The unit tests are now using a common base, which means that
lib/dns/tests/ code now has to include lib/isc/include/isc/test.h and
link with lib/isc/test.c and lib/ns/tests has to include both libisc and
libdns parts.
Instead of cross-linking code between the directories, move the
/lib/<foo>/test.c to /tests/<foo>.c and /lib/<foo>/include/<foo>test.h
to /tests/include/tests/<foo>.h and create a single libtest.la
convenience library in /tests/.
At the same time, move the /lib/<foo>/tests/ to /tests/<foo>/ (but keep
it symlinked to the old location) and adjust paths accordingly. In few
places, we are now using absolute paths instead of relative paths,
because the directory level has changed. By moving the directories
under the /tests/ directory, the test-related code is kept in a single
place and we can avoid referencing files between libns->libdns->libisc
which is unhealthy because they live in a separate Makefile-space.
In the future, the /bin/tests/ should be merged to /tests/ and symlink
kept, and the /fuzz/ directory moved to /tests/fuzz/.
The unit tests contain a lot of duplicated code and here's an attempt
to reduce code duplication.
This commit does several things:
1. Remove #ifdef HAVE_CMOCKA - we already solve this with automake
conditionals.
2. Create a set of ISC_TEST_* and ISC_*_TEST_ macros to wrap the test
implementations, test lists, and the main test routine, so we don't
have to repeat this all over again. The macros were modeled after
libuv test suite but adapted to cmocka as the test driver.
A simple example of a unit test would be:
ISC_RUN_TEST_IMPL(test1) { assert_true(true); }
ISC_TEST_LIST_START
ISC_TEST_ENTRY(test1)
ISC_TEST_LIST_END
ISC_TEST_MAIN (Discussion: Should this be ISC_TEST_RUN ?)
For more complicated examples including group setup and teardown
functions, and per-test setup and teardown functions.
3. The macros prefix the test functions and cmocka entries, so the name
of the test can now match the tested function name, and we don't have
to append `_test` because `run_test_` is automatically prepended to
the main test function, and `setup_test_` and `teardown_test_` is
prepended to setup and teardown function.
4. Update all the unit tests to use the new syntax and fix a few bits
here and there.
5. In the future, we can separate the test declarations and test
implementations which are going to greatly help with uncluttering the
bigger unit tests like doh_test and netmgr_test, because the test
implementations are not declared static (see `ISC_RUN_TEST_DECLARE`
and `ISC_RUN_TEST_IMPL` for more details.
NOTE: This heavily relies on preprocessor macros, but the result greatly
outweighs all the negatives of using the macros. There's less
duplicated code, the tests are more uniform and the implementation can
be more flexible.
Previously, tasks could be created either unbound or bound to a specific
thread (worker loop). The unbound tasks would be assigned to a random
thread every time isc_task_send() was called. Because there's no logic
that would assign the task to the least busy worker, this just creates
unpredictability. Instead of random assignment, bind all the previously
unbound tasks to worker 0, which is guaranteed to exist.
Since the fctx hash table is now self-resizing, and resolver tasks are
selected to match the thread that created the fetch context, there
shouldn't be any significant advantage to having multiple tasks per CPU;
a single task per thread should be sufficient.
Additionally, the fetch context is always pinned to the calling netmgr
thread to minimize the contention just to coalesced fetches - if two
threads starts the same fetch, it will be pinned to the first one to get
the bucket.
After removing the isc_task_onshutdown(), the isc_task_shutdown() and
isc_task_destroy() became obsolete.
Remove calls to isc_task_shutdown() and replace the calls to
isc_task_destroy() with isc_task_detach().
Simplify the internal logic to destroy the task when the last reference
is removed.
As we are going to use libuv outside of the netmgr, we need the shims to
be readily available for the rest of the codebase.
Move the "netmgr/uv-compat.h" to <isc/uv.h> and netmgr/uv-compat.c to
uv.c, and as a rule of thumb, the users of libuv should include
<isc/uv.h> instead of <uv.h> directly.
