The updatenotify mechanism in dns_db relied on unlocked ISC_LIST for
adding and removing the "listeners". The mechanism relied on the
exclusive mode - it should have been updated only during reconfiguration
of the server. This turned not to be true anymore in the dns_catz - the
updatenotify list could have been updated during offloaded work as the
offloaded threads are not subject to the exclusive mode.
Change the update_listeners to be cds_lfht (lock-free hash-table), and
slightly refactor how register and unregister the callbacks - the calls
are now idempotent (the register call already was and the return value
of the unregister function was mostly ignored by the callers).
The isc_time_now() and isc_time_now_hires() were used inconsistently
through the code - either with status check, or without status check,
or via TIME_NOW() macro with RUNTIME_CHECK() on failure.
Refactor the isc_time_now() and isc_time_now_hires() to always fail when
getting current time has failed, and return the isc_time_t value as
return value instead of passing the pointer to result in the argument.
as there is no further use of isc_task in BIND, this commit removes
it, along with isc_taskmgr, isc_event, and all other related types.
functions that accepted taskmgr as a parameter have been cleaned up.
as a result of this change, some functions can no longer fail, so
they've been changed to type void, and their callers have been
updated accordingly.
the tasks table has been removed from the statistics channel and
the stats version has been updated. dns_dyndbctx has been changed
to reference the loopmgr instead of taskmgr, and DNS_DYNDB_VERSION
has been udpated as well.
This changes the internal isc_rwlock implementation to:
Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra
J. Marathe, and Nir Shavit. 2013. NUMA-aware reader-writer locks.
SIGPLAN Not. 48, 8 (August 2013), 157–166.
DOI:https://doi.org/10.1145/2517327.24425
(The full article available from:
http://mcg.cs.tau.ac.il/papers/ppopp2013-rwlocks.pdf)
The implementation is based on the The Writer-Preference Lock (C-RW-WP)
variant (see the 3.4 section of the paper for the rationale).
The implemented algorithm has been modified for simplicity and for usage
patterns in rbtdb.c.
The changes compared to the original algorithm:
* We haven't implemented the cohort locks because that would require a
knowledge of NUMA nodes, instead a simple atomic_bool is used as
synchronization point for writer lock.
* The per-thread reader counters are not being used - this would
require the internal thread id (isc_tid_v) to be always initialized,
even in the utilities; the change has a slight performance penalty,
so we might revisit this change in the future. However, this change
also saves a lot of memory, because cache-line aligned counters were
used, so on 32-core machine, the rwlock would be 4096+ bytes big.
* The readers use a writer_barrier that will raise after a while when
readers lock can't be acquired to prevent readers starvation.
* Separate ingress and egress readers counters queues to reduce both
inter and intra-thread contention.
A dns_rpz_unref_rpzs() call is missing when taking the 'goto unlock;'
path on shutdown, in order to compensate for the earlier
dns_rpz_ref_rpzs() call.
Move the dns_rpz_ref_rpzs() call after the shutdown check.
When shutting down, the cleanup path should not try to destroy
'newnodes', because it is NULL at that point.
Introduce another label for the "shuttingdown" scenario.
The dns_rpz_zones structure was using .refs and .irefs for strong and
weak reference counting. Rewrite the unit to use just a single
reference counting + shutdown sequence (dns_rpz_destroy_rpzs) that must
be called by the creator of the dns_rpz_zones_t object. Remove the
reference counting from the dns_rpz_zone structure as it is not needed
because the zone objects are fully embedded into the dns_rpz_zones
structure and dns_rpz_zones_t object must never be destroyed before all
dns_rpz_zone_t objects.
The dns_rps_zones_t reference counting uses the new ISC_REFCOUNT_TRACE
capability - enable by defining DNS_RPZ_TRACE in the dns/rpz.h header.
Additionally, add magic numbers to the dns_rpz_zone and dns_rpz_zones
structures.
