When the fragmentation is disabled on UDP sockets, the uv_udp_send()
call can fail with UV_EMSGSIZE for messages larger than path MTU.
Previously, this error would end with just discarding the response. In
this commit, a proper handling of such case is added and on such error,
a new DNS response with truncated bit set is generated and sent to the
client.
This change allows us to disable the fragmentation on the UDP
sockets again.
Previously, each protocol (TCPDNS, TLSDNS) has specified own function to
disable pipelining on the connection. An oversight would lead to
assertion failure when opcode is not query over non-TCPDNS protocol
because the isc_nm_tcpdns_sequential() function would be called over
non-TCPDNS socket. This commit removes the per-protocol functions and
refactors the code to have and use common isc_nm_sequential() function
that would either disable the pipelining on the socket or would handle
the request in per specific manner. Currently it ignores the call for
HTTP sockets and causes assertion failure for protocols where it doesn't
make sense to call the function at all.
The Windows support has been completely removed from the source tree
and BIND 9 now no longer supports native compilation on Windows.
We might consider reviewing mingw-w64 port if contributed by external
party, but no development efforts will be put into making BIND 9 compile
and run on Windows again.
configuring with --enable-mutex-atomics flagged these incorrectly
initialised variables on systems where pthread_mutex_init doesn't
just zero out the structure.
Previously, as a way of reducing the contention between threads a
clientmgr object would be created for each interface/IP address.
We tasks being more strictly bound to netmgr workers, this is no longer
needed and we can just create clientmgr object per worker queue (ncpus).
Each clientmgr object than would have a single task and single memory
context.
Since a client object is bound to a netmgr handle, each client
will always be processed by the same netmgr worker, so we can
simplify the code by binding client->task to the same thread as
the client. Since ns__client_request() now runs in the same event
loop as client->task events, is no longer necessary to pause the
task manager before launching them.
Also removed some functions in isc_task that were not used.
The number of memory contexts created in the clientmgr was enormous. It
could easily create thousands of memory contexts because the formula was:
nprotocols * ncpus * ninterfaces * CLIENT_NMCTXS_PERCPU (8)
The original goal was to reduce the contention when allocating the
memory, but after a while nobody noticed that the amount of memory
context allocated would not reduce contention at all.
This commit removes the whole mctxpool and just uses the mctx from
clientmgr as the contention will be reduced directly in the allocator.
dns_message_gettempname() now returns a pointer to an initialized
name associated with a dns_fixedname_t object. it is no longer
necessary to allocate a buffer for temporary names associated with
the message object.
With taskmgr running on top of netmgr, the ordering of how the tasks and
netmgr shutdown interacts was wrong as previously isc_taskmgr_destroy()
was waiting until all tasks were properly shutdown and detached. This
responsibility was moved to netmgr, so we now need to do the following:
1. shutdown all the tasks - this schedules all shutdown events onto
the netmgr queue
2. shutdown the netmgr - this also makes sure all the tasks and
events are properly executed
3. Shutdown the taskmgr - this now waits for all the tasks to finish
running before returning
4. Shutdown the netmgr - this call waits for all the netmgr netievents
to finish before returning
This solves the race when the taskmgr object would be destroyed before
all the tasks were finished running in the netmgr loops.
The RFC7828 specifies the keepalive interval to be 16-bit, specified in
units of 100 milliseconds and the configuration options tcp-*-timeouts
are following the suit. The units of 100 milliseconds are very
unintuitive and while we can't change the configuration and presentation
format, we should not follow this weird unit in the API.
This commit changes the isc_nm_(get|set)timeouts() functions to work
with milliseconds and convert the values to milliseconds before passing
them to the function, not just internally.
On 24-core machine, the tests would crash because we would run out of
the hazard pointers. We now adjust the number of hazard pointers to be
in the <128,256> interval based on the number of available cores.
Note: This is just a band-aid and needs a proper fix.
This commit allows stale RRset to be used (if available) for responding
a query, before an attempt to refresh an expired, or otherwise resolve
an unavailable RRset in cache is made.
For that to work, a value of zero must be specified for
stale-answer-client-timeout statement.
To better understand the logic implemented, there are three flags being
used during database lookup and other parts of code that must be
understood:
. DNS_DBFIND_STALEOK: This flag is set when BIND fails to refresh a
RRset due to timeout (resolver-query-timeout), its intent is to
try to look for stale data in cache as a fallback, but only if
stale answers are enabled in configuration.
This flag is also used to activate stale-refresh-time window, since it
is the only way the database knows that a resolution has failed.
