- the socket stat counters have been moved from socket.h to stats.h.
- isc_nm_t now attaches to the same stats counter group as
isc_socketmgr_t, so that both managers can increment the same
set of statistics
- isc__nmsocket_init() now takes an interface as a paramter so that
the address family can be determined when initializing the socket.
- based on the address family and socket type, a group of statistics
counters will be associated with the socket - for example, UDP4Active
with IPv4 UDP sockets and TCP6Active with IPv6 TCP sockets. note
that no counters are currently associated with TCPDNS sockets; those
stats will be handled by the underlying TCP socket.
- the counters are not actually used by netmgr sockets yet; counter
increment and decrement calls will be added in a later commit.
- use UV_{TC,UD}P_IPV6ONLY for IPv6 sockets, keeping the pre-netmgr
behaviour.
- add a new listening_error bool flag which is set if the child
listener fails to start listening. This fixes a bug where named would
hang if, e.g., we failed to bind to a TCP socket.
When listening for TCP connections we create a socket, bind it
and then pass it over IPC to all threads - which then listen on
in and accept connections. This sounds broken, but it's the
official way of dealing with multithreaded TCP listeners in libuv,
and works on all platforms supported by libuv.
This is a replacement for the existing isc_socket and isc_socketmgr
implementation. It uses libuv for asynchronous network communication;
"networker" objects will be distributed across worker threads reading
incoming packets and sending them for processing.
UDP listener sockets automatically create an array of "child" sockets
so each worker can listen separately.
TCP sockets are shared amongst worker threads.
A TCPDNS socket is a wrapper around a TCP socket, which handles the
the two-byte length field at the beginning of DNS messages over TCP.
(Other wrapper socket types can be implemented in the future to handle
DNS over TLS, DNS over HTTPS, etc.)