commit adds implementations of isc_nm_bad_request() and
isc__nmsocket_reset() to the generic TLS stream code in order to make
it more compatible with TCP code.
When isc_buffer_t buffer is created with isc_buffer_allocate() assume
that we want it to always auto-reallocate instead of having an extra
call to enable auto-reallocation.
Add internal logging functions isc__netmgr_log, isc__nmsocket_log(), and
isc__nmhandle_log() that can be used to add logging messages to the
netmgr, and change all direct use of isc_log_write() to use those
logging functions to properly prefix them with netmgr, nmsocket and
nmsocket+nmhandle.
This commit adds a check if 'sock->recv_cb' might have been nullified
during the call to 'sock->recv_cb'. That could happen, e.g. by an
indirect call to 'isc_nmhandle_close()' from within the callback when
wrapping up.
In this case, let's close the TLS connection.
This commit ensures that the non-atomic flags inside a DoH listener
socket object (and associated worker) are accessed when doing accept
for a connection only from within the context of the dedicated thread,
but not other worker threads.
The purpose of this commit is to avoid TSAN errors during
isc__nmsocket_closing() calls. It is a continuation of
4b5559cd8f.
This commit ensures that the non-atomic flags inside a TLS listener
socket object (and associated worker) are accessed when doing
handshake for a connection only from within the context of the
dedicated thread, but not other worker threads.
The purpose of this commit is to avoid TSAN errors during
isc__nmsocket_closing() calls. It is a continuation of
4b5559cd8f.
This commit ensures that the flags inside a TLS listener socket
object (and associated worker) are accessed when accepting a
connection only from within the context of the dedicated thread, but
not other worker threads.
The TLSDNS transport was not honouring the single read callback for
TLSDNS client. It would call the read callbacks repeatedly in case the
single TLS read would result in multiple DNS messages in the decoded
buffer.
This commit ensures that send callbacks are always called from within
the context of its worker thread even in the case of
shuttigdown/inactive socket, just like TCP transport does and with
which TLS attempts to be as compatible as possible.
This commit changes ISC_R_NOTCONNECTED error code to ISC_R_CANCELLED
when attempting to start reading data on the shutting down socket in
order to make its behaviour compatible with that of TCP and not break
the common code in the unit tests.
It turned out that after the latest Network Manager refactoring
'sock->reading' flag was not processed correctly. Due to this
isc_nm_read_stop() might not work as expected because reading from the
underlying TCP socket could have been resume in 'tls_do_bio()'
regardless of the 'sock->reading' value.
This bug did not seem to cause problems with DoH, so it was not
noticed, but Stream DNS has more strict expectations regarding the
underlying transport.
Additionally to the above, the 'sock->recv_read' flag was completely
ignored and corresponding logic was completely unimplemented. That did
not allow to implement one fine detail compared to TCP: once reading
is started, it could be satisfied by one datum reading.
This commit fixes the issues above.
This commit make TCP code use uv_try_write() on best effort basis,
just like TCP DNS and TLS DNS code does.
This optimisation was added in
'caa5b6548a11da6ca772d6f7e10db3a164a18f8d' but, similar change was
mistakenly omitted for generic TCP code. This commit fixes that.
Previously, the send callback would be synchronous only on success. Add
an option (similar to what other callbacks have) to decide whether we
need the asynchronous send callback on a higher level.
On a general level, we need the asynchronous callbacks to happen only
when we are invoking the callback from the public API. If the path to
the callback went through the libuv callback or netmgr callback, we are
already on asynchronous path, and there's no need to make the call to
the callback asynchronous again.
For the send callback, this means we need the asynchronous path for
failure paths inside the isc_nm_send() (which calls isc__nm_udp_send(),
isc__nm_tcp_send(), etc...) - all other invocations of the send callback
could be synchronous, because those are called from the respective libuv
send callbacks.
Previously, the read callback would be synchronous only on success or
timeout. Add an option (similar to what other callbacks have) to decide
whether we need the asynchronous read callback on a higher level.
On a general level, we need the asynchronous callbacks to happen only
when we are invoking the callback from the public API. If the path to
the callback went through the libuv callback or netmgr callback, we are
already on asynchronous path, and there's no need to make the call to
the callback asynchronous again.
For the read callback, this means we need the asynchronous path for
failure paths inside the isc_nm_read() (which calls isc__nm_udp_read(),
isc__nm_tcp_read(), etc...) - all other invocations of the read callback
could be synchronous, because those are called from the respective libuv
or netmgr read callbacks.
The netievent handler for isc_nmsocket_set_tlsctx() was inadvertently
ifdef'd out when BIND was built with --disable-doh, resulting in an
assertion failure on startup when DoT was configured.