. DNS_DBFIND_STALEENABLED: This flag is used as a hint to the database
that it may use stale data. It is always set during query lookup if
stale answers are enabled, but only effectively used during
stale-refresh-time window. Also during this window, the resolver will
not try to resolve the query, in other words no attempt to refresh the
data in cache is made when the stale-refresh-time window is active.
. DNS_DBFIND_STALEONLY: This new introduced flag is used when we want
stale data from the database, but not due to a failure in resolution,
it also doesn't require stale-refresh-time window timer to be active.
As long as there is a stale RRset available, it should be returned.
It is mainly used in two situations:
1. When stale-answer-client-timeout timer is triggered: in that case
we want to know if there is stale data available to answer the
client.
2. When stale-answer-client-timeout value is set to zero: in that
case, we also want to know if there is some stale RRset available
to promptly answer the client.
We must also discern between three situations that may happen when
resolving a query after the addition of stale-answer-client-timeout
statement, and how to handle them:
1. Are we running query_lookup() due to stale-answer-client-timeout
timer being triggered?
In this case, we look for stale data, making use of
DNS_DBFIND_STALEONLY flag. If a stale RRset is available then
respond the client with the data found, mark this query as
answered (query attribute NS_QUERYATTR_ANSWERED), so when the
fetch completes the client won't be answered twice.
We must also take care of not detaching from the client, as a
fetch will still be running in background, this is handled by the
following snippet:
if (!QUERY_STALEONLY(&client->query)) {
isc_nmhandle_detach(&client->reqhandle);
}
Which basically tests if DNS_DBFIND_STALEONLY flag is set, which
means we are here due to a stale-answer-client-timeout timer
expiration.
2. Are we running query_lookup() due to resolver-query-timeout being
triggered?
In this case, DNS_DBFIND_STALEOK flag will be set and an attempt
to look for stale data will be made.
As already explained, this flag is algo used to activate
stale-refresh-time window, as it means that we failed to refresh
a RRset due to timeout.
It is ok in this situation to detach from the client, as the
fetch is already completed.
3. Are we running query_lookup() during the first time, looking for
a RRset in cache and stale-answer-client-timeout value is set to
zero?
In this case, if stale answers are enabled (probably), we must do
an initial database lookup with DNS_DBFIND_STALEONLY flag set, to
indicate to the database that we want stale data.
If we find an active RRset, proceed as normal, answer the client
and the query is done.
If we find a stale RRset we respond to the client and mark the
query as answered, but don't detach from the client yet as an
attempt in refreshing the RRset will still be made by means of
the new introduced function 'query_resolve'.
If no active or stale RRset is available, begin resolution as
usual.
The general logic behind the addition of this new feature works as
folows:
When a client query arrives, the basic path (query.c / ns_query_recurse)
was to create a fetch, waiting for completion in fetch_callback.
With the introduction of stale-answer-client-timeout, a new event of
type DNS_EVENT_TRYSTALE may invoke fetch_callback, whenever stale
answers are enabled and the fetch took longer than
stale-answer-client-timeout to complete.
When an event of type DNS_EVENT_TRYSTALE triggers fetch_callback, we
must ensure that the folowing happens:
1. Setup a new query context with the sole purpose of looking up for
stale RRset only data, for that matters a new flag was added
'DNS_DBFIND_STALEONLY' used in database lookups.
. If a stale RRset is found, mark the original client query as
answered (with a new query attribute named NS_QUERYATTR_ANSWERED),
so when the fetch completion event is received later, we avoid
answering the client twice.
. If a stale RRset is not found, cleanup and wait for the normal
fetch completion event.
2. In ns_query_done, we must change this part:
/*
* If we're recursing then just return; the query will
* resume when recursion ends.
*/
if (RECURSING(qctx->client)) {
return (qctx->result);
}
To this:
if (RECURSING(qctx->client) && !QUERY_STALEONLY(qctx->client)) {
return (qctx->result);
}
Otherwise we would not proceed to answer the client if it happened
that a stale answer was found when looking up for stale only data.
When an event of type DNS_EVENT_FETCHDONE triggers fetch_callback, we
proceed as before, resuming query, updating stats, etc, but a few
exceptions had to be added, most important of which are two:
1. Before answering the client (ns_client_send), check if the query
wasn't already answered before.
2. Before detaching a client, e.g.
isc_nmhandle_detach(&client->reqhandle), ensure that this is the
fetch completion event, and not the one triggered due to
stale-answer-client-timeout, so a correct call would be:
if (!QUERY_STALEONLY(client)) {
isc_nmhandle_detach(&client->reqhandle);
}
Other than these notes, comments were added in code in attempt to make
these updates easier to follow.
