The unit tests are now using a common base, which means that
lib/dns/tests/ code now has to include lib/isc/include/isc/test.h and
link with lib/isc/test.c and lib/ns/tests has to include both libisc and
libdns parts.
Instead of cross-linking code between the directories, move the
/lib/<foo>/test.c to /tests/<foo>.c and /lib/<foo>/include/<foo>test.h
to /tests/include/tests/<foo>.h and create a single libtest.la
convenience library in /tests/.
At the same time, move the /lib/<foo>/tests/ to /tests/<foo>/ (but keep
it symlinked to the old location) and adjust paths accordingly. In few
places, we are now using absolute paths instead of relative paths,
because the directory level has changed. By moving the directories
under the /tests/ directory, the test-related code is kept in a single
place and we can avoid referencing files between libns->libdns->libisc
which is unhealthy because they live in a separate Makefile-space.
In the future, the /bin/tests/ should be merged to /tests/ and symlink
kept, and the /fuzz/ directory moved to /tests/fuzz/.
The unit tests contain a lot of duplicated code and here's an attempt
to reduce code duplication.
This commit does several things:
1. Remove #ifdef HAVE_CMOCKA - we already solve this with automake
conditionals.
2. Create a set of ISC_TEST_* and ISC_*_TEST_ macros to wrap the test
implementations, test lists, and the main test routine, so we don't
have to repeat this all over again. The macros were modeled after
libuv test suite but adapted to cmocka as the test driver.
A simple example of a unit test would be:
ISC_RUN_TEST_IMPL(test1) { assert_true(true); }
ISC_TEST_LIST_START
ISC_TEST_ENTRY(test1)
ISC_TEST_LIST_END
ISC_TEST_MAIN (Discussion: Should this be ISC_TEST_RUN ?)
For more complicated examples including group setup and teardown
functions, and per-test setup and teardown functions.
3. The macros prefix the test functions and cmocka entries, so the name
of the test can now match the tested function name, and we don't have
to append `_test` because `run_test_` is automatically prepended to
the main test function, and `setup_test_` and `teardown_test_` is
prepended to setup and teardown function.
4. Update all the unit tests to use the new syntax and fix a few bits
here and there.
5. In the future, we can separate the test declarations and test
implementations which are going to greatly help with uncluttering the
bigger unit tests like doh_test and netmgr_test, because the test
implementations are not declared static (see `ISC_RUN_TEST_DECLARE`
and `ISC_RUN_TEST_IMPL` for more details.
NOTE: This heavily relies on preprocessor macros, but the result greatly
outweighs all the negatives of using the macros. There's less
duplicated code, the tests are more uniform and the implementation can
be more flexible.
Previously, tasks could be created either unbound or bound to a specific
thread (worker loop). The unbound tasks would be assigned to a random
thread every time isc_task_send() was called. Because there's no logic
that would assign the task to the least busy worker, this just creates
unpredictability. Instead of random assignment, bind all the previously
unbound tasks to worker 0, which is guaranteed to exist.
Typing from libuv structure to isc_region_t is not possible, because
their sizes differ on 64 bit architectures. Little endian machines seems
to be lucky and still result in test passed. But big endian machine such
as s390x fails the test reliably.
Fix by directly creating the buffer as isc_region_t and skipping the
type conversion. More readable and still more correct.
After removing the isc_task_onshutdown(), the isc_task_shutdown() and
isc_task_destroy() became obsolete.
Remove calls to isc_task_shutdown() and replace the calls to
isc_task_destroy() with isc_task_detach().
Simplify the internal logic to destroy the task when the last reference
is removed.
The isc_task_onshutdown() was used to post event that should be run when
the task is being shutdown. This could happen explicitly in the
isc_test_shutdown() call or implicitly when we detach the last reference
to the task and there are no more events posted on the task.
This whole task onshutdown mechanism just makes things more complicated,
and it's easier to post the "shutdown" events when we are shutting down
explicitly and the existing code already always knows when it should
shutdown the task that's being used to execute the onshutdown events.
Replace the isc_task_onshutdown() calls with explicit calls to execute
the shutdown tasks.
As we are going to use libuv outside of the netmgr, we need the shims to
be readily available for the rest of the codebase.
