the 'nupdates' field was originally used to track whether a client
was ready to shut down, along with other similar counters nreads,
nrecvs, naccepts and nsends. this is now tracked differently, but
nupdates was overlooked when the other counters were removed.
All we need for compression is a very small hash set of compression
offsets, because most of the information we need (the previously added
names) can be found in the message using the compression offsets.
This change combines dns_compress_find() and dns_compress_add() into
one function dns_compress_name() that both finds any existing suffix,
and adds any new prefix to the table. The old split led to performance
problems caused by duplicate names in the compression context.
Compression contexts are now either small or large, which the caller
chooses depending on the expected size of the message. There is no
dynamic resizing.
There is a behaviour change: compression now acts on all the labels in
each name, instead of just the last few.
A small benchmark suggests this is about 2x faster.
Getting the recorded value of 'edns-udp-size' from the resolver requires
strong attach to the dns_view because we are accessing `view->resolver`.
This is not the case in places (f.e. dns_zone unit) where `.udpsize` is
accessed. By moving the .udpsize field from `struct dns_resolver` to
`struct dns_view`, we can access the value directly even with weakly
attached dns_view without the need to lock the view because `.udpsize`
can be accessed after the dns_view object has been shut down.
Formerly, the isc_hash32() would have to change the key in a local copy
to make it case insensitive. Change the isc_siphash24() and
isc_halfsiphash24() functions to lowercase the input directly when
reading it from the memory and converting the uint8_t * array to
64-bit (respectively 32-bit numbers).
It is possible to bypass Response Rate Limiting (RRL)
`responses-per-second` limitation using specially crafted wildcard
names, because the current implementation, when encountering a found
DNS name generated from a wildcard record, just strips the leftmost
label of the name before making a key for the bucket.
While that technique helps with limiting random requests like
<random>.example.com (because all those requests will be accounted
as belonging to a bucket constructed from "example.com" name), it does
not help with random names like subdomain.<random>.example.com.
The best solution would have been to strip not just the leftmost
label, but as many labels as necessary until reaching the suffix part
of the wildcard record from which the found name is generated, however,
we do not have that information readily available in the context of RRL
processing code.
Fix the issue by interpreting all valid wildcard domain names as
the zone's origin name concatenated to the "*" name, so they all will
be put into the same bucket.
Previously:
* applications were using isc_app as the base unit for running the
application and signal handling.
* networking was handled in the netmgr layer, which would start a
number of threads, each with a uv_loop event loop.
* task/event handling was done in the isc_task unit, which used
netmgr event loops to run the isc_event calls.
In this refactoring:
* the network manager now uses isc_loop instead of maintaining its
own worker threads and event loops.
* the taskmgr that manages isc_task instances now also uses isc_loopmgr,
and every isc_task runs on a specific isc_loop bound to the specific
thread.
* applications have been updated as necessary to use the new API.
* new ISC_LOOP_TEST macros have been added to enable unit tests to
run isc_loop event loops. unit tests have been updated to use this
where needed.
* isc_timer was rewritten using the uv_timer, and isc_timermgr_t was
completely removed; isc_timer objects are now directly created on the
isc_loop event loops.
* the isc_timer API has been simplified. the "inactive" timer type has
been removed; timers are now stopped by calling isc_timer_stop()
instead of resetting to inactive.
* isc_manager now creates a loop manager rather than a timer manager.
* modules and applications using isc_timer have been updated to use the
new API.
The BUFSIZ value varies between platforms, it could be 8K on Linux and
512 bytes on mingw. Make sure the buffers are always big enough for the
output data to prevent truncation of the output by appropriately
enlarging or sizing the buffers.
The current logic for determining the address of the socket to which a
client sent its query is:
1. Get the address:port tuple from the netmgr handle using
isc_nmhandle_localaddr().
2. Convert the address:port tuple from step 1 into an isc_netaddr_t
using isc_netaddr_fromsockaddr().
3. Convert the address from step 2 back into a socket address with the
port set to 0 using isc_sockaddr_fromnetaddr().
Note that the port number (readily available in the netmgr handle) is
needlessly lost in the process, preventing it from being recorded in
dnstap captures of client traffic produced by named.
Fix by first storing the address:port tuple returned by
isc_nmhandle_localaddr() in client->destsockaddr and then creating an
isc_netaddr_t from that structure. This allows the port number to be
retained in client->destsockaddr, which is what subsequently gets passed
to dns_dt_send().
ns_client_endrequest() currently contains code that looks for
outstanding quota references and cleans them up if necessary. This
approach masks programming errors because ns_client_endrequest() is only
called from ns__client_reset_cb(), which in turn is only called when all
references to the client's netmgr handle are released, which in turn
only happens after all recursion completion callbacks are invoked
(because isc_nmhandle_attach() is called before every call to
dns_resolver_createfetch() in lib/ns/query.c and the completion callback
is expected to detach from the handle), which in turn is expected to
happen for all recursions attempts, even those that get canceled.