This is a part of the works that intends to make the netmgr stable,
testable, maintainable and tested. It contains a numerous changes to
the netmgr code and unfortunately, it was not possible to split this
into smaller chunks as the work here needs to be committed as a complete
works.
NOTE: There's a quite a lot of duplicated code between udp.c, tcp.c and
tcpdns.c and it should be a subject to refactoring in the future.
The changes that are included in this commit are listed here
(extensively, but not exclusively):
* The netmgr_test unit test was split into individual tests (udp_test,
tcp_test, tcpdns_test and newly added tcp_quota_test)
* The udp_test and tcp_test has been extended to allow programatic
failures from the libuv API. Unfortunately, we can't use cmocka
mock() and will_return(), so we emulate the behaviour with #define and
including the netmgr/{udp,tcp}.c source file directly.
* The netievents that we put on the nm queue have variable number of
members, out of these the isc_nmsocket_t and isc_nmhandle_t always
needs to be attached before enqueueing the netievent_<foo> and
detached after we have called the isc_nm_async_<foo> to ensure that
the socket (handle) doesn't disappear between scheduling the event and
actually executing the event.
* Cancelling the in-flight TCP connection using libuv requires to call
uv_close() on the original uv_tcp_t handle which just breaks too many
assumptions we have in the netmgr code. Instead of using uv_timer for
TCP connection timeouts, we use platform specific socket option.
* Fix the synchronization between {nm,async}_{listentcp,tcpconnect}
When isc_nm_listentcp() or isc_nm_tcpconnect() is called it was
waiting for socket to either end up with error (that path was fine) or
to be listening or connected using condition variable and mutex.
Several things could happen:
0. everything is ok
1. the waiting thread would miss the SIGNAL() - because the enqueued
event would be processed faster than we could start WAIT()ing.
In case the operation would end up with error, it would be ok, as
the error variable would be unchanged.
2. the waiting thread miss the sock->{connected,listening} = `true`
would be set to `false` in the tcp_{listen,connect}close_cb() as
the connection would be so short lived that the socket would be
closed before we could even start WAIT()ing
* The tcpdns has been converted to using libuv directly. Previously,
the tcpdns protocol used tcp protocol from netmgr, this proved to be
very complicated to understand, fix and make changes to. The new
tcpdns protocol is modeled in a similar way how tcp netmgr protocol.
Closes: #2194, #2283, #2318, #2266, #2034, #1920
* The tcp and tcpdns is now not using isc_uv_import/isc_uv_export to
pass accepted TCP sockets between netthreads, but instead (similar to
UDP) uses per netthread uv_loop listener. This greatly reduces the
complexity as the socket is always run in the associated nm and uv
loops, and we are also not touching the libuv internals.
There's an unfortunate side effect though, the new code requires
support for load-balanced sockets from the operating system for both
UDP and TCP (see #2137). If the operating system doesn't support the
load balanced sockets (either SO_REUSEPORT on Linux or SO_REUSEPORT_LB
on FreeBSD 12+), the number of netthreads is limited to 1.
* The netmgr has now two debugging #ifdefs:
1. Already existing NETMGR_TRACE prints any dangling nmsockets and
nmhandles before triggering assertion failure. This options would
reduce performance when enabled, but in theory, it could be enabled
on low-performance systems.
2. New NETMGR_TRACE_VERBOSE option has been added that enables
extensive netmgr logging that allows the software engineer to
precisely track any attach/detach operations on the nmsockets and
nmhandles. This is not suitable for any kind of production
machine, only for debugging.
* The tlsdns netmgr protocol has been split from the tcpdns and it still
uses the old method of stacking the netmgr boxes on top of each other.
We will have to refactor the tlsdns netmgr protocol to use the same
approach - build the stack using only libuv and openssl.
* Limit but not assert the tcp buffer size in tcp_alloc_cb
Closes: #2061
1. The isc__nm_tcp_send() and isc__nm_tcp_read() was not checking
whether the socket was still alive and scheduling reads/sends on
closed socket.
2. The isc_nm_read(), isc_nm_send() and isc_nm_resumeread() have been
changed to always return the error conditions via the callbacks, so
they always succeed. This applies to all protocols (UDP, TCP and
TCPDNS).
The dns_message_create() function cannot soft fail (as all memory
allocations either succeed or cause abort), so we change the function to
return void and cleanup the calls.
Attaching and detaching handle pointers will make it easier to
determine where and why reference counting errors have occurred.