Move the "netmgr/uv-compat.h" to <isc/uv.h> and netmgr/uv-compat.c to
uv.c, and as a rule of thumb, the users of libuv should include
<isc/uv.h> instead of <uv.h> directly.
Additionally, merge netmgr/uverr2result.c into uv.c and rename the
single function from isc__nm_uverr2result() to isc_uverr2result().
Move the netmgr socket related functions from netmgr/netmgr.c and
netmgr/uv-compat.c to netmgr/socket.c, so they are all present all in
the same place. Adjust the names of couple interal functions
accordingly.
Instead of checking if we need to re-seed for every isc_random call,
seed the random number generator in the libisc global initializer
and the per-thread initializer.
For some applications, it's useful to not listen on full battery of
threads. Add workers argument to all isc_nm_listen*() functions and
convenience ISC_NM_LISTEN_ONE and ISC_NM_LISTEN_ALL macros.
The reference counting and isc_timer_attach()/isc_timer_detach()
semantic are actually misleading because it cannot be used under normal
conditions. The usual conditions under which is timer used uses the
object where timer is used as argument to the "timer" itself. This
means that when the caller is using `isc_timer_detach()` it needs the
timer to stop and the isc_timer_detach() does that only if this would be
the last reference. Unfortunately, this also means that if the timer is
attached elsewhere and the timer is fired it will most likely be
use-after-free, because the object used in the timer no longer exists.
Remove the reference counting from the isc_timer unit, remove
isc_timer_attach() function and rename isc_timer_detach() to
isc_timer_destroy() to better reflect how the API needs to be used.
The only caveat is that the already executed event must be destroyed
before the isc_timer_destroy() is called because the timer is no longet
attached to .ev_destroy_arg.
Previously, the task privileged mode has been used only when the named
was starting up and loading the zones from the disk as the "first" thing
to do. The privileged task was setup with quantum == 2, which made the
taskmgr/netmgr spin around the privileged queue processing two events at
the time.
The same effect can be achieved by setting the quantum to UINT_MAX (e.g.
practically unlimited) for the loadzone task, hence the privileged task
mode was removed in favor of just processing all the events on the
loadzone task in a single task_run().
Instead of passing the number of worker to the dns_zonemgr manually,
get the number of nm threads using the new isc_nm_getnworkers() call.
Additionally, remove the isc_pool API and manage the array of memory
context, zonetasks and loadtasks directly in the zonemgr.
Previously, the zonemgr created 1 task per 100 zones and 1 memory
context per 1000 zones (with minimum 10 tasks and 2 memory contexts) to
reduce the contention between threads.
Instead of reducing the contention by having many resources, create a
per-nm_thread memory context, loadtask and zonetask and spread the zones
between just per-thread resources.
Note: this commit alone does decrease performance when loading the zone
by couple seconds (in case of 1M zone) and thus there's more work in
this whole MR fixing the performance.
The isc_task_purge() and isc_task_purgerange() were now unused, so sweep
the task.c file. Additionally remove unused ISC_EVENTATTR_NOPURGE event
attribute.
Previously, the isc_ht API would always take the key as a literal input
to the hashing function. Change the isc_ht_init() function to take an
'options' argument, in which ISC_HT_CASE_SENSITIVE or _INSENSITIVE can
be specified, to determine whether to use case-sensitive hashing in
isc_hash32() when hashing the key.
Previously, it was possible to assign a bit of memory space in the
nmhandle to store the client data. This was complicated and prevents
further refactoring of isc_nmhandle_t caching (future work).
Instead of caching the data in the nmhandle, allocate the hot-path
ns_client_t objects from per-thread clientmgr memory context and just
assign it to the isc_nmhandle_t via isc_nmhandle_set().
The clang-format-15 has new option InsertBraces that could add missing
branches around single line statements. Use that to our advantage
without switching to not-yet-released LLVM version to add missing braces
in couple of places.
As incremental rehashing has been added to isc_ht implementation, we
need to test whether the rehashing works.
Update the isc_ht unit test to test:
* preinitialized hash table large enough to hold all the elements
* smallest hash table that fully grows to hold all the elements
* partially preinitialized hash table that grows
* iterating while rehashing is in progress
The isc_timer_create() function was a bit conflated. It could have been
used to create a timer and start it at the same time. As there was a
single place where this was done before (see the previous commit for
nta.c), this was cleaned up and the isc_timer_create() function was
changed to only create new timer.