Mostly generated automatically with the following semantic patch,
except where coccinelle was confused by #ifdef in lib/isc/net.c
@@ expression list args; @@
- UNEXPECTED_ERROR(__FILE__, __LINE__, args)
+ UNEXPECTED_ERROR(args)
@@ expression list args; @@
- FATAL_ERROR(__FILE__, __LINE__, args)
+ FATAL_ERROR(args)
Instead of creating the response policy zone deferred update timer when
creating the response policy zone object, create it on demand on the
current loop and destroy it as soon as the timer has finished its job.
There's a side-effect - the processing of the response policy zone
update is now done on the current loop - previously, it was always on
the main loop.
Implement the configuration option with its checking and parsing parts.
The option should be later used by BIND to set an extended error
code (EDE) for the queries modified in the result of RPZ processing.
Previously:
* applications were using isc_app as the base unit for running the
application and signal handling.
* networking was handled in the netmgr layer, which would start a
number of threads, each with a uv_loop event loop.
* task/event handling was done in the isc_task unit, which used
netmgr event loops to run the isc_event calls.
In this refactoring:
* the network manager now uses isc_loop instead of maintaining its
own worker threads and event loops.
* the taskmgr that manages isc_task instances now also uses isc_loopmgr,
and every isc_task runs on a specific isc_loop bound to the specific
thread.
* applications have been updated as necessary to use the new API.
* new ISC_LOOP_TEST macros have been added to enable unit tests to
run isc_loop event loops. unit tests have been updated to use this
where needed.
* isc_timer was rewritten using the uv_timer, and isc_timermgr_t was
completely removed; isc_timer objects are now directly created on the
isc_loop event loops.
* the isc_timer API has been simplified. the "inactive" timer type has
been removed; timers are now stopped by calling isc_timer_stop()
instead of resetting to inactive.
* isc_manager now creates a loop manager rather than a timer manager.
* modules and applications using isc_timer have been updated to use the
new API.
Previously, tasks could be created either unbound or bound to a specific
thread (worker loop). The unbound tasks would be assigned to a random
thread every time isc_task_send() was called. Because there's no logic
that would assign the task to the least busy worker, this just creates
unpredictability. Instead of random assignment, bind all the previously
unbound tasks to worker 0, which is guaranteed to exist.
After removing the isc_task_onshutdown(), the isc_task_shutdown() and
isc_task_destroy() became obsolete.
Remove calls to isc_task_shutdown() and replace the calls to
isc_task_destroy() with isc_task_detach().
Simplify the internal logic to destroy the task when the last reference
is removed.
Previously, the RPZ updates ran quantized on the main nm_worker loops.
As the quantum was set to 1024, this might lead to service
interruptions when large RPZ update was processed.
Change the RPZ update process to run as the offloaded work. The update
and cleanup loops were refactored to do as little locking of the
maintenance lock as possible for the shortest periods of time and the db
iterator is being paused for every iteration, so we don't hold the rbtdb
tree lock for prolonged periods of time.
Previously dns_rpz_add() were passed dns_rpz_zones_t and index to .zones
array. Because we actually attach to dns_rpz_zone_t, we should be using
the local pointer instead of passing the index and "finding" the
dns_rpz_zone_t again.
Additionally, dns_rpz_add() and dns_rpz_delete() were used only inside
rpz.c, so make them static.
Do a general cleanup of lib/dns/rpz.c style:
* Removed deprecated and unused functions
* Unified dns_rpz_zone_t naming to rpz
* Unified dns_rpz_zones_t naming to rpzs
* Add and use rpz_attach() and rpz_attach_rpzs() functions
* Shuffled variables to be more local (cppcheck cleanup)
The reference counting and isc_timer_attach()/isc_timer_detach()
semantic are actually misleading because it cannot be used under normal
conditions. The usual conditions under which is timer used uses the
object where timer is used as argument to the "timer" itself. This
means that when the caller is using `isc_timer_detach()` it needs the
timer to stop and the isc_timer_detach() does that only if this would be
the last reference. Unfortunately, this also means that if the timer is
attached elsewhere and the timer is fired it will most likely be
use-after-free, because the object used in the timer no longer exists.
