It is advisable to disable Nagle's algorithm for HTTP/2 connections
because multiple HTTP/2 streams could be multiplexed over one
transport connection. Thus, delays when delivering small packets could
bring down performance for the whole session. HTTP/2 is meant to be
used this way.
This commit makes the server-side code polite.
It fixes the error handling code on the server side and fixes
returning error code in responses (there was a nasty bug which could
potentially crash the server).
Also, in this commit we limit max size POST request data to 96K, max
processed data size in headers to 128K (should be enough to handle any
GET requests).
If these limits are surpassed, server will terminate the request with
RST_STREAM without responding with error code. Otherwise it politely
responds with error code.
This commit also limits number of concurrent HTTP/2 streams per
transport connection on server to 100 (as nghttp2 advises by default).
Ideally, these parameters should be configurable both globally and per
every HTTP endpoint description in the configuration file, but for now
putting sane limits should be enough.
- style, cleanup, and removal of unnecessary code.
- combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint()
into one function, renamed isc_http_endpoint().
- moved isc_nm_http_connect_send_request() into doh_test.c as a helper
function; remove it from the public API.
- renamed isc_http2 and isc_nm_http2 types and functions to just isc_http
and isc_nm_http, for consistency with other existing names.
- shortened a number of long names.
- the caller is now responsible for determining the peer address.
in isc_nm_httpconnect(); this eliminates the need to parse the URI
and the dependency on an external resolver.
- the caller is also now responsible for creating the SSL client context,
for consistency with isc_nm_tlsdnsconnect().
- added setter functions for HTTP/2 ALPN. instead of setting up ALPN in
isc_tlsctx_createclient(), we now have a function
isc_tlsctx_enable_http2client_alpn() that can be run from
isc_nm_httpconnect().
- refactored isc_nm_httprequest() into separate read and send functions.
isc_nm_send() or isc_nm_read() is called on an http socket, it will
be stored until a corresponding isc_nm_read() or _send() arrives; when
we have both halves of the pair the HTTP request will be initiated.
- isc_nm_httprequest() is renamed isc__nm_http_request() for use as an
internal helper function by the DoH unit test. (eventually doh_test
should be rewritten to use read and send, and this function should
be removed.)
- added implementations of isc__nm_tls_settimeout() and
isc__nm_http_settimeout().
- increased NGHTTP2 header block length for client connections to 128K.
- use isc_mem_t for internal memory allocations inside nghttp2, to
help track memory leaks.
- send "Cache-Control" header in requests and responses. (note:
currently we try to bypass HTTP caching proxies, but ideally we should
interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
This commit completes the support for DNS-over-HTTP(S) built on top of
nghttp2 and plugs it into the BIND. Support for both GET and POST
requests is present, as required by RFC8484.
Both encrypted (via TLS) and unencrypted HTTP/2 connections are
supported. The latter are mostly there for debugging/troubleshooting
purposes and for the means of encryption offloading to third-party
software (as might be desirable in some environments to simplify TLS
certificates management).
This commit includes work-in-progress implementation of
DNS-over-HTTP(S).
Server-side code remains mostly untested, and there is only support
for POST requests.
This commit resurrects the old TLS code from
8f73c70d23e26954165fd44ce5617a95f112bcff.
It also includes numerous stability fixes and support for
isc_nm_cancelread() for the TLS layer.
The code was resurrected to be used for DoH.
* Following the example set in 634bdfb16d8, the tlsdns netmgr
module now uses libuv and SSL primitives directly, rather than
opening a TLS socket which opens a TCP socket, as the previous
model was difficult to debug. Closes#2335.
* Remove the netmgr tls layer (we will have to re-add it for DoH)
* Add isc_tls API to wrap the OpenSSL SSL_CTX object into libisc
library; move the OpenSSL initialization/deinitialization from dstapi
needed for OpenSSL 1.0.x to the isc_tls_{initialize,destroy}()
* Add couple of new shims needed for OpenSSL 1.0.x
* When LibreSSL is used, require at least version 2.7.0 that
has the best OpenSSL 1.1.x compatibility and auto init/deinit
* Enforce OpenSSL 1.1.x usage on Windows
* Added a TLSDNS unit test and implemented a simple TLSDNS echo
server and client.
On Windows, we were limiting the number of listening children to just 1,
but we were then iterating on mgr->nworkers. That lead to scheduling
more async_*listen() than actually allocated and out-of-bound read-write
operation on the heap.
On platforms without load-balancing socket all the queries would be
handle by a single thread. Currently, the support for load-balanced
sockets is present in Linux with SO_REUSEPORT and FreeBSD 12 with
SO_REUSEPORT_LB.
This commit adds workaround for such platforms that:
1. setups single shared listening socket for all listening nmthreads for
UDP, TCP and TCPDNS netmgr transports
2. Calls uv_udp_bind/uv_tcp_bind on the underlying socket just once and
for rest of the nmthreads only copy the internal libuv flags (should
be just UV_HANDLE_BOUND and optionally UV_HANDLE_IPV6).