The C17 standard deprecated ATOMIC_VAR_INIT() macro (see [1]). Follow
the suite and remove the ATOMIC_VAR_INIT() usage in favor of simple
assignment of the value as this is what all supported stdatomic.h
implementations do anyway:
* MacOSX.plaform: #define ATOMIC_VAR_INIT(__v) {__v}
* Gcc stdatomic.h: #define ATOMIC_VAR_INIT(VALUE) (VALUE)
1. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1138r0.pdf
Previously, the function(s) in the commit subject could fail for various
reasons - mostly allocation failures, or other functions returning
different return code than ISC_R_SUCCESS. Now, the aforementioned
function(s) cannot ever fail and they would always return ISC_R_SUCCESS.
Change the function(s) to return void and remove the extra checks in
the code that uses them.
Previously, the function(s) in the commit subject could fail for various
reasons - mostly allocation failures, or other functions returning
different return code than ISC_R_SUCCESS. Now, the aforementioned
function(s) cannot ever fail and they would always return ISC_R_SUCCESS.
Change the function(s) to return void and remove the extra checks in
the code that uses them.
The current implementation of isc_queue uses Michael-Scott lock-free
queue that in turn uses hazard pointers. It was discovered that the way
we use the isc_queue, such complicated mechanism isn't really needed,
because most of the time, we either execute the work directly when on
nmthread (in case of UDP) or schedule the work from the matching
nmthreads.
Replace the current implementation of the isc_queue with a simple locked
ISC_LIST. There's a slight improvement - since copying the whole list
is very lightweight - we move the queue into a new list before we start
the processing and locking just for moving the queue and not for every
single item on the list.
NOTE: There's a room for future improvements - since we don't guarantee
the order in which the netievents are processed, we could have two lists
- one unlocked that would be used when scheduling the work from the
matching thread and one locked that would be used from non-matching
thread.
Use the isc_nmhandle_setwritetimeout() function in the netmgr unit test
to allow more time for writing and reading the responses because some of
the intervals that are used in the unit tests are really small leaving a
little room for any delays.
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
Using the TLS context cache for server-side contexts could reduce the
number of contexts to initialise in the configurations when e.g. the
same 'tls' entry is used in multiple 'listen-on' statements for the
same DNS transport, binding to multiple IP addresses.
In such a case, only one TLS context will be created, instead of a
context per IP address, which could reduce the initialisation time, as
initialising even a non-ephemeral TLS context introduces some delay,
which can be *visually* noticeable by log activity.
Also, this change lays down a foundation for Mutual TLS (when the
server validates a client certificate, additionally to a client
validating the server), as the TLS context cache can be extended to
store additional data required for validation (like intermediates CA
chain).
Additionally to the above, the change ensures that the contexts are
not being changed after initialisation, as such a practice is frowned
upon. Previously we would set the supported ALPN tags within
isc_nm_listenhttp() and isc_nm_listentlsdns(). We do not do that for
client-side contexts, so that appears to be an overlook. Now we set
the supported ALPN tags right after server-side contexts creation,
similarly how we do for client-side ones.
OpenSSL 3.0.1 does not accept 0 as a digest buffer length when
calling EVP_DigestSignFinal as it now checks that the digest buffer
length is large enough for the digest. Pass the digest buffer
length instead.
Previously, we set the number of the hazard pointers to be 4 times the
number of workers because the dispatch ran on the old socket code.
Since the old socket code was removed there's a smaller number of
threads, namely:
- 1 main thread
- 1 timer thread
- <n> netmgr threads
- <n> threadpool threads
Set the number of hazard pointers to 2 + 2 * workers.
The isc_time_add() and isc_time_subtract() didn't have a unit test, add
the unit test with couple of edge case vectors to check whether overflow
and underflow is correctly handled.
Unify the header guard style and replace the inconsistent include guards
with #pragma once.
The #pragma once is widely and very well supported in all compilers that
BIND 9 supports, and #pragma once was already in use in several new or
refactored headers.
Using simpler method will also allow us to automate header guard checks
as this is simpler to programatically check.
For reference, here are the reasons for the change taken from
Wikipedia[1]:
> In the C and C++ programming languages, #pragma once is a non-standard
> but widely supported preprocessor directive designed to cause the
> current source file to be included only once in a single compilation.
