Prepare the statistics channel data in the offloaded worker thread, so
the networking thread is not blocked by the process gathering data from
various data structures. Only the netmgr send is then run on the
networkin thread when all the data is already there.
isc_loop() can now take its place.
This also requires changes to the test harness - instead of running the
setup and teardown outside of th main loop, we now schedule the setup
and teardown to run on the loop (via isc_loop_setup() and
isc_loop_teardown()) - this is needed because the new the isc_loop()
call has to be run on the active event loop, but previously the
isc_loop_current() (and the variants like isc_loop_main()) would work
even outside of the loop because it needed just isc_tid() to work, but
not the full loop (which was mainly true for the main thread).
if we had a method to get the running loop, similar to how
isc_tid() gets the current thread ID, we can simplify loop
and loopmgr initialization.
remove most uses of isc_loop_current() in favor of isc_loop().
in some places where that was the only reason to pass loopmgr,
remove loopmgr from the function parameters.
The case insensitive matching in isc_ht was basically completely broken
as only the hashvalue computation was case insensitive, but the key
comparison was always case sensitive.
The isc_log_t contains a isc_logconfig_t that is swapped, dereferenced
or accessed its fields through a mutex. Instead of protecting it with a
rwlock, use RCU.
To reduce memory pressure, we can add light per-loop (netmgr worker)
memory pools for isc_nmsocket_t structures. This will help in
situations where there's a lot of churn creating and destroying the
nmsockets.
Embedding isc_nmsocket_h2_t directly inside isc_nmsocket_t had increased
the size of isc_nmsocket_t to 1840 bytes. Making the isc_nmsocket_h2_t
to be a pointer to the structure and allocated on demand allows us to
reduce the size to 1208 bytes. While there are still some possible
reductions in the isc_nmsocket_t (embedded tlsstream, streamdns
structures), this was the far biggest drop in the memory usage.
The uv_req union member of struct isc__nm_uvreq contained libuv request
types that we don't use. Turns out that uv_getnameinfo_t is 1000 bytes
big and unnecessarily enlarged the whole structure. Remove all the
unused members from the uv_req union.
After removing sockaddr_unix from isc_sockaddr, we can also remove
sockaddr_storage and reduce the isc_sockaddr size from 152 bytes to just
48 bytes needed to hold IPv6 addresses.
As it was pointed out, the alignas() can't be used on objects larger
than `max_align_t` otherwise the compiler might miscompile the code to
use auto-vectorization on unaligned memory.
As we were only using alignas() as a way to prevent false memory
sharing, we can use manual padding in the affected structures.
With _exit() instead of exit() in place, we don't need
isc__tls_setfatalmode() mechanism as the atexit() calls will not be
executed including OpenSSL atexit hooks.
Instead of crude 5x rcu_barrier() call in the isc__mem_destroy(), change
the mechanism to call rcu_barrier() until the memory use and references
stops decreasing. This should deal with any number of nested call_rcu()
levels.
Additionally, don't destroy the contextslock if the list of the contexts
isn't empty. Destroying the lock could make the late threads crash.
Instead of running all the cryptographic validation in a tight loop,
spread it out into multiple event loop "ticks", but moving every single
validation into own isc_async_run() asynchronous event. Move the
cryptographic operations - both verification and DNSKEY selection - to
the offloaded threads (isc_work_enqueue), this further limits the time
we spend doing expensive operations on the event loops that should be
fast.
Limit the impact of invalid or malicious RRSets that contain crafted
records causing the dns_validator to do many validations per single
fetch by adding a cap on the maximum number of validations and maximum
number of validation failures that can happen before the resolving
fails.
cmocka.h and jemalloc.h/malloc_np.h has conflicting macro definitions.
While fixing them with push_macro for only malloc is done below, we only
need the non-standard mallocx interface which is easy to just define by
ourselves.
Because we don't use jemalloc functions directly, but only via the
libisc library, the dynamic linker might pull the jemalloc library
too late when memory has been already allocated via standard libc
allocator.
Add a workaround round isc_mem_create() that makes the dynamic linker
to pull jemalloc earlier than libc.
This commit improves TLS messages framing by avoiding an extra call to
SSL_write_ex(). Before that we would use an extra SSL_write_ex() call
to pass DNS message length to OpenSSL. That could create an extra TLS
frame, increasing number of bytes sent due to frame header and
padding.
This commit fixes that by making the code pass both DNS message length
and data at once, just like old TLS code did.
It should improve compatibility with some buggy clients that expect
both DNS message length and data to be in one TLS frame.
Older TLS DNS code worked like this, too.
The statistics channel does not expose the current number of TCP clients
connected, only the highwater. Therefore, users did not have an easy
means to collect statistics about TCP clients served over time. This
information could only be measured as a seperate mechanism via rndc by
looking at the TCP quota filled.
In order to expose the exact current count of connected TCP clients
(tracked by the "tcp-clients" quota) as a statistics counter, an
extra, dedicated Network Manager callback would need to be
implemented for that purpose (a counterpart of ns__client_tcpconn()
that would be run when a TCP connection is torn down), which is
inefficient. Instead, track the number of currently-connected TCP
clients separately for IPv4 and IPv6, as Network Manager statistics.
This commit removes wrong INSIST() condition as the assumption that if
'csock->recv_cb != NULL' iff 'csock->statichandle != NULL' is wrong.