Remove the reference counting from the isc_timer unit, remove
isc_timer_attach() function and rename isc_timer_detach() to
isc_timer_destroy() to better reflect how the API needs to be used.
The only caveat is that the already executed event must be destroyed
before the isc_timer_destroy() is called because the timer is no longet
attached to .ev_destroy_arg.
Previously, the isc_ht API would always take the key as a literal input
to the hashing function. Change the isc_ht_init() function to take an
'options' argument, in which ISC_HT_CASE_SENSITIVE or _INSENSITIVE can
be specified, to determine whether to use case-sensitive hashing in
isc_hash32() when hashing the key.
In couple places, we have missed INSIST(0) or ISC_UNREACHABLE()
replacement on some branches with UNREACHABLE(). Replace all
ISC_UNREACHABLE() or INSIST(0) calls with UNREACHABLE().
Historically, the inline keyword was a strong suggestion to the compiler
that it should inline the function marked inline. As compilers became
better at optimising, this functionality has receded, and using inline
as a suggestion to inline a function is obsolete. The compiler will
happily ignore it and inline something else entirely if it finds that's
a better optimisation.
Therefore, remove all the occurences of the inline keyword with static
functions inside single compilation unit and leave the decision whether
to inline a function or not entirely on the compiler
NOTE: We keep the usage the inline keyword when the purpose is to change
the linkage behaviour.
Previously, the unreachable code paths would have to be tagged with:
INSIST(0);
ISC_UNREACHABLE();
There was also older parts of the code that used comment annotation:
/* NOTREACHED */
Unify the handling of unreachable code paths to just use:
UNREACHABLE();
The UNREACHABLE() macro now asserts when reached and also uses
__builtin_unreachable(); when such builtin is available in the compiler.
Gcc 7+ and Clang 10+ have implemented __attribute__((fallthrough)) which
is explicit version of the /* FALLTHROUGH */ comment we are currently
using.
Add and apply FALLTHROUGH macro that uses the attribute if available,
but does nothing on older compilers.
In one case (lib/dns/zone.c), using the macro revealed that we were
using the /* FALLTHROUGH */ comment in wrong place, remove that comment.
The isc_timer_create() function was a bit conflated. It could have been
used to create a timer and start it at the same time. As there was a
single place where this was done before (see the previous commit for
nta.c), this was cleaned up and the isc_timer_create() function was
changed to only create new timer.
Previously, the function(s) in the commit subject could fail for various
reasons - mostly allocation failures, or other functions returning
different return code than ISC_R_SUCCESS. Now, the aforementioned
function(s) cannot ever fail and they would always return ISC_R_SUCCESS.
Change the function(s) to return void and remove the extra checks in
the code that uses them.
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
dns_db_nodecount can now be used to get counts from the auxilary
rbt databases. The existing node count is returned by
tree=dns_dbtree_main. The nsec and nsec3 node counts by dns_dbtree_nsec
and dns_dbtree_nsec3 respectively.
The __builtin_expect() can be used to provide the compiler with branch
prediction information. The Gcc manual says[1] on the subject:
In general, you should prefer to use actual profile feedback for
this (-fprofile-arcs), as programmers are notoriously bad at
predicting how their programs actually perform.
Stop using __builtin_expect() and ISC_LIKELY() and ISC_UNLIKELY() macros
to provide the branch prediction information as the performance testing
shows that named performs better when the __builtin_expect() is not
being used.
1. https://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html#index-_005f_005fbuiltin_005fexpect
Remove the dynamic registration of result codes. Convert isc_result_t
from unsigned + #defines into 32-bit enum type in grand unified
<isc/result.h> header. Keep the existing values of the result codes
even at the expense of the description and identifier tables being
unnecessary large.