It was possible that accept callback can be called after listener
shutdown. In such a case the callback pointer equals NULL, leading to
segmentation fault. This commit fixes that.
This commit introduces a primitive isc__nmsocket_stop() which performs
shutting down on a multilayered socket ensuring the proper order of
the operations.
The shared data within the socket object can be destroyed after the
call completed, as it is guaranteed to not be used from within the
context of other worker threads.
During loop manager refactoring isc_nmsocket_set_tlsctx() was not
properly adapted. The function is expected to broadcast the new TLS
context for every worker, but this behaviour was accidentally broken.
The isc_nm_udpconnect() erroneously set the reuse port with
load-balancing on the outgoing connected UDP sockets. This socket
option makes only sense for the listening sockets. Don't set the
load-balancing reuse port option on the outgoing UDP sockets.
This commit fixes TLS DNS verification error message reporting which
we probably broke during one of the recent networking code
refactorings.
This prevent e.g. dig from producing useful error messages related to
TLS certificates verification.
Ensure that TLS error is empty before calling SSL_get_error() or doing
SSL I/O so that the result will not get affected by prior error
statuses.
In particular, the improper error handling led to intermittent unit
test failure and, thus, could be responsible for some of the system
test failures and other intermittent TLS-related issues.
See here for more details:
https://www.openssl.org/docs/man3.0/man3/SSL_get_error.html
In particular, it mentions the following:
> The current thread's error queue must be empty before the TLS/SSL
> I/O operation is attempted, or SSL_get_error() will not work
> reliably.
As we use the result of SSL_get_error() to decide on I/O operations,
we need to ensure that it works reliably by cleaning the error queue.
TLS DNS: empty error queue before attempting I/O
The check is left from when tcp_connect_direct() called isc__nm_socket()
and it was uncertain whether it had succeeded, but now isc__nm_socket()
is called before tcp_connect_direct(), so sock->fd cannot be -1.
*** CID 357292: (REVERSE_NEGATIVE)
/lib/isc/netmgr/tcp.c: 309 in isc_nm_tcpconnect()
303
304 atomic_store(&sock->active, true);
305
306 result = tcp_connect_direct(sock, req);
307 if (result != ISC_R_SUCCESS) {
308 atomic_store(&sock->active, false);
>>> CID 357292: (REVERSE_NEGATIVE)
>>> You might be using variable "sock->fd" before verifying that it is >= 0.
309 if (sock->fd != (uv_os_sock_t)(-1)) {
310 isc__nm_tcp_close(sock);
311 }
312 isc__nm_connectcb(sock, req, result, true);
313 }
314
Add new semantic patch to replace the straightfoward uses of:
ptr = isc_mem_{get,allocate}(..., size);
memset(ptr, 0, size);
with the new API call:
ptr = isc_mem_{get,allocate}x(..., size, ISC_MEM_ZERO);
The isc__nm_udp_send() callback would be called synchronously when
shutting down or when the socket has been closed. This could lead to
double locking in the calling code and thus those callbacks needs to be
called asynchronously.
By bumping the minimum libuv version to 1.34.0, it allows us to remove
all libuv shims we ever had and makes the code much cleaner. The
up-to-date libuv is available in all distributions supported by BIND
9.19+ either natively or as a backport.
After the loopmgr work has been merged, we can now cleanup the TCP and
TLS protocols a little bit, because there are stronger guarantees that
the sockets will be kept on the respective loops/threads. We only need
asynchronous call for listening sockets (start, stop) and reading from
the TCP (because the isc_nm_read() might be called from read callback
again.
This commit does the following changes (they are intertwined together):
1. Cleanup most of the asynchronous events in the TCP code, and add
comments for the events that needs to be kept asynchronous.
2. Remove isc_nm_resumeread() from the netmgr API, and replace
isc_nm_resumeread() calls with existing isc_nm_read() calls.
3. Remove isc_nm_pauseread() from the netmgr API, and replace
isc_nm_pauseread() calls with a new isc_nm_read_stop() call.
4. Disable the isc_nm_cancelread() for the streaming protocols, only the
datagram-like protocols can use isc_nm_cancelread().
5. Add isc_nmhandle_close() that can be used to shutdown the socket
earlier than after the last detach. Formerly, the socket would be
closed only after all reading and sending would be finished and the
last reference would be detached. The new isc_nmhandle_close() can
be used to close the underlying socket earlier, so all the other
asynchronous calls would call their respective callbacks immediately.