Furthermore, declaring the prototype of ns_client_endrequest() at the
top of lib/ns/client.c is redundant because the definition of that
function is placed before its first use in that file. Remove the
redundant function prototype.
Finally, remove INSIST assertions ensuring quota pointers are NULL in
ns__client_reset_cb() because the latter calls ns_client_endrequest() a
few lines earlier.
Similarly to how different code paths reused common client handle
pointers and fetch references despite being logically unrelated, they
also reuse client->recursionquota, the field in which a reference to the
recursion quota is stored. This unnecessarily forces all code using
that field to be aware of the fact that it is overloaded by different
features.
Overloading client->recursionquota also causes inconsistent behavior.
For example, if prefetch code triggers recursion and then delegation
handling code also triggers recursion, only one of these code paths will
be able to attach to the recursion quota, but both recursions will be
started anyway. In other words, each code path only checks whether the
recursion quota has not been exceeded if the quota has not yet been
attached to by another code path. This behavior theoretically allows
the configured recursion quota to be slightly exceeded; while it is not
expected to be a real-world operational issue, it is still confusing and
should therefore be fixed.
Extend the structures comprising the 'recursions' array with a new field
holding a pointer to the recursion quota that a given recursion process
attached to. Update all code paths using client->recursionquota so that
they use the appropriate slot in the 'recursions' array. Drop the
'recursionquota' field from ns_client_t.
Replace:
- client->prefetchhandle with HANDLE_RECTYPE_PREFETCH(client)
- client->query.prefetch with FETCH_RECTYPE_PREFETCH(client)
This is preparatory work for separating prefetch code from RPZ code.
The aim is to get rid of the obsolete term "GLOBAL14" and instead just
refer to DNS name compression.
This is mostly mechanically renaming
from dns_(de)compress_(get|set)methods()
to dns_(de)compress_(get|set)permitted()
and replacing the related enum by a simple flag, because compression
is either on or off.
There was a proposal in the late 1990s that it might, but it turned
out to be unworkable. See RFC 6891, Extension Mechanisms for
DNS (EDNS(0)), section 5, Extended Label Types.
The remnants of the code that supported this in BIND are redundant.
Previously, tasks could be created either unbound or bound to a specific
thread (worker loop). The unbound tasks would be assigned to a random
thread every time isc_task_send() was called. Because there's no logic
that would assign the task to the least busy worker, this just creates
unpredictability. Instead of random assignment, bind all the previously
unbound tasks to worker 0, which is guaranteed to exist.
The dns_message_gettempname(), dns_message_gettemprdata(),
dns_message_gettemprdataset(), and dns_message_gettemprdatalist() always
succeeds because the memory allocation cannot fail now. Change the API
to return void and cleanup all the use of aforementioned functions.
The .lock, .exiting and .excl members were not using for anything else
than starting task exclusive mode, setting .exiting to true and ending
exclusive mode.
Remove all the stray members and dead code eliminating the task
exclusive mode use from ns_clientmgr.
The way the ns_client_t .shuttingdown member was practically dead code.
The .shuttingdown would be set to true only in ns__client_put() function
meaning that we have detached from all ns_client_t .*handles and the
ns_client_t object being freed:
client->magic = 0;
client->shuttingdown = true;
[...]
isc_mem_put(manager->ctx, client, sizeof(*client))
Meanwhile the ns_client_t object is accessed like this:
isc_nmhandle_detach(&client->fetchhandle);
client->query.attributes &= ~NS_QUERYATTR_RECURSING;
client->state = NS_CLIENTSTATE_WORKING;
qctx_init(client, &devent, 0, &qctx);
client_shuttingdown = ns_client_shuttingdown(client);
if (fetch_canceled || fetch_answered || client_shuttingdown) {
[...]
}
Even if the isc_nmhandle_detach(...) was the last handle detach, it
would mean that immediatelly, after calling the isc_nmhandle_detach(),
we would be causing use-after-free, because the ns_client_t is
immediatelly destroyed after setting .shuttingdown to true.
The similar code in the query_hookresume() already noticed this:
/*
* This event is running under a client task, so it's safe to detach
* the fetch handle. And it should be done before resuming query
* processing below, since that may trigger another recursion or
* asynchronous hook event.
*/
Previously, it was possible to assign a bit of memory space in the
nmhandle to store the client data. This was complicated and prevents
further refactoring of isc_nmhandle_t caching (future work).
Instead of caching the data in the nmhandle, allocate the hot-path
ns_client_t objects from per-thread clientmgr memory context and just
assign it to the isc_nmhandle_t via isc_nmhandle_set().