A handle needs to be referenced more than once when multiple
asynchronous operations are in flight, so callers must now maintain
multiple handle pointers for each pending operation. For example,
ns_client objects now contain:
- reqhandle: held while waiting for a request callback (query,
notify, update)
- sendhandle: held while waiting for a send callback
- fetchhandle: held while waiting for a recursive fetch to
complete
- updatehandle: held while waiting for an update-forwarding
task to complete
control channel connection objects now contain:
- readhandle: held while waiting for a read callback
- sendhandle: held while waiting for a send callback
- cmdhandle: held while an rndc command is running
httpd connections contain:
- readhandle: held while waiting for a read callback
- sendhandle: held while waiting for a send callback
Now that the log message has been printed set the result code to
DNS_R_FORMERR. We don't do this via dns_result_torcode() as we
don't want upstream errors to produce FORMERR if that processing
end with DNS_R_BADTSIG.
the blackhole ACL was accidentally disabled with respect to client
queries during the netmgr conversion.
in order to make this work for TCP, it was necessary to add a return
code to the accept callback functions passed to isc_nm_listentcp() and
isc_nm_listentcpdns().
NS_CLIENT_TCP_BUFFER_SIZE was 2 byte too large following the
move to netmgr add associated changes to lib/ns/client.c and
as a result an INSIST could be trigger if the DNS message being
constructed had a checkpoint stage that fell in those two extra
bytes. Adjusted NS_CLIENT_TCP_BUFFER_SIZE and cleaned up
client_allocsendbuf now that the previously reserved 2 bytes
are no longer used.
when built with "configure --enable-singletrace", named will produce
detailed query logging at the highest debug level for any query with
query ID zero.
this enables monitoring of the progress of a single query by specifying
the QID using "dig +qid=0". the "client" logging category should be set
to a low severity level to suppress logging of other queries. (the
chance of another query using QID=0 at the same time is only 1 in 2^16.)
"--enable-singletrace" turns on "--enable-querytrace" as well, so if the
logging severity is not lowered, all other queries will be logged
verbosely as well. compiling with either of these options will impair
query performance; they should only be turned on when testing or
troubleshooting.
In case of normal fetch, the .recursionquota is attached and
ns_statscounter_recursclients is incremented when the fetch is created. Then
the .recursionquota is detached and the counter decremented in the
fetch_callback().
In case of prefetch or rpzfetch, the quota is attached, but the counter is not
incremented. When we reach the soft-quota, the function returns early but don't
detach from the quota, and it gets destroyed during the ns_client_endrequest(),
so no memory was leaked.
But because the ns_statscounter_recursclients is only incremented during the
normal fetch the counter would be incorrectly decremented on two occassions:
1) When we reached the softquota, because the quota was not properly detached
2) When the prefetch or rpzfetch was cancelled mid-flight and the callback
function was never called.
Fixes a race between ns_client_killoldestquery and ns_client_endrequest -
killoldestquery takes a client from `recursing` list while endrequest
destroys client object, then killoldestquery works on a destroyed client
object. Prevent it by holding reclist lock while cancelling query.
Fix a potential assertion failure on shutdown in ns__client_endrequest.
Scenario:
1. We are shutting down, interface->clientmgr is gone.
2. We receive a packet, it gets through ns__client_request
3. mgr == NULL, return
4. isc_nmhandle_detach calls ns_client_reset_cb
5. ns_client_reset_cb calls ns_client_endrequest
6. INSIST(client->state == NS_CLIENTSTATE_WORKING ||
client->state == NS_CLIENTSTATE_RECURSING) is not met
- we haven't started processing this packet so
client->state == NS_CLIENTSTATE_READY.
As a solution - don't do anything in ns_client_reset_cb if the client
is still in READY state.
Also disable the semantic patch as the code needs tweaks here and there because
some destroy functions might not destroy the object and return early if the
object is still in use.
The isc_buffer_allocate() function now cannot fail with ISC_R_MEMORY.
This commit removes all the checks on the return code using the semantic
patch from previous commit, as isc_buffer_allocate() now returns void.
We weren't consistent about who should unreference the handle in
case of network error. Make it consistent so that it's always the
client code responsibility to unreference the handle - either
in the callback or right away if send function failed and the callback
will never be called.
If taskmgr is shutting down ns_client_setup will fail to create
a task for the newly created client, we weren't cleaning up already
created/attached things (memory context, server, clientmgr).
We pass interface as an opaque argument to tcpdns listening socket.
If we stop listening on an interface but still have in-flight connections
the opaque 'interface' is not properly reference counted, and we might
hit a dead memory. We put just a single source of truth in a listening
socket and make the child sockets use that instead of copying the
value from listening socket. We clean the callback when we stop listening.