as there is no further use of isc_task in BIND, this commit removes
it, along with isc_taskmgr, isc_event, and all other related types.
functions that accepted taskmgr as a parameter have been cleaned up.
as a result of this change, some functions can no longer fail, so
they've been changed to type void, and their callers have been
updated accordingly.
the tasks table has been removed from the statistics channel and
the stats version has been updated. dns_dyndbctx has been changed
to reference the loopmgr instead of taskmgr, and DNS_DYNDB_VERSION
has been udpated as well.
callback events from dns_resolver_createfetch() are now posted
using isc_async_run.
other modules which called the resolver and maintained task/taskmgr
objects for this purpose have been cleaned up.
Previously:
* applications were using isc_app as the base unit for running the
application and signal handling.
* networking was handled in the netmgr layer, which would start a
number of threads, each with a uv_loop event loop.
* task/event handling was done in the isc_task unit, which used
netmgr event loops to run the isc_event calls.
In this refactoring:
* the network manager now uses isc_loop instead of maintaining its
own worker threads and event loops.
* the taskmgr that manages isc_task instances now also uses isc_loopmgr,
and every isc_task runs on a specific isc_loop bound to the specific
thread.
* applications have been updated as necessary to use the new API.
* new ISC_LOOP_TEST macros have been added to enable unit tests to
run isc_loop event loops. unit tests have been updated to use this
where needed.
* isc_timer was rewritten using the uv_timer, and isc_timermgr_t was
completely removed; isc_timer objects are now directly created on the
isc_loop event loops.
* the isc_timer API has been simplified. the "inactive" timer type has
been removed; timers are now stopped by calling isc_timer_stop()
instead of resetting to inactive.
* isc_manager now creates a loop manager rather than a timer manager.
* modules and applications using isc_timer have been updated to use the
new API.
We do this by adding callbacks for when a node is added or deleted
from the keytable. dns_keytable_add and dns_keytable_delete where
extended to take a callback. dns_keytable_deletekey does not remove
the node so it was not extended.
It's wasteful to use 20 bytes and a pointer indirection to represent
two bits of information, so turn the struct into an enum. And change
the names of the enumeration constants to make the intent more clear.
This change introduces some inline functions into another header,
which confuses `gcovr` when it is trying to collect code coverage
statistics. So, in the CI job, copy more header files into a directory
where `gcovr` looks for them.
There was a proposal in the late 1990s that it might, but it turned
out to be unworkable. See RFC 6891, Extension Mechanisms for
DNS (EDNS(0)), section 5, Extended Label Types.
The remnants of the code that supported this in BIND are redundant.
Previously, tasks could be created either unbound or bound to a specific
thread (worker loop). The unbound tasks would be assigned to a random
thread every time isc_task_send() was called. Because there's no logic
that would assign the task to the least busy worker, this just creates
unpredictability. Instead of random assignment, bind all the previously
unbound tasks to worker 0, which is guaranteed to exist.
Since the fctx hash table is now self-resizing, and resolver tasks are
selected to match the thread that created the fetch context, there
shouldn't be any significant advantage to having multiple tasks per CPU;
a single task per thread should be sufficient.
Additionally, the fetch context is always pinned to the calling netmgr
thread to minimize the contention just to coalesced fetches - if two
threads starts the same fetch, it will be pinned to the first one to get
the bucket.
The use of isc_appctx_t in dns_client was used to wait for
dns_client_startresolve() to finish the processing (the resolve_done()
task callback).
This has been replaced with standard bool+cond+lock combination removing
the need of isc_appctx_t altogether.
Historically, the inline keyword was a strong suggestion to the compiler
that it should inline the function marked inline. As compilers became
better at optimising, this functionality has receded, and using inline
as a suggestion to inline a function is obsolete. The compiler will
happily ignore it and inline something else entirely if it finds that's
a better optimisation.
Therefore, remove all the occurences of the inline keyword with static
functions inside single compilation unit and leave the decision whether
to inline a function or not entirely on the compiler
NOTE: We keep the usage the inline keyword when the purpose is to change
the linkage behaviour.
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
Remove the dynamic registration of result codes. Convert isc_result_t
from unsigned + #defines into 32-bit enum type in grand unified
<isc/result.h> header. Keep the existing values of the result codes
even at the expense of the description and identifier tables being
unnecessary large.
Additionally, add couple of:
switch (result) {
[...]
default:
break;
}
statements where compiler now complains about missing enum values in the
switch statement.
- startrecv() and getnext() have been rewritten.
- Don't set TCP flag when connecting a UDP dispatch.
- Prevent TCP connections from trying to connect twice.