Additionally, add couple of:
switch (result) {
[...]
default:
break;
}
statements where compiler now complains about missing enum values in the
switch statement.
Each dns_rpz_zone_t structure keeps a hash table of the names this RPZ
database contains. Here is what happens when an RPZ is updated:
- a new hash table is prepared for the new version of the RPZ by
iterating over it; each name found is added to the summary RPZ
database,
- every name added to the new hash table is searched for in the old
hash table; if found, it is removed from the old hash table,
- the old hash table is iterated over; all names found in it are
removed from the summary RPZ database (because at that point the old
hash table should only contain names which are not present in the
new version of the RPZ),
- the new hash table replaces the old hash table.
When the new version of the RPZ is iterated over, if a given name is
spelled using a different letter case than in the old version of the
RPZ, the new variant will hash to a different value than the old
variant, which means it will not be removed from the old hash table.
When the old hash table is subsequently iterated over to remove
seemingly deleted names, the old variant of the name will still be
there, causing the name to be deleted from the summary RPZ database
(which effectively causes a given rule to be ignored).
The issue can be triggered not just by altering the case of existing
names in an RPZ, but also by adding sibling names spelled with a
different letter case. This is because RBT code preserves case when
node splitting occurs. The end result is that when the RPZ is iterated
over, a given name may be using a different case than in the zone file
(or XFR contents).
Fix by downcasing all names found in the RPZ database before adding them
to the summary RPZ database.
Created isc_refcount_decrement_expect macro to test conditionally
the return value to ensure it is in expected range. Converted
unchecked isc_refcount_decrement to use isc_refcount_decrement_expect.
Converted INSIST(isc_refcount_decrement()...) to isc_refcount_decrement_expect.
Whenever an exact match is found by dns_rbt_findnode(),
the highest level node in the chain will not be put into
chain->levels[] array, but instead the chain->end
pointer will be adjusted to point to that node.
Suppose we have the following entries in a rpz zone:
example.com CNAME rpz-passthru.
*.example.com CNAME rpz-passthru.
A query for www.example.com would result in the
following chain object returned by dns_rbt_findnode():
chain->level_count = 2
chain->level_matches = 2
chain->levels[0] = .
chain->levels[1] = example.com
chain->levels[2] = NULL
chain->end = www
Since exact matches only care for testing rpz set bits,
we need to test for rpz wild bits through iterating the nodechain, and
that includes testing the rpz wild bits in the highest level node found.
In the case of an exact match, chain->levels[chain->level_matches]
will be NULL, to address that we must use chain->end as the start point,
then iterate over the remaining levels in the chain.
this addresses a race that could occur during shutdown or when
reconfiguring to remove RPZ zones.
this change should ensure that the rpzs structure and the incremental
updates don't interfere with each other: rpzs->zones entries cannot
be set to NULL while an update quantum is running, and the
task should be destroyed and its queue purged so that no subsequent
quanta will run.
After an RPZ zone is updated via zone transfer, the RPZ summary
database is updated, inserting the newly added names in the policy
zone and deleting the newly removed ones. The first part of this
was quantized so it would not run too long and starve other tasks
during large updates, but the second part was not quantized, so
that an update in which a large number of records were deleted
could cause named to become briefly unresponsive.
The 3 warnings reported are:
os.c:872:7: warning: Although the value stored to 'ptr' is used in the enclosing expression, the value is never actually read from 'ptr'
if ((ptr = strtok_r(command, " \t", &last)) == NULL) {
^ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 warning generated.
--
rpz.c:1117:10: warning: Although the value stored to 'zbits' is used in the enclosing expression, the value is never actually read from 'zbits'
return (zbits &= x);
^ ~
1 warning generated.
--
openssleddsa_link.c:532:10: warning: Although the value stored to 'err' is used in the enclosing expression, the value is never actually read from 'err'
while ((err = ERR_get_error()) != 0) {
^ ~~~~~~~~~~~~~~~
1 warning generated.