>
> Thus, #pragma once serves the same purpose as include guards, but with
> several advantages, including: less code, avoidance of name clashes,
> and sometimes improvement in compilation speed. On the other hand,
> #pragma once is not necessarily available in all compilers and its
> implementation is tricky and might not always be reliable.
1. https://en.wikipedia.org/wiki/Pragma_once
Remove the dynamic registration of result codes. Convert isc_result_t
from unsigned + #defines into 32-bit enum type in grand unified
<isc/result.h> header. Keep the existing values of the result codes
even at the expense of the description and identifier tables being
unnecessary large.
Additionally, add couple of:
switch (result) {
[...]
default:
break;
}
statements where compiler now complains about missing enum values in the
switch statement.
- Many dispatch attributes can be set implicitly instead of being passed
in. we can infer whether to set DNS_DISPATCHATTR_TCP or _UDP from
whether we're calling dns_dispatch_createtcp() or _createudp(). we
can also infer DNS_DISPATCHATTR_IPV4 or _IPV6 from the addresses or
the socket that were passed in.
- We no longer use dup'd sockets in UDP dispatches, so the 'dup_socket'
parameter has been removed from dns_dispatch_createudp(), along with
the code implementing it. also removed isc_socket_dup() since it no
longer has any callers.
- The 'buffersize' parameter was ignored and has now been removed;
buffersize is now fixed at 4096.
- Maxbuffers and maxrequests don't need to be passed in on every call to
dns_dispatch_createtcp() and _createudp().
In all current uses, the value for mgr->maxbuffers will either be
raised once from its default of 20000 to 32768, or else left
alone. (passing in a value lower than 20000 does not lower it.) there
isn't enough difference between these values for there to be any need
to configure this.
The value for disp->maxrequests controls both the quota of concurrent
requests for a dispatch and also the size of the dispatch socket
memory pool. it's not clear that this quota is necessary at all. the
memory pool size currently starts at 32768, but is sometimes lowered
to 4096, which is definitely unnecessary.
This commit sets both values permanently to 32768.
- Previously TCP dispatches allocated their own separate QID table,
which didn't incorporate a port table. this commit removes
per-dispatch QID tables and shares the same table between all
dispatches. since dispatches are created for each TCP socket, this may
speed up the dispatch allocation process. there may be a slight
increase in lock contention since all dispatches are sharing a single
QID table, but since TCP sockets are used less often than UDP
sockets (which were already sharing a QID table), it should not be a
substantial change.
- The dispatch port table was being used to determine whether a port was
already in use; if so, then a UDP socket would be bound with
REUSEADDR. this commit removes the port table, and always binds UDP
sockets that way.
Previously, the zero-sized allocations would return NULL pointer and the
caller had to make sure to not dereference such pointer. The C standard
defines the zero-sized calls to malloc() as implementation specific and
jemalloc mallocx() with zero size would be undefined behaviour. This
complicated the code as it had to handle such cases in a special manner
in all allocator and deallocator functions.
Now, for realloc(), the situation is even more complicated. In C
standard up to C11, the behavior would be implementation defined, and
actually some implementation would free to orig ptr and some would not.
Since C17 (via DR400) would deprecate such usage and since C23, the
behaviour would be undefined.
This commits changes helper mem_get(), mem_put() and mem_realloc()
functions to grow the zero-allocation from 0 to sizeof(void *).
This way we get a predicable behaviour that all the allocations will
always return valid pointer.
The isc_mem_get() and isc_mem_put() functions are leaving the memory
allocation size tracking to the users of the API, while
isc_mem_allocate() and isc_mem_free() would track the sizes internally.
This allowed to have isc_mem_rellocate() to manipulate the memory
allocations by the later set, but not the former set of the functions.
This commit introduces isc_mem_reget(ctx, old_ptr, old_size, new_size)
function that operates on the memory allocations with external size
tracking completing the API.
The native PKCS#11 support has been removed in favour of better
maintained, more performance and easier to use OpenSSL PKCS#11 engine
from the OpenSC project.
This commit adds new function isc_nm_http_makeuri() which is supposed
to unify DoH URI construction throughout the codebase.
It handles IPv6 addresses, hostnames, and IPv6 addresses given as
hostnames properly, and replaces similar ad-hoc code in the codebase.