Additionally, merge netmgr/uverr2result.c into uv.c and rename the
single function from isc__nm_uverr2result() to isc_uverr2result().
SIG and RRSIG records for private algorithms are supposed to contain
the name / OID of the algorithm used to generate them at the start
of the signature field.
For some applications, it's useful to not listen on full battery of
threads. Add workers argument to all isc_nm_listen*() functions and
convenience ISC_NM_LISTEN_ONE and ISC_NM_LISTEN_ALL macros.
dns_rdata_fromtext and dns_rdata_fromwire now checks that there is
a valid name or oid at the start of the keydata when the key algorithm
is PRIVATEDNS and PRIVATEOID respectively.
dns_rdata_totext now prints out the oid if the algorithm is PRIVATEOID.
Instead of passing the number of worker to the dns_zonemgr manually,
get the number of nm threads using the new isc_nm_getnworkers() call.
Additionally, remove the isc_pool API and manage the array of memory
context, zonetasks and loadtasks directly in the zonemgr.
Previously, the zonemgr created 1 task per 100 zones and 1 memory
context per 1000 zones (with minimum 10 tasks and 2 memory contexts) to
reduce the contention between threads.
Instead of reducing the contention by having many resources, create a
per-nm_thread memory context, loadtask and zonetask and spread the zones
between just per-thread resources.
Note: this commit alone does decrease performance when loading the zone
by couple seconds (in case of 1M zone) and thus there's more work in
this whole MR fixing the performance.
Previously, it was possible to assign a bit of memory space in the
nmhandle to store the client data. This was complicated and prevents
further refactoring of isc_nmhandle_t caching (future work).
Instead of caching the data in the nmhandle, allocate the hot-path
ns_client_t objects from per-thread clientmgr memory context and just
assign it to the isc_nmhandle_t via isc_nmhandle_set().
Previously, the unreachable code paths would have to be tagged with:
INSIST(0);
ISC_UNREACHABLE();
There was also older parts of the code that used comment annotation:
/* NOTREACHED */
Unify the handling of unreachable code paths to just use:
UNREACHABLE();
The UNREACHABLE() macro now asserts when reached and also uses
__builtin_unreachable(); when such builtin is available in the compiler.
The C17 standard deprecated ATOMIC_VAR_INIT() macro (see [1]). Follow
the suite and remove the ATOMIC_VAR_INIT() usage in favor of simple
assignment of the value as this is what all supported stdatomic.h
implementations do anyway:
* MacOSX.plaform: #define ATOMIC_VAR_INIT(__v) {__v}
* Gcc stdatomic.h: #define ATOMIC_VAR_INIT(VALUE) (VALUE)
1. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1138r0.pdf
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
'make dist' omits lib/dns/tests/comparekeys/ (added in
7101afa23cfc7cd005aeeb00802481094a0b9cf5) from release tarball it
creates which makes the unit:gcc:tarball CI job permanently fail in the
dst unit test.
The dst_key_pubcompare() and dst_key_compare() didn't have a unit test,
add the unit tests which test comparing the same keys, different keys,
and, where possible, similar keys with a manually altered parameter.
dst_key_pubcompare() internally uses the *_todns() functions of the
lib/dns/openssl*_link.c modules.
dst_key_compare() internally uses the *_compare() functions of the
lib/dns/openssl*_link.c modules.
Unify the header guard style and replace the inconsistent include guards
with #pragma once.
The #pragma once is widely and very well supported in all compilers that
BIND 9 supports, and #pragma once was already in use in several new or
refactored headers.
Using simpler method will also allow us to automate header guard checks
as this is simpler to programatically check.
For reference, here are the reasons for the change taken from
Wikipedia[1]:
> In the C and C++ programming languages, #pragma once is a non-standard
> but widely supported preprocessor directive designed to cause the
> current source file to be included only once in a single compilation.
>
> Thus, #pragma once serves the same purpose as include guards, but with
> several advantages, including: less code, avoidance of name clashes,
> and sometimes improvement in compilation speed. On the other hand,
> #pragma once is not necessarily available in all compilers and its
> implementation is tricky and might not always be reliable.
