After the TCPDNS refactoring the initial and idle timers were broken and
only the tcp-initial-timeout was always applied on the whole TCP
connection.
This broke any TCP connection that took longer than tcp-initial-timeout,
most often this would affect large zone AXFRs.
This commit changes the timeout logic in this way:
* On TCP connection accept the tcp-initial-timeout is applied
and the timer is started
* When we are processing and/or sending any DNS message the timer is
stopped
* When we stop processing all DNS messages, the tcp-idle-timeout
is applied and the timer is started again
- style, cleanup, and removal of unnecessary code.
- combined isc_nm_http_add_endpoint() and isc_nm_http_add_doh_endpoint()
into one function, renamed isc_http_endpoint().
- moved isc_nm_http_connect_send_request() into doh_test.c as a helper
function; remove it from the public API.
- renamed isc_http2 and isc_nm_http2 types and functions to just isc_http
and isc_nm_http, for consistency with other existing names.
- shortened a number of long names.
- the caller is now responsible for determining the peer address.
in isc_nm_httpconnect(); this eliminates the need to parse the URI
and the dependency on an external resolver.
- the caller is also now responsible for creating the SSL client context,
for consistency with isc_nm_tlsdnsconnect().
- added setter functions for HTTP/2 ALPN. instead of setting up ALPN in
isc_tlsctx_createclient(), we now have a function
isc_tlsctx_enable_http2client_alpn() that can be run from
isc_nm_httpconnect().
- refactored isc_nm_httprequest() into separate read and send functions.
isc_nm_send() or isc_nm_read() is called on an http socket, it will
be stored until a corresponding isc_nm_read() or _send() arrives; when
we have both halves of the pair the HTTP request will be initiated.
- isc_nm_httprequest() is renamed isc__nm_http_request() for use as an
internal helper function by the DoH unit test. (eventually doh_test
should be rewritten to use read and send, and this function should
be removed.)
- added implementations of isc__nm_tls_settimeout() and
isc__nm_http_settimeout().
- increased NGHTTP2 header block length for client connections to 128K.
- use isc_mem_t for internal memory allocations inside nghttp2, to
help track memory leaks.
- send "Cache-Control" header in requests and responses. (note:
currently we try to bypass HTTP caching proxies, but ideally we should
interact with them: https://tools.ietf.org/html/rfc8484#section-5.1)
This commit completes the support for DNS-over-HTTP(S) built on top of
nghttp2 and plugs it into the BIND. Support for both GET and POST
requests is present, as required by RFC8484.
Both encrypted (via TLS) and unencrypted HTTP/2 connections are
supported. The latter are mostly there for debugging/troubleshooting
purposes and for the means of encryption offloading to third-party
software (as might be desirable in some environments to simplify TLS
certificates management).
This commit includes work-in-progress implementation of
DNS-over-HTTP(S).
Server-side code remains mostly untested, and there is only support
for POST requests.
On Windows, we were limiting the number of listening children to just 1,
but we were then iterating on mgr->nworkers. That lead to scheduling
more async_*listen() than actually allocated and out-of-bound read-write
operation on the heap.
When we were in nmthread, the isc__nm_async_<proto>connect() function
executes in the same thread as the isc__nm_<proto>connect() and on a
failure, it would block indefinitely because the failure branch was
setting sock->active to false before the condition around the wait had a
chance to skip the WAIT().
This also fixes the zero system test being stuck on FreeBSD 11, so we
re-enable the test in the commit.
On platforms without load-balancing socket all the queries would be
handle by a single thread. Currently, the support for load-balanced
sockets is present in Linux with SO_REUSEPORT and FreeBSD 12 with
SO_REUSEPORT_LB.
This commit adds workaround for such platforms that:
1. setups single shared listening socket for all listening nmthreads for
UDP, TCP and TCPDNS netmgr transports
2. Calls uv_udp_bind/uv_tcp_bind on the underlying socket just once and
for rest of the nmthreads only copy the internal libuv flags (should
be just UV_HANDLE_BOUND and optionally UV_HANDLE_IPV6).
3. start reading on UDP socket or listening on TCP socket
The load distribution among the nmthreads is uneven, but it's still
better than utilizing just one thread for processing all the incoming
queries
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
When calling the high level netmgr functions, the callback would be
sometimes called synchronously if we catch the failure directly, or
asynchronously if it happens later. The synchronous call to the
callback could create deadlocks as the caller would not expect the
failed callback to be executed directly.
this function sets the read timeout for the socket associated
with a netmgr handle and, if the timer is running, resets it.
for TCPDNS sockets it also sets the read timeout and resets the
timer on the outer TCP socket.