3. start reading on UDP socket or listening on TCP socket
The load distribution among the nmthreads is uneven, but it's still
better than utilizing just one thread for processing all the incoming
queries
On FreeBSD, the stack is destroyed more aggressively than on Linux and
that revealed a bug where we were allocating the 16-bit len for the
TCPDNS message on the stack and the buffer got garbled before the
uv_write() sendback was executed. Now, the len is part of the uvreq, so
we can safely pass it to the uv_write() as the req gets destroyed after
the sendcb is executed.
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
When calling the high level netmgr functions, the callback would be
sometimes called synchronously if we catch the failure directly, or
asynchronously if it happens later. The synchronous call to the
callback could create deadlocks as the caller would not expect the
failed callback to be executed directly.
Add server-side TLS support to netmgr - that includes moving some of the
isc_nm_ functions from tcp.c to a wrapper in netmgr.c calling a proper
tcp or tls function, and a new isc_nm_listentls() function.
Add DoT support to tcpdns - isc_nm_listentlsdns().
socket() call can return an error - e.g. EMFILE, so we need to handle
this nicely and not crash.
Additionally wrap the socket() call inside a platform independent helper
function as the Socket data type on Windows is unsigned integer:
> This means, for example, that checking for errors when the socket and
> accept functions return should not be done by comparing the return
> value with –1, or seeing if the value is negative (both common and
> legal approaches in UNIX). Instead, an application should use the
> manifest constant INVALID_SOCKET as defined in the Winsock2.h header
> file.
this function sets the read timeout for the socket associated
with a netmgr handle and, if the timer is running, resets it.
for TCPDNS sockets it also sets the read timeout and resets the
timer on the outer TCP socket.
When we are operating on the tcpdns socket, we need to double check
whether the socket or its outerhandle or its listener or its mgr is
still active and when not, bail out early.
There were more races that could happen while connecting to a
socket while closing or shutting down the same socket. This
commit introduces a .closing flag to guard the socket from
being closed twice.
There was a data race where a new event could be scheduled after
isc__nm_async_shutdown() had cleaned up all the dangling UDP/TCP
sockets from the loop.
- more logical code flow.
- propagate errors back to the caller.
- add a 'reading' flag and call the callback from failed_read_cb()
only when it the socket was actively reading.
- don't bother closing sockets that are already closing.
- UDP read timeout timer was not stopped after reading.
- improve handling of TCP connection failures.
- isc_nm_tcpdnsconnect() sets up up an outgoing TCP DNS connection.
- isc_nm_tcpconnect(), _udpconnect() and _tcpdnsconnect() now take a
timeout argument to ensure connections time out and are correctly
cleaned up on failure.
- isc_nm_read() now supports UDP; it reads a single datagram and then
stops until the next time it's called.
- isc_nm_cancelread() now runs asynchronously to prevent assertion
failure if reading is interrupted by a non-network thread (e.g.
a timeout).
- isc_nm_cancelread() can now apply to UDP sockets.
- added shim code to support UDP connection in versions of libuv
prior to 1.27, when uv_udp_connect() was added
all these functions will be used to support outgoing queries in dig,
xfrin, dispatch, etc.
1. The isc__nm_tcp_send() and isc__nm_tcp_read() was not checking
whether the socket was still alive and scheduling reads/sends on
closed socket.
2. The isc_nm_read(), isc_nm_send() and isc_nm_resumeread() have been
changed to always return the error conditions via the callbacks, so
they always succeed. This applies to all protocols (UDP, TCP and
TCPDNS).
isc_nmhandle_detach() needs to complete in the same thread
as shutdown_walk_cb() to avoid a race. Clear the caller's
pointer then pass control to the worker if necessary.
WARNING: ThreadSanitizer: data race
Write of size 8 at 0x000000000001 by thread T1:
#0 isc_nmhandle_detach lib/isc/netmgr/netmgr.c:1258:15
#1 control_command bin/named/controlconf.c:388:3
#2 dispatch lib/isc/task.c:1152:7
#3 run lib/isc/task.c:1344:2
Previous read of size 8 at 0x000000000001 by thread T2:
#0 isc_nm_pauseread lib/isc/netmgr/netmgr.c:1449:33
#1 recv_data lib/isccc/ccmsg.c:109:2
#2 isc__nm_tcp_shutdown lib/isc/netmgr/tcp.c:1157:4
#3 shutdown_walk_cb lib/isc/netmgr/netmgr.c:1515:3
#4 uv_walk <null>
#5 process_queue lib/isc/netmgr/netmgr.c:659:4
#6 process_normal_queue lib/isc/netmgr/netmgr.c:582:10
#7 process_queues lib/isc/netmgr/netmgr.c:590:8
#8 async_cb lib/isc/netmgr/netmgr.c:548:2
#9 <null> <null>
The isc__nm_tcpdns_stoplistening() would call isc__nmsocket_clearcb()
that would clear the .accept_cb from non-netmgr thread. Change the
tcpdns_stoplistening to enqueue ievent that would get processed in the
right netmgr thread to avoid locking.