1. https://en.wikipedia.org/wiki/Pragma_once
Remove the dynamic registration of result codes. Convert isc_result_t
from unsigned + #defines into 32-bit enum type in grand unified
<isc/result.h> header. Keep the existing values of the result codes
even at the expense of the description and identifier tables being
unnecessary large.
Additionally, add couple of:
switch (result) {
[...]
default:
break;
}
statements where compiler now complains about missing enum values in the
switch statement.
Renamed some functions for clarity and readability:
- dns_dispatch_addresponse() -> dns_dispatch_add()
- dns_dispatch_removeresponse() -> dns_dispatch_done()
The dns_dispatch_cancel() function now calls dns_dispatch_done()
directly, so it is no longer ever necessary to call both functions.
dns_dispatch_cancel() is used to terminate dispatch connections
that are still pending, while dns_dispatch_done() is used when they
are complete.
as libdns is no longer exported, it's not necessary to have
init and shutdown functions. the only purpose they served
was to create a private mctx and run dst_lib_init(), which
can be called directly instead.
- disp_connected() has been split into two functions,
udp_connected() (which takes 'resp' as an argument) and
tcp_connected() (which takes 'disp', and calls the connect callbacks
for all pending resps).
- In dns_dispatch_connect(), if a connection is already open, we need to
detach the dispentry immediately because we won't be running
tcp_connected().
- dns_disptach_cancel() also now calls the connect callbacks for pending
TCP responses, and the response callbacks for open TCP connections
waiting on read.
- If udp_connected() runs after dns_dispatch_cancel() has been called,
ensure that the caller's connect callback is run.
- If a UDP connection fails with EADDRINUSE, we try again up to five
times with a different local port number before giving up.
- If a TCP connection is canceled while still pending connection, the
connect timeout may still fire. we attach the dispatch before
connecting to ensure that it won't be detached too soon in this case.
- The dispentry is no longer removed from the pending list when
deactivating, so that the connect callback can still be run if
dns_dispatch_removeresponse() was run while the connecting was
pending.
- Rewrote dns_dispatch_gettcp() to avoid a data race.
- startrecv() and dispatch_getnext() can be called with a NULL resp when
using TCP.
- Refactored udp_recv() and tcp_recv() and added result logging.
- EOF is now treated the same as CANCELED in response callbacks.
- ISC_R_SHUTTINGDOWN is sent to the reponse callbacks for all resps if
tcp_recv() is triggered by a netmgr shutdown. (response callbacks
are *not* sent by udp_recv() in this case.)
Since every dispsock was associated with a dispentry anyway (though not
always vice versa), the members of dispsock have been combined into
dispentry, which is now reference-counted. dispentry objects are now
attached before connecting and detached afterward to prevent races
between the connect callback and dns_dispatch_removeresponse().
Dispatch and dispatchmgr objects are now reference counted as well, and
the shutdown process has been simplified. reference counting of
resquery and request objects has also been cleaned up significantly.
dns_dispatch_cancel() now flags a dispentry as having been canceled, so
that if the connect callback runs after cancellation, it will not
initiate a read.
The isblackholed() function has been simplified.
The flow of operations in dispatch is changing and will now be similar
for both UDP and TCP queries:
1) Call dns_dispatch_addresponse() to assign a query ID and register
that we'll be listening for a response with that ID soon. the
parameters for this function include callback functions to inform the
caller when the socket is connected and when the message has been
sent, as well as a task action that will be sent when the response
arrives. (later this could become a netmgr callback, but at this
stage to minimize disruption to the calling code, we continue to use
isc_task for the response event.) on successful completion of this
function, a dispatch entry object will be instantiated.
2) Call dns_dispatch_connect() on the dispatch entry. this runs
isc_nm_udpconnect() or isc_nm_tcpdnsconnect(), as needed, and begins
listening for responses. the caller is informed via a callback
function when the connection is established.