Co-authored-by: Ondřej Surý <ondrej@isc.org>
Co-authored-by: Artem Boldariev <artem@isc.org>
The destructor for the isc__nmsocket_t was missing call to the
isc_refcount_destroy() on the reference counter, which might lead to
spurious ThreadSanitizer data race warnings if we ever change the
acquire-release memory order in the isc_refcount_decrement().
Simplify the closing code - during the loopmgr implementation, it was
discovered that the various lists used by the uv_loop_t aren't FIFO, but
LIFO. See doc/dev/libuv.md for more details.
With this knowledge, we can close the protocol handles (uv_udp_t and
uv_tcp_t) and uv_timer_t at the same time by reordering the uv_close()
calls, and thus making sure that after calling the
isc__nm_stoplistening(), the code will not issue any additional callback
calls (accept, read) on the socket that stopped listening.
This might help with the TLS and DoH shutting down sequence as described
in the [GL #3509] as we now stop the reading, stop the timer and call
the uv_close() as earliest as possible.
The network manager UDP code was misinterpreting when the libuv called
the udp_recv_cb with nrecv == 0 and addr == NULL -> this doesn't really
mean that the "stream" has ended, but the libuv indicates that the
receive buffer can be freed. This could lead to assertion failure in
the code that calls isc_nm_read() from the network manager read callback
due to the extra spurious callbacks.
Properly handle the extra callback calls from the libuv in the client
read callback, and refactor the UDP isc_nm_read() implementation to be
synchronous, so no datagram is lost between the time that we stop the
reading from the UDP socket and we restart it again in the asychronous
udpread event.
Add a unit test that tests the isc_nm_read() call from the read
callback to receive two datagrams.
Commit b69e783164 inadvertently caused
builds using the --disable-doh switch to fail, by putting the
declaration of the isc__nm_async_settlsctx() function inside an #ifdef
block that is only evaluated when DNS-over-HTTPS support is enabled.
This results in the following compilation errors being triggered:
netmgr/netmgr.c:2657:1: error: no previous prototype for 'isc__nm_async_settlsctx' [-Werror=missing-prototypes]
2657 | isc__nm_async_settlsctx(isc__networker_t *worker, isc__netievent_t *ev0) {
| ^~~~~~~~~~~~~~~~~~~~~~~
Fix by making the declaration of the isc__nm_async_settlsctx() function
in lib/isc/netmgr/netmgr-int.h visible regardless of whether
DNS-over-HTTPS support is enabled or not.
The isc_nm_listentlsdns() function erroneously calls
isc__nm_tcpdns_stoplistening() instead of isc__nm_tlsdns_stoplistening()
when something goes wrong, which can cause an assertion failure.
When we are closing the listening sockets, there's a time window in
which the TCP connection could be accepted although the respective
stoplistening function has already returned to control to the caller.
Clear the accept callback function early, so it doesn't get called when
we are not interested in the incoming connections anymore.
Previously:
* applications were using isc_app as the base unit for running the
application and signal handling.
* networking was handled in the netmgr layer, which would start a
number of threads, each with a uv_loop event loop.
* task/event handling was done in the isc_task unit, which used
netmgr event loops to run the isc_event calls.
In this refactoring:
* the network manager now uses isc_loop instead of maintaining its
own worker threads and event loops.
* the taskmgr that manages isc_task instances now also uses isc_loopmgr,
and every isc_task runs on a specific isc_loop bound to the specific
thread.
* applications have been updated as necessary to use the new API.
* new ISC_LOOP_TEST macros have been added to enable unit tests to
run isc_loop event loops. unit tests have been updated to use this
where needed.
In some circumstances generic TLS code could have resumed data reading
unexpectedly on the TCP layer code. Due to this, the behaviour of
isc_nm_pauseread() and isc_nm_resumeread() might have been
unexpected. This commit fixes that.
The bug does not seems to have real consequences in the existing code
due to the way the code is used. However, the bug could have lead to
unexpected behaviour and, at any rate, makes the TLS code behave
differently from the TCP code, with which it attempts to be as
compatible as possible.
Sometimes tls_do_bio() might be called when there is no new data to
process (most notably, when resuming reads), in such a case internal
TLS session state will remain untouched and old value in 'errno' will
alter the result of SSL_get_error() call, possibly making it to return
SSL_ERROR_SYSCALL. This value will be treated as an error, and will
lead to closing the connection, which is not what expected.
The STATID_CONNECT and STATID_CONNECTFAIL statistics were used
incorrectly. The STATID_CONNECT was incremented twice (once in
the *_connect_direct() and once in the callback) and STATID_CONNECTFAIL
would not be incremented at all if the failure happened in the callback.
Closes: #3452