When we are operating on the tcpdns socket, we need to double check
whether the socket or its outerhandle or its listener or its mgr is
still active and when not, bail out early.
There were more races that could happen while connecting to a
socket while closing or shutting down the same socket. This
commit introduces a .closing flag to guard the socket from
being closed twice.
There was a data race where a new event could be scheduled after
isc__nm_async_shutdown() had cleaned up all the dangling UDP/TCP
sockets from the loop.
- don't bother closing sockets that are already closing.
- UDP read timeout timer was not stopped after reading.
- improve handling of TCP connection failures.
- isc_nm_tcpdnsconnect() sets up up an outgoing TCP DNS connection.
- isc_nm_tcpconnect(), _udpconnect() and _tcpdnsconnect() now take a
timeout argument to ensure connections time out and are correctly
cleaned up on failure.
- isc_nm_read() now supports UDP; it reads a single datagram and then
stops until the next time it's called.
- isc_nm_cancelread() now runs asynchronously to prevent assertion
failure if reading is interrupted by a non-network thread (e.g.
a timeout).
- isc_nm_cancelread() can now apply to UDP sockets.
- added shim code to support UDP connection in versions of libuv
prior to 1.27, when uv_udp_connect() was added
all these functions will be used to support outgoing queries in dig,
xfrin, dispatch, etc.
When client disconnects before the connection can be accepted, the named
would log a spurious log message:
error: Accepting TCP connection failed: socket is not connected
We now ignore the ISC_R_NOTCONNECTED result code and log only other
errors
1. The isc__nm_tcp_send() and isc__nm_tcp_read() was not checking
whether the socket was still alive and scheduling reads/sends on
closed socket.
2. The isc_nm_read(), isc_nm_send() and isc_nm_resumeread() have been
changed to always return the error conditions via the callbacks, so
they always succeed. This applies to all protocols (UDP, TCP and
TCPDNS).
There were two problems how tcp_send_direct() was used:
1. The tcp_send_direct() can return ISC_R_CANCELED (or translated error
from uv_tcp_send()), but the isc__nm_async_tcpsend() wasn't checking
the error code and not releasing the uvreq in case of an error.
2. In isc__nm_tcp_send(), when the TCP send is already in the right
netthread, it uses tcp_send_direct() to send the TCP packet right
away. When that happened the uvreq was not freed, and the error code
was returned to the caller. We need to return ISC_R_SUCCESS and
rather use the callback to report an error in such case.
When closing the socket that is actively reading from the stream, the
read_cb() could be called between uv_close() and close callback when the
server socket has been already detached hence using sock->statichandle
after it has been already freed.
When networking statistics was added to the netmgr (in commit
5234a8e00a6ae1df738020f27544594ccb8d5215), two lines were added that
increment the 'STATID_RECVFAIL' statistic: One if 'uv_read_start'
fails and one at the end of the 'read_cb'. The latter happens
if 'nread < 0'.
According to the libuv documentation, I/O read callbacks (such as for
files and sockets) are passed a parameter 'nread'. If 'nread' is less
than 0, there was an error and 'UV_EOF' is the end of file error, which
you may want to handle differently.
In other words, we should not treat EOF as a RECVFAIL error.
If we clone the csock (children socket) in TCP accept_connection()
instead of passing the ssock (server socket) to the call back and
cloning it there we unbreak the assumption that every socket is handled
inside it's own worker thread and therefore we can get rid of (at least)
callback locking.
The isc__nm_tcpdns_stoplistening() would call isc__nmsocket_clearcb()
that would clear the .accept_cb from non-netmgr thread. Change the
tcpdns_stoplistening to enqueue ievent that would get processed in the
right netmgr thread to avoid locking.
On POSIX based systems both uv_os_sock_t and uv_os_fd_t are both typedef
to int. That's not true on Windows, where uv_os_sock_t is SOCKET and
uv_os_fd_t is HANDLE and they differ in level of indirection.
The isc__nm_socket_freebind() has been refactored to match other
isc__nm_socket_...() helper functions and take uv_os_fd_t and
sa_family_t as function arguments.
Attaching and detaching handle pointers will make it easier to
determine where and why reference counting errors have occurred.