3) Call dns_dispatch_send() on the dispatch entry. this runs
isc_nm_send() to send a request.
4) Call dns_dispatch_removeresponse() to terminate listening and close
the connection.
Implementation comments below:
- As we will be using netmgr buffers now. code to send the length in
TCP queries has also been removed as that is handled by the netmgr.
- TCP dispatches can be used by multiple simultaneous queries, so
dns_dispatch_connect() now checks whether the dispatch is already
connected before calling isc_nm_tcpdnsconnect() again.
- Running dns_dispatch_getnext() from a non-network thread caused a
crash due to assertions in the netmgr read functions that appear to be
unnecessary now. the assertions have been removed.
- fctx->nqueries was formerly incremented when the connection was
successful, but is now incremented when the query is started and
decremented if the connection fails.
- It's no longer necessary for each dispatch to have a pool of tasks, so
there's now a single task per dispatch.
- Dispatch code to avoid UDP ports already in use has been removed.
- dns_resolver and dns_request have been modified to use netmgr callback
functions instead of task events. some additional changes were needed
to handle shutdown processing correctly.
- Timeout processing is not yet fully converted to use netmgr timeouts.
- Fixed a lock order cycle reported by TSAN (view -> zone-> adb -> view)
by by calling dns_zt functions without holding the view lock.
- Many dispatch attributes can be set implicitly instead of being passed
in. we can infer whether to set DNS_DISPATCHATTR_TCP or _UDP from
whether we're calling dns_dispatch_createtcp() or _createudp(). we
can also infer DNS_DISPATCHATTR_IPV4 or _IPV6 from the addresses or
the socket that were passed in.
- We no longer use dup'd sockets in UDP dispatches, so the 'dup_socket'
parameter has been removed from dns_dispatch_createudp(), along with
the code implementing it. also removed isc_socket_dup() since it no
longer has any callers.
- The 'buffersize' parameter was ignored and has now been removed;
buffersize is now fixed at 4096.
- Maxbuffers and maxrequests don't need to be passed in on every call to
dns_dispatch_createtcp() and _createudp().
In all current uses, the value for mgr->maxbuffers will either be
raised once from its default of 20000 to 32768, or else left
alone. (passing in a value lower than 20000 does not lower it.) there
isn't enough difference between these values for there to be any need
to configure this.
The value for disp->maxrequests controls both the quota of concurrent
requests for a dispatch and also the size of the dispatch socket
memory pool. it's not clear that this quota is necessary at all. the
memory pool size currently starts at 32768, but is sometimes lowered
to 4096, which is definitely unnecessary.
This commit sets both values permanently to 32768.
- Previously TCP dispatches allocated their own separate QID table,
which didn't incorporate a port table. this commit removes
per-dispatch QID tables and shares the same table between all
dispatches. since dispatches are created for each TCP socket, this may
speed up the dispatch allocation process. there may be a slight
increase in lock contention since all dispatches are sharing a single
QID table, but since TCP sockets are used less often than UDP
sockets (which were already sharing a QID table), it should not be a
substantial change.
- The dispatch port table was being used to determine whether a port was
already in use; if so, then a UDP socket would be bound with
REUSEADDR. this commit removes the port table, and always binds UDP
sockets that way.
Currently the netmgr doesn't support unconnected, shared UDP sockets, so
there's no reason to retain that functionality in the dispatcher prior
to porting to the netmgr.
In this commit, the DNS_DISPATCHATTR_EXCLUSIVE attribute has been
removed as it is now non-optional; UDP dispatches are alwasy exclusive.
Code implementing non-exclusive UDP dispatches has been removed.
dns_dispatch_getentrysocket() now always returns the dispsocket for UDP
dispatches and the dispatch socket for TCP dispatches.
There is no longer any need to search for existing dispatches from
dns_dispatch_getudp(), so the 'mask' option has been removed, and the
function renamed to the more descriptive dns_dispatch_createudp().
- UDP buffersize is now established when creating dispatch manager
and is always set to 4096.