There is no direct relation between 'csock->statichandle' and
'csock->recv_cb', as 'csock->statichandle' gets set when allocating a
handle regardless of 'csock->recv_cb' not being NULL, as it is
possible to attach to the handle without starting a read operation (at
the very least, it is correct to start writing before reading).
That condition made `cipher-suites` system test fail with crash on
some platforms in FIPS mode (namely, Oracle Linux 9) despite not being
related to FIPS at all.
This commits adds low-level wrappers on top of
'SSL_CTX_set_ciphersuites()'. These are going to be a foundation
behind the 'cipher-suites' option of the 'tls' statement.
isc/atomic.h and its defined macros should be preferred over
stdatomic.h and explicit atomic operations.
Fix the redundant stdatomic.h header in histo.c found by the introduced
check.
This commit modifies TLS Stream and DNS-over-HTTPS transports so that
they do not use the "sock->iface" and "sock->peer" of the lower level
transport directly.
That did not cause any problems before, as things worked as expected,
but with the introduction of PROXYv2 support we use handles to store
the information in both PROXY Stream and UDP Proxy
transports. Therefore, in order to propagate the information (like
addresses), extracted from PROXYv2 headers, from the lower level
transports to the higher-level ones, we need to get that information
from the lower-level handles rather than sockets. That means that we
should get the peer and interface addresses using the intended
APIs ("isc_nmhandle_peeraddr()" and "isc_nmhandle_localaddr()").
Add the new isc__nm_dump_active_manager() function that can be used
for debugging purposes: it dumps all active sockets withing the
network manager instance.
This commit adds a new transport that supports PROXYv2 over UDP. It is
built on top of PROXYv2 handling code (just like PROXY Stream). It
works by processing and stripping the PROXYv2 headers at the beginning
of a datagram (when accepting a datagram) or by placing a PROXYv2
header to the beginning of an outgoing datagram.
The transport is built in such a way that incoming datagrams are being
handled with minimal memory allocations and copying.
In the previous versions of the NM, detecting the case when worker is
shutting down was not that important and actual status code did not
matter much. However, that might be not the case all the time.
This commit makes necessary modifications to the code.
This commit makes it possible to use PROXY Stream not only over TCP,
but also over TLS. That is, now PROXY Stream can work in two modes as
far as TLS is involved:
1. PROXY over (plain) TCP - PROXYv2 headers are sent unencrypted before
TLS handshake messages. That is the main mode as described in the
PROXY protocol specification (as it is clearly stated there), and most
of the software expects PROXYv2 support to be implemented that
way (e.g. HAProxy);
2. PROXY over (encrypted) TLS - PROXYv2 headers are sent after the TLS
handshake has happened. For example, this mode is being used (only ?)
by "dnsdist". As far as I can see, that is, in fact, a deviation from
the spec, but I can certainly see how PROXYv2 could end up being
implemented this way elsewhere.
This commit modifies TLS Stream to make it possible to use over PROXY
Stream. That is required to add PROVYv2 support into TLS-based
transports (DNS over HTTP, DNS over TLS).
This commit adds a new stream-based transport with an interface
compatible with TCP. The transport is built on top of TCP transport
and the new PROXYv2 handling code. Despite being built on top of TCP,
it can be easily extended to work on top of any TCP-like stream-based
transport. The intention of having this transport is to add PROXYv2
support into all existing stream-based DNS transport (DNS over TCP,
DNS over TLS, DNS over HTTP) by making the work on top of this new
transport.
The idea behind the transport is simple after accepting the connection
or connecting to a remote server it enters PROXYv2 handling mode: that
is, it either attempts to read (when accepting the connection) or send
(when establishing a connection) a PROXYv2 header. After that it works
like a mere wrapper on top of the underlying stream-based
transport (TCP).
This commit adds a set of utilities for dealing with PROXYv2 headers,
both parsing and generating them. The code has no dependencies from
the networking code and is (for the most part) a "separate library".
The part responsible for handling incoming PROXYv2 headers is
structured as a state machine which accepts data as input and calls a
callback to notify the upper-level code about the data processing
status.
Such a design, among other things, makes it easy to write a thorough
unit test suite for that, as there are fewer dependencies as well as
will not stand in the way of any changes in the networking code.
Previously, there were two methods of working with the overmem
condition:
1. hi/lo water callback - when the overmem condition was reached
for the first time, the water callback was called with HIWATER
mark and .is_overmem boolean was set internally. Similarly,
when the used memory went below the lo water mark, the water
callback would be called with LOWATER mark and .is_overmem
was reset. This check would be called **every** time memory
was allocated or freed.
2. isc_mem_isovermem() - a simple getter for the internal
.is_overmem flag
This commit refactors removes the first method and move the hi/lo water
checks to the isc_mem_isovermem() function, thus we now have only a
single method of checking overmem condition and the check for hi/lo
water is removed from the hot path for memory contexts that doesn't use
overmem checks.
The AES algorithm for DNS cookies was being kept for legacy reasons, and
it can be safely removed in the next major release. Remove both the AES
usage for DNS cookies and the AES implementation itself.
Concurrent threads can access a hashmap for reading by creating and
then destroying an iterator, in which case the integer number of the
active iterators is increased or decreased from different threads,
introducing a data race. Use atomic operations to protect the variable.