The ns_client_t is always attached to ns_clientmgr_t which has
associated memory context, server context, task and threadid. Use those
directly from the ns_clientmgr_t instead of attaching it to an extra
copy in ns_client_t to make the ns_client_t more sleek and lean.
Additionally, remove some stray ns_client_t struct members that were not
used anywhere.
Historically, the inline keyword was a strong suggestion to the compiler
that it should inline the function marked inline. As compilers became
better at optimising, this functionality has receded, and using inline
as a suggestion to inline a function is obsolete. The compiler will
happily ignore it and inline something else entirely if it finds that's
a better optimisation.
Therefore, remove all the occurences of the inline keyword with static
functions inside single compilation unit and leave the decision whether
to inline a function or not entirely on the compiler
NOTE: We keep the usage the inline keyword when the purpose is to change
the linkage behaviour.
Previously, the unreachable code paths would have to be tagged with:
INSIST(0);
ISC_UNREACHABLE();
There was also older parts of the code that used comment annotation:
/* NOTREACHED */
Unify the handling of unreachable code paths to just use:
UNREACHABLE();
The UNREACHABLE() macro now asserts when reached and also uses
__builtin_unreachable(); when such builtin is available in the compiler.
The C17 standard deprecated ATOMIC_VAR_INIT() macro (see [1]). Follow
the suite and remove the ATOMIC_VAR_INIT() usage in favor of simple
assignment of the value as this is what all supported stdatomic.h
implementations do anyway:
* MacOSX.plaform: #define ATOMIC_VAR_INIT(__v) {__v}
* Gcc stdatomic.h: #define ATOMIC_VAR_INIT(VALUE) (VALUE)
1. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p1138r0.pdf
The keep-response-order option has been obsoleted, and in this commit,
remove the keep-response-order ACL map rendering the option no-op, the
call the isc_nm_sequential() and the now unused isc_nm_sequential()
function itself.
When invalid DNS message is received, there was a handling mechanism for
DoH that would be called to return proper HTTP response.
Reuse this mechanism and reset the TCP connection when the client is
blackholed, DNS message is completely bogus or the ns_client receives
response instead of query.
This commit converts the license handling to adhere to the REUSE
specification. It specifically:
1. Adds used licnses to LICENSES/ directory
2. Add "isc" template for adding the copyright boilerplate
3. Changes all source files to include copyright and SPDX license
header, this includes all the C sources, documentation, zone files,
configuration files. There are notes in the doc/dev/copyrights file
on how to add correct headers to the new files.
4. Handle the rest that can't be modified via .reuse/dep5 file. The
binary (or otherwise unmodifiable) files could have license places
next to them in <foo>.license file, but this would lead to cluttered
repository and most of the files handled in the .reuse/dep5 file are
system test files.
The memory context created in the clientmgr context was missing a name,
so it was nameless in the memory context statistics.
Set the clientmgr memory context name to "clientmgr".
This commit completes the integration of the new, extended ACL syntax
featuring 'port' and 'transport' options.
The runtime presentation and ACL loading code are extended to allow
the syntax to be used beyond the 'allow-transfer' option (e.g. in
'acl' definitions and other 'allow-*' options) and can be used to
ultimately extend the ACL support with transport-only
ACLs (e.g. 'transport-acl tls-acl port 853 transport tls'). But, due
to fundamental nature of such a change, it has not been completed as a
part of 9.17.X release series due to it being close to 9.18 stable
release status. That means that we do not have enough time to fully
test it.
The complete integration is planned as a part of 9.19.X release
series.
The code was manually verified to work as expected by temporarily
enabling the extended syntax for 'acl' statements and 'allow-query'
options, including ACL merging, negated ACLs.
Add a new parameter to 'ns_client_t' to store potential extended DNS
error. Reset when the client request ends, or is put back.
Add defines for all well-known info-codes.
Update the number of DNS_EDNSOPTIONS that we are willing to set.
Create a new function to set the extended error for a client reply.
This commit makes BIND set the "max-age" value of the "Cache-Control"
HTTP header to the minimal TTL from the Answer section for positive
answers, as RFC 8484 advises in section 5.1.
We calculate the minimal TTL as a side effect of rendering the
response DNS message, so it does not change the code flow much, nor
should it have any measurable negative impact on the performance.
For negative answers, the "max-age" value is set using the TTL and
SOA-minimum values from an SOA record in the Authority section.
Remove the dynamic registration of result codes. Convert isc_result_t
from unsigned + #defines into 32-bit enum type in grand unified
<isc/result.h> header. Keep the existing values of the result codes
even at the expense of the description and identifier tables being
unnecessary large.
Additionally, add couple of:
switch (result) {
[...]
default:
break;
}
statements where compiler now complains about missing enum values in the
switch statement.