- dns_dispatch_gettcp() can now find a matching TCP dispatch that has
not yet fully connected, and attach to it. when the connection is
completed, the connect callbacks are run for all of the pending
entries.
- An atomic 'state' variable is now used for connection state instead of
attributes.
- When dns_dispatch_cancel() is called on a TCP dispatch entry, only
that one entry is canceled. the dispatch itself should not be shut
down until there are no dispatch entries left associated with it.
- Other incidental cleanup, including removing DNS_DISPATCHATTR_IPV4 and
_IPV6 (they were being set in the dispatch attributes but never used),
cleaning up dns_requestmgr_create(), and renaming dns_dispatch_read()
to the more descriptive dns_dispatch_resume().
- Responses received by the dispatch are no longer sent to the caller
via a task event, but via a netmgr-style recv callback. the 'action'
parameter to dns_dispatch_addresponse() is now called 'response' and
is called directly from udp_recv() or tcp_recv() when a valid response
has been received.
- All references to isc_task and isc_taskmgr have been removed from
dispatch functions.
- All references to dns_dispatchevent_t have been removed and the type
has been deleted.
- Added a task to the resolver response context, to be used for fctx
events.
- When the caller cancels an operation, the response handler will be
called with ISC_R_CANCELED; it can abort immediately since the caller
will presumably have taken care of cleanup already.
- Cleaned up attach/detach in resquery and request.
Since every dispsock was associated with a dispentry anyway (though not
always vice versa), the members of dispsock have been combined into
dispentry, which is now reference-counted. dispentry objects are now
attached before connecting and detached afterward to prevent races
between the connect callback and dns_dispatch_removeresponse().
Dispatch and dispatchmgr objects are now reference counted as well, and
the shutdown process has been simplified. reference counting of
resquery and request objects has also been cleaned up significantly.
dns_dispatch_cancel() now flags a dispentry as having been canceled, so
that if the connect callback runs after cancellation, it will not
initiate a read.
The isblackholed() function has been simplified.
- The `timeout_action` parameter to dns_dispatch_addresponse() been
replaced with a netmgr callback that is called when a dispatch read
times out. this callback may optionally reset the read timer and
resume reading.
- Added a function to convert isc_interval to milliseconds; this is used
to translate fctx->interval into a value that can be passed to
dns_dispatch_addresponse() as the timeout.
- Note that netmgr timeouts are accurate to the millisecond, so code to
check whether a timeout has been reached cannot rely on microsecond
accuracy.
- If serve-stale is configured, then a timeout received by the resolver
may trigger it to return stale data, and then resume waiting for the
read timeout. this is no longer based on a separate stale timer.
- The code for canceling requests in request.c has been altered so that
it can run asynchronously.
- TCP timeout events apply to the dispatch, which may be shared by
multiple queries. since in the event of a timeout we have no query ID
to use to identify the resp we wanted, we now just send the timeout to
the oldest query that was pending.
- There was some additional refactoring in the resolver: combining
fctx_join() and fctx_try_events() into one function to reduce code
duplication, and using fixednames in fetchctx and fetchevent.
- Incidental fix: new_adbaddrinfo() can't return NULL anymore, so the
code can be simplified.
The flow of operations in dispatch is changing and will now be similar
for both UDP and TCP queries:
1) Call dns_dispatch_addresponse() to assign a query ID and register
that we'll be listening for a response with that ID soon. the
parameters for this function include callback functions to inform the
caller when the socket is connected and when the message has been
sent, as well as a task action that will be sent when the response
arrives. (later this could become a netmgr callback, but at this
stage to minimize disruption to the calling code, we continue to use
isc_task for the response event.) on successful completion of this
function, a dispatch entry object will be instantiated.
2) Call dns_dispatch_connect() on the dispatch entry. this runs
isc_nm_udpconnect() or isc_nm_tcpdnsconnect(), as needed, and begins
listening for responses. the caller is informed via a callback
function when the connection is established.
3) Call dns_dispatch_send() on the dispatch entry. this runs
isc_nm_send() to send a request.
4) Call dns_dispatch_removeresponse() to terminate listening and close
the connection.
Implementation comments below:
- As we will be using netmgr buffers now. code to send the length in
TCP queries has also been removed as that is handled by the netmgr.
- TCP dispatches can be used by multiple simultaneous queries, so
dns_dispatch_connect() now checks whether the dispatch is already
connected before calling isc_nm_tcpdnsconnect() again.
- Running dns_dispatch_getnext() from a non-network thread caused a
crash due to assertions in the netmgr read functions that appear to be
unnecessary now. the assertions have been removed.
- fctx->nqueries was formerly incremented when the connection was
successful, but is now incremented when the query is started and
decremented if the connection fails.
- It's no longer necessary for each dispatch to have a pool of tasks, so
there's now a single task per dispatch.