The SO_REUSEADDR, SO_REUSEPORT and SO_REUSEPORT_LB has different meaning
on different platform. In this commit, we split the function to set the
reuse of address/port and setting the load-balancing into separate
functions.
The libuv library already have multiplatform support for setting
SO_REUSEADDR and SO_REUSEPORT that allows binding to the same address
and port, but unfortunately, when used after the load-balancing socket
options have been already set, it overrides the previous setting, so we
need our own helper function to enable the SO_REUSEADDR/SO_REUSEPORT
first and then enable the load-balancing socket option.
On POSIX based systems both uv_os_sock_t and uv_os_fd_t are both typedef
to int. That's not true on Windows, where uv_os_sock_t is SOCKET and
uv_os_fd_t is HANDLE and they differ in level of indirection.
The isc__nm_socket_freebind() has been refactored to match other
isc__nm_socket_...() helper functions and take uv_os_fd_t and
sa_family_t as function arguments.
The isc_nm_pause(), isc_nm_resume() and finishing the nm_thread() from
nm_destroy() has been refactored, so all use the netievents instead of
directly touching the worker structure members. This allows us to
remove most of the locking as the .paused and .finished members are
always accessed from the matching nm_thread.
When shutting down the nm_thread(), instead of issuing uv_stop(), we
just shutdown the .async handler, so all uv_loop_t events are properly
finished first and uv_run() ends gracefully with no outstanding active
handles in the loop.
If NETMGR_TRACE is defined, we now maintain a list of active sockets
in the netmgr object and a list of active handles in each socket
object; by walking the list and printing `backtrace` in a debugger
we can see where they were created, to assist in in debugging of
reference counting errors.
On shutdown, if netmgr finds there are still active sockets after
waiting, isc__nm_dump_active() will be called to log the list of
active sockets and their underlying handles, along with some details
about them.
- rename isc_nmsocket_t->tcphandle to statichandle
- cancelread functions now take handles instead of sockets
- add a 'client' flag in socket objects, currently unused, to
indicate whether it is to be used as a client or server socket
Each worker has a receive buffer with space for 20 DNS messages of up
to 2^16 bytes each, and the allocator function passed to uv_read_start()
or uv_udp_recv_start() will reserve a portion of it for use by sockets.
UDP can use recvmmsg() and so it needs that entire space, but TCP reads
one message at a time.
This commit introduces separate allocator functions for TCP and UDP
setting different buffer size limits, so that libuv will provide the
correct buffer sizes to each of them.
When a new IPv6 interface/address appears it's first in a tentative
state - in which we cannot bind to it, yet it's already being reported
by the route socket. Because of that BIND9 is unable to listen on any
newly detected IPv6 addresses. Fix it by setting IP_FREEBIND option (or
equivalent option on other OSes) and then retrying bind() call.
We erroneously tried to destroy a socket after issuing
isc__nm_tcp{,dns}_close. Under some (race) circumstances we could get
nm_socket_cleanup to be called twice for the same socket, causing an
access to a dead memory.
the blackhole ACL was accidentally disabled with respect to client
queries during the netmgr conversion.
in order to make this work for TCP, it was necessary to add a return
code to the accept callback functions passed to isc_nm_listentcp() and
isc_nm_listentcpdns().
isc__nm_tcpdns_send() was not asynchronous and accessed socket
internal fields in an unsafe manner, which could lead to a race
condition and subsequent crash. Fix it by moving tcpdns processing
to a proper netmgr thread.
The isc_nm_cancelread() function cancels reading on a connected
socket and calls its read callback function with a 'result'
parameter of ISC_R_CANCELED.
the isc_nm_tcpconnect() function establishes a client connection via
TCP. once the connection is esablished, a callback function will be
called with a newly created network manager handle.
A TCPDNS socket creates a handle for each complete DNS message.
Previously, when all the handles were disconnected, the socket
would be closed, but the wrapped TCP socket might still have
more to read.
Now, when a connection is established, the TCPDNS socket creates
a reference to itself by attaching itself to sock->self. This
reference isn't cleared until the connection is closed via
EOF, timeout, or server shutdown. This allows the socket to remain
open even when there are no active handles for it.
- isc__nmhandle_get() now attaches to the sock in the nmhandle object.
the caller is responsible for dereferencing the original socket
pointer when necessary.
- tcpdns listener sockets attach sock->outer to the outer tcp listener
socket. tcpdns connected sockets attach sock->outerhandle to the handle
for the tcp connected socket.
- only listener sockets need to be attached/detached directly. connected
sockets should only be accessed and reference-counted via their
associated handles.
there is no need for a caller to reference-count socket objects.
they need tto be able tto close listener sockets (i.e., those
returned by isc_nm_listen{udp,tcp,tcpdns}), and an isc_nmsocket_close()
function has been added for that. other sockets are only accessed via
handles.