- Responses received by the dispatch are no longer sent to the caller
via a task event, but via a netmgr-style recv callback. the 'action'
parameter to dns_dispatch_addresponse() is now called 'response' and
is called directly from udp_recv() or tcp_recv() when a valid response
has been received.
- All references to isc_task and isc_taskmgr have been removed from
dispatch functions.
- All references to dns_dispatchevent_t have been removed and the type
has been deleted.
- Added a task to the resolver response context, to be used for fctx
events.
- When the caller cancels an operation, the response handler will be
called with ISC_R_CANCELED; it can abort immediately since the caller
will presumably have taken care of cleanup already.
- Cleaned up attach/detach in resquery and request.
previously, receiving a keepalive option had no effect on how
long named would keep the connection open; there was a place to
configure the keepalive timeout but it was never used. this commit
corrects that.
this also fixes an error in isc__nm_{tcp,tls}dns_keepalive()
in which the sense of a REQUIRE test was reversed; previously this
error had not been noticed because the functions were not being
used.
The client->rcode_override was originally created to force the server
to send SERVFAIL in some cases when it would normally have sent FORMERR.
More recently, it was used in a3ba95116ed04594ea59a8124bf781b30367a7a2
commit (part of GL #2790) to force the sending of a TC=1 NOERROR
response, triggering a retry via TCP, when a UDP packet could not be
sent due to ISC_R_MAXSIZE.
This ran afoul of a pre-existing INSIST in ns_client_error() when
RRL was in use. the INSIST was based on the assumption that
ns_client_error() could never result in a non-error rcode. as
that assumption is no longer valid, the INSIST has been removed.
The additional processing method has been expanded to take the
owner name of the record, as HTTPS and SVBC need it to process "."
in service form.
The additional section callback can now return the RRset that was
added. We use this when adding CNAMEs. Previously, the recursion
would stop if it detected that a record you added already exists. With
CNAMEs this rule doesn't work, as you ultimately care about the RRset
at the target of the CNAME and not the presence of the CNAME itself.
Returning the record allows the caller to restart with the target
name. As CNAMEs can form loops, loop protection was added.
As HTTPS and SVBC can produce infinite chains, we prevent this by
tracking recursion depth and stopping if we go too deep.
This commit makes BIND return HTTP status codes for malformed or too
small requests.
DNS request processing code would ignore such requests. Such an
approach works well for other DNS transport but does not make much
sense for HTTP, not allowing it to complete the request/response
sequence.
Suppose execution has reached the point where DNS message handling
code has been called. In that case, it means that the HTTP request has
been successfully processed, and, thus, we are expected to respond to
it either with a message containing some DNS payload or at least to
return an error status code. This commit ensures that BIND behaves
this way.
The isc/platform.h header was left empty which things either already
moved to config.h or to appropriate headers. This is just the final
cleanup commit.
When the fragmentation is disabled on UDP sockets, the uv_udp_send()
call can fail with UV_EMSGSIZE for messages larger than path MTU.
Previously, this error would end with just discarding the response. In
this commit, a proper handling of such case is added and on such error,
a new DNS response with truncated bit set is generated and sent to the
client.
This change allows us to disable the fragmentation on the UDP
sockets again.
Previously, each protocol (TCPDNS, TLSDNS) has specified own function to
disable pipelining on the connection. An oversight would lead to
assertion failure when opcode is not query over non-TCPDNS protocol
because the isc_nm_tcpdns_sequential() function would be called over
non-TCPDNS socket. This commit removes the per-protocol functions and
refactors the code to have and use common isc_nm_sequential() function
that would either disable the pipelining on the socket or would handle
the request in per specific manner. Currently it ignores the call for
HTTP sockets and causes assertion failure for protocols where it doesn't
make sense to call the function at all.
The Windows support has been completely removed from the source tree
and BIND 9 now no longer supports native compilation on Windows.
We might consider reviewing mingw-w64 port if contributed by external
party, but no development efforts will be put into making BIND 9 compile
and run on Windows again.
configuring with --enable-mutex-atomics flagged these incorrectly
initialised variables on systems where pthread_mutex_init doesn't
just zero out the structure.
Previously, as a way of reducing the contention between threads a
clientmgr object would be created for each interface/IP address.
We tasks being more strictly bound to netmgr workers, this is no longer
needed and we can just create clientmgr object per worker queue (ncpus).
Each clientmgr object than would have a single task and single memory
context.
Since a client object is bound to a netmgr handle, each client
will always be processed by the same netmgr worker, so we can
simplify the code by binding client->task to the same thread as
the client. Since ns__client_request() now runs in the same event
loop as client->task events, is no longer necessary to pause the
task manager before launching them.
Also removed some functions in isc_task that were not used.