A handle needs to be referenced more than once when multiple
asynchronous operations are in flight, so callers must now maintain
multiple handle pointers for each pending operation. For example,
ns_client objects now contain:
- reqhandle: held while waiting for a request callback (query,
notify, update)
- sendhandle: held while waiting for a send callback
- fetchhandle: held while waiting for a recursive fetch to
complete
- updatehandle: held while waiting for an update-forwarding
task to complete
control channel connection objects now contain:
- readhandle: held while waiting for a read callback
- sendhandle: held while waiting for a send callback
- cmdhandle: held while an rndc command is running
httpd connections contain:
- readhandle: held while waiting for a read callback
- sendhandle: held while waiting for a send callback
- rename isc_nmsocket_t->tcphandle to statichandle
- cancelread functions now take handles instead of sockets
- add a 'client' flag in socket objects, currently unused, to
indicate whether it is to be used as a client or server socket
Each worker has a receive buffer with space for 20 DNS messages of up
to 2^16 bytes each, and the allocator function passed to uv_read_start()
or uv_udp_recv_start() will reserve a portion of it for use by sockets.
UDP can use recvmmsg() and so it needs that entire space, but TCP reads
one message at a time.
This commit introduces separate allocator functions for TCP and UDP
setting different buffer size limits, so that libuv will provide the
correct buffer sizes to each of them.
When a new IPv6 interface/address appears it's first in a tentative
state - in which we cannot bind to it, yet it's already being reported
by the route socket. Because of that BIND9 is unable to listen on any
newly detected IPv6 addresses. Fix it by setting IP_FREEBIND option (or
equivalent option on other OSes) and then retrying bind() call.
There's a possibility of race in isc__nm_tcpconnect if the asynchronous
connect operation finishes with all the callbacks before we exit the
isc__nm_tcpconnect itself we might access an already freed memory.
Fix it by creating an additional reference to the socket freed at the
end of isc__nm_tcpconnect.
the blackhole ACL was accidentally disabled with respect to client
queries during the netmgr conversion.
in order to make this work for TCP, it was necessary to add a return
code to the accept callback functions passed to isc_nm_listentcp() and
isc_nm_listentcpdns().
The isc_nm_cancelread() function cancels reading on a connected
socket and calls its read callback function with a 'result'
parameter of ISC_R_CANCELED.
the isc_nm_tcpconnect() function establishes a client connection via
TCP. once the connection is esablished, a callback function will be
called with a newly created network manager handle.
A TCPDNS socket creates a handle for each complete DNS message.
Previously, when all the handles were disconnected, the socket
would be closed, but the wrapped TCP socket might still have
more to read.
Now, when a connection is established, the TCPDNS socket creates
a reference to itself by attaching itself to sock->self. This
reference isn't cleared until the connection is closed via
EOF, timeout, or server shutdown. This allows the socket to remain
open even when there are no active handles for it.
- isc__nmhandle_get() now attaches to the sock in the nmhandle object.
the caller is responsible for dereferencing the original socket
pointer when necessary.
- tcpdns listener sockets attach sock->outer to the outer tcp listener
socket. tcpdns connected sockets attach sock->outerhandle to the handle
for the tcp connected socket.
- only listener sockets need to be attached/detached directly. connected
sockets should only be accessed and reference-counted via their
associated handles.
there is no need for a caller to reference-count socket objects.
they need tto be able tto close listener sockets (i.e., those
returned by isc_nm_listen{udp,tcp,tcpdns}), and an isc_nmsocket_close()
function has been added for that. other sockets are only accessed via
handles.
There's a possibility of a race in TCP accepting code:
T1 accepts a connection C1
T2 accepts a connection C2
T1 tries to accept a connection C3, but we hit a quota,
isc_quota_cb_init() sets quota_accept_cb for the socket,
we return from accept_connection
T2 drops C2, but we race in quota_release with accepting C3 so
we don't see quota->waiting is > 0, we don't launch the callback
T1 accepts a connection C4, we are able to get the quota we clear
the quota_accept_cb from sock->quotacb
T1 drops C1, tries to call the callback which is zeroed, sigsegv.
Instead of using bind() and passing the listening socket to the children
threads using uv_export/uv_import use one thread that does the accepting,
and then passes the connected socket using uv_export/uv_import to a random
worker. The previous solution had thundering herd problems (all workers
waking up on one connection and trying to accept()), this one avoids this
and is simpler.
The tcp clients quota is simplified with isc_quota_attach_cb - a callback
is issued when the quota is available.