- Set up the default port range in dispatchmgr before setting the magic
number.
- Magic is not set until dispatchmgr is fully created.
The native PKCS#11 support has been removed in favour of better
maintained, more performance and easier to use OpenSSL PKCS#11 engine
from the OpenSC project.
The additional processing method has been expanded to take the
owner name of the record, as HTTPS and SVBC need it to process "."
in service form.
The additional section callback can now return the RRset that was
added. We use this when adding CNAMEs. Previously, the recursion
would stop if it detected that a record you added already exists. With
CNAMEs this rule doesn't work, as you ultimately care about the RRset
at the target of the CNAME and not the presence of the CNAME itself.
Returning the record allows the caller to restart with the target
name. As CNAMEs can form loops, loop protection was added.
As HTTPS and SVBC can produce infinite chains, we prevent this by
tracking recursion depth and stopping if we go too deep.
Current mempools are kind of hybrid structures - they serve two
purposes:
1. mempool with a lock is basically static sized allocator with
pre-allocated free items
2. mempool without a lock is a doubly-linked list of preallocated items
The first kind of usage could be easily replaced with jemalloc small
sized arena objects and thread-local caches.
The second usage not-so-much and we need to keep this (in
libdns:message.c) for performance reasons.
The last remaining defines needed for platforms without NAME_MAX and
PATH_MAX (I'm looking at you, GNU Hurd) were moved to isc/dir.h where
it's prevalently used.
The Makefile.tests was modifying global AM_CFLAGS and LDADD and could
accidentally pull /usr/include to be listed before the internal
libraries, which is known to cause problems if the headers from the
previous version of BIND 9 has been installed on the build machine.
This commit adds a unittest that tests private rdataset_getownercase()
and rdataset_setownercase() methods from rbtdb.c. The test setups
minimal mock dns_rbtdb_t and dns_rbtdbnode_t data structures.
As the rbtdb methods are generally hidden behind layers and layers, we
include the "rbtdb.c" directly from rbtdb_test.c, and thus we can use
the private methods and data structures directly. This also opens up
opportunity to add more unittest for the rbtdb private functions without
going through all the layers.
if dns_updatemethod_date is used do that the returned method is only
set to dns_updatemethod_increment if the new serial does not encode
the current day (YYYYMMDDXX).
Unit test run for out-of-tree builds used to fail to find
masterXX.data.in files:
/usr/bin/perl -w /builds/mnowak/bind9/lib/dns/tests/mkraw.pl < testdata/master/master12.data.in > testdata/master/master12.data
/bin/bash: testdata/master/master12.data.in: No such file or directory
make[4]: *** [Makefile:1910: testdata/master/master12.data] Error 1
With taskmgr running on top of netmgr, the ordering of how the tasks and
netmgr shutdown interacts was wrong as previously isc_taskmgr_destroy()
was waiting until all tasks were properly shutdown and detached. This
responsibility was moved to netmgr, so we now need to do the following:
1. shutdown all the tasks - this schedules all shutdown events onto
the netmgr queue
2. shutdown the netmgr - this also makes sure all the tasks and
events are properly executed
3. Shutdown the taskmgr - this now waits for all the tasks to finish
running before returning
4. Shutdown the netmgr - this call waits for all the netmgr netievents
to finish before returning
This solves the race when the taskmgr object would be destroyed before
all the tasks were finished running in the netmgr loops.
Previously, netmgr, taskmgr, timermgr and socketmgr all had their own
isc_<*>mgr_create() and isc_<*>mgr_destroy() functions. The new
isc_managers_create() and isc_managers_destroy() fold all four into a
single function and makes sure the objects are created and destroy in
correct order.
Especially now, when taskmgr runs on top of netmgr, the correct order is
important and when the code was duplicated at many places it's easy to
make mistake.
The former isc_<*>mgr_create() and isc_<*>mgr_destroy() functions were
made private and a single call to isc_managers_create() and
isc_managers_destroy() is required at the program startup / shutdown.