We pass interface as an opaque argument to tcpdns listening socket.
If we stop listening on an interface but still have in-flight connections
the opaque 'interface' is not properly reference counted, and we might
hit a dead memory. We put just a single source of truth in a listening
socket and make the child sockets use that instead of copying the
value from listening socket. We clean the callback when we stop listening.
- the socket stat counters have been moved from socket.h to stats.h.
- isc_nm_t now attaches to the same stats counter group as
isc_socketmgr_t, so that both managers can increment the same
set of statistics
- isc__nmsocket_init() now takes an interface as a paramter so that
the address family can be determined when initializing the socket.
- based on the address family and socket type, a group of statistics
counters will be associated with the socket - for example, UDP4Active
with IPv4 UDP sockets and TCP6Active with IPv6 TCP sockets. note
that no counters are currently associated with TCPDNS sockets; those
stats will be handled by the underlying TCP socket.
- the counters are not actually used by netmgr sockets yet; counter
increment and decrement calls will be added in a later commit.
After the network manager rewrite, tcp-higwater stats was only being
updated when a valid DNS query was received over tcp.
It turns out tcp-quota is updated right after a tcp connection is
accepted, before any data is read, so in the event that some client
connect but don't send a valid query, it wouldn't be taken into
account to update tcp-highwater stats, that is wrong.
This commit fix tcp-highwater to update its stats whenever a tcp connection
is established, independent of what happens after (timeout/invalid
request, etc).
even when worker is paused (e.g. interface reconfiguration). This is
needed to prevent deadlocks when reconfiguring interfaces - as network
manager is paused then, but we still need to stop/start listening.
- Proper handling of TCP listen errors in netmgr - bind to the socket first,
then return the error code.
- restore support for tcp-initial-timeout, tcp-idle-timeout,
tcp-keepalive-timeout and tcp-advertised-timeout configuration
options, which were ineffective previously.
- add timeout support for TCP and TCPDNS connections to protect against
slowloris style attacks. currently, all timeouts are hard-coded.
- rework and simplify the TCPDNS state machine.
when the TCPDNS_CLIENTS_PER_CONN limit has been exceeded for a TCP
DNS connection, switch to sequential mode to ensure that memory cannot
be exhausted by too many simultaneous queries.
This is a replacement for the existing isc_socket and isc_socketmgr
implementation. It uses libuv for asynchronous network communication;
"networker" objects will be distributed across worker threads reading
incoming packets and sending them for processing.
UDP listener sockets automatically create an array of "child" sockets
so each worker can listen separately.
TCP sockets are shared amongst worker threads.
A TCPDNS socket is a wrapper around a TCP socket, which handles the
the two-byte length field at the beginning of DNS messages over TCP.
(Other wrapper socket types can be implemented in the future to handle
DNS over TLS, DNS over HTTPS, etc.)