- Dispatch code to avoid UDP ports already in use has been removed.
- dns_resolver and dns_request have been modified to use netmgr callback
functions instead of task events. some additional changes were needed
to handle shutdown processing correctly.
- Timeout processing is not yet fully converted to use netmgr timeouts.
- Fixed a lock order cycle reported by TSAN (view -> zone-> adb -> view)
by by calling dns_zt functions without holding the view lock.
- Many dispatch attributes can be set implicitly instead of being passed
in. we can infer whether to set DNS_DISPATCHATTR_TCP or _UDP from
whether we're calling dns_dispatch_createtcp() or _createudp(). we
can also infer DNS_DISPATCHATTR_IPV4 or _IPV6 from the addresses or
the socket that were passed in.
- We no longer use dup'd sockets in UDP dispatches, so the 'dup_socket'
parameter has been removed from dns_dispatch_createudp(), along with
the code implementing it. also removed isc_socket_dup() since it no
longer has any callers.
- The 'buffersize' parameter was ignored and has now been removed;
buffersize is now fixed at 4096.
- Maxbuffers and maxrequests don't need to be passed in on every call to
dns_dispatch_createtcp() and _createudp().
In all current uses, the value for mgr->maxbuffers will either be
raised once from its default of 20000 to 32768, or else left
alone. (passing in a value lower than 20000 does not lower it.) there
isn't enough difference between these values for there to be any need
to configure this.
The value for disp->maxrequests controls both the quota of concurrent
requests for a dispatch and also the size of the dispatch socket
memory pool. it's not clear that this quota is necessary at all. the
memory pool size currently starts at 32768, but is sometimes lowered
to 4096, which is definitely unnecessary.
This commit sets both values permanently to 32768.
- Previously TCP dispatches allocated their own separate QID table,
which didn't incorporate a port table. this commit removes
per-dispatch QID tables and shares the same table between all
dispatches. since dispatches are created for each TCP socket, this may
speed up the dispatch allocation process. there may be a slight
increase in lock contention since all dispatches are sharing a single
QID table, but since TCP sockets are used less often than UDP
sockets (which were already sharing a QID table), it should not be a
substantial change.
- The dispatch port table was being used to determine whether a port was
already in use; if so, then a UDP socket would be bound with
REUSEADDR. this commit removes the port table, and always binds UDP
sockets that way.
Currently the netmgr doesn't support unconnected, shared UDP sockets, so
there's no reason to retain that functionality in the dispatcher prior
to porting to the netmgr.
In this commit, the DNS_DISPATCHATTR_EXCLUSIVE attribute has been
removed as it is now non-optional; UDP dispatches are alwasy exclusive.
Code implementing non-exclusive UDP dispatches has been removed.
dns_dispatch_getentrysocket() now always returns the dispsocket for UDP
dispatches and the dispatch socket for TCP dispatches.
There is no longer any need to search for existing dispatches from
dns_dispatch_getudp(), so the 'mask' option has been removed, and the
function renamed to the more descriptive dns_dispatch_createudp().
- UDP buffersize is now established when creating dispatch manager
and is always set to 4096.
- Set up the default port range in dispatchmgr before setting the magic
number.
- Magic is not set until dispatchmgr is fully created.
- removed unused functions
- changed some public functions to static that are never called
from outside client.c
- removed unused types and function prototypes
- renamed dns_client_destroy() to dns_client_detach()
the libdns client API is no longer being maintained for
external use, we can remove the code that isn't being used
internally, as well as the related tests.
The dns_message_create() function cannot soft fail (as all memory
allocations either succeed or cause abort), so we change the function to
return void and cleanup the calls.
Created isc_refcount_decrement_expect macro to test conditionally
the return value to ensure it is in expected range. Converted
unchecked isc_refcount_decrement to use isc_refcount_decrement_expect.
Converted INSIST(isc_refcount_decrement()...) to isc_refcount_decrement_expect.
The 'ephemeral' database implementation was used to provide a
lightweight database implemenation that doesn't cache results, and the
only place where it was really use is "samples" because delv is
overriding this to use "rbtdb" instead. Otherwise it was completely
unused.
* The 'ephemeral' cache DB (ecdb) implementation. An ecdb just provides
* temporary storage for ongoing name resolution with the common DB interfaces.
* It actually doesn't cache anything. The implementation expects any stored
* data is released within a short period, and does not care about the
* scalability in terms of the number of nodes.
The isc_mem API now crashes on memory allocation failure, and this is
the next commit in series to cleanup the code that could fail before,
but cannot fail now, e.g. isc_result_t return type has been changed to
void for the isc_log API functions that could only return ISC_R_SUCCESS.