2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-22 10:10:06 +00:00
bind/lib/isc/task.c
Ondřej Surý 29c2e52484 The isc/platform.h header has been completely removed
The isc/platform.h header was left empty which things either already
moved to config.h or to appropriate headers.  This is just the final
cleanup commit.
2021-07-06 05:33:48 +00:00

1361 lines
31 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*! \file */
/*
* XXXRTH Need to document the states a task can be in, and the rules
* for changing states.
*/
#include <stdbool.h>
#include <unistd.h>
#include <isc/app.h>
#include <isc/atomic.h>
#include <isc/condition.h>
#include <isc/event.h>
#include <isc/magic.h>
#include <isc/mem.h>
#include <isc/once.h>
#include <isc/print.h>
#include <isc/random.h>
#include <isc/refcount.h>
#include <isc/string.h>
#include <isc/task.h>
#include <isc/thread.h>
#include <isc/time.h>
#include <isc/util.h>
#ifdef HAVE_LIBXML2
#include <libxml/xmlwriter.h>
#define ISC_XMLCHAR (const xmlChar *)
#endif /* HAVE_LIBXML2 */
#ifdef HAVE_JSON_C
#include <json_object.h>
#endif /* HAVE_JSON_C */
#include "task_p.h"
/*
* Task manager is built around 'as little locking as possible' concept.
* Each thread has his own queue of tasks to be run, if a task is in running
* state it will stay on the runner it's currently on, if a task is in idle
* state it can be woken up on a specific runner with isc_task_sendto - that
* helps with data locality on CPU.
*
* To make load even some tasks (from task pools) are bound to specific
* queues using isc_task_create_bound. This way load balancing between
* CPUs/queues happens on the higher layer.
*/
#ifdef ISC_TASK_TRACE
#define XTRACE(m) \
fprintf(stderr, "task %p thread %zu: %s\n", task, isc_tid_v, (m))
#define XTTRACE(t, m) \
fprintf(stderr, "task %p thread %zu: %s\n", (t), isc_tid_v, (m))
#define XTHREADTRACE(m) fprintf(stderr, "thread %zu: %s\n", isc_tid_v, (m))
#else /* ifdef ISC_TASK_TRACE */
#define XTRACE(m)
#define XTTRACE(t, m)
#define XTHREADTRACE(m)
#endif /* ifdef ISC_TASK_TRACE */
/***
*** Types.
***/
typedef enum {
task_state_idle, /* not doing anything, events queue empty */
task_state_ready, /* waiting in worker's queue */
task_state_running, /* actively processing events */
task_state_done /* shutting down, no events or references */
} task_state_t;
#if defined(HAVE_LIBXML2) || defined(HAVE_JSON_C)
static const char *statenames[] = {
"idle",
"ready",
"running",
"done",
};
#endif /* if defined(HAVE_LIBXML2) || defined(HAVE_JSON_C) */
#define TASK_MAGIC ISC_MAGIC('T', 'A', 'S', 'K')
#define VALID_TASK(t) ISC_MAGIC_VALID(t, TASK_MAGIC)
struct isc_task {
/* Not locked. */
unsigned int magic;
isc_taskmgr_t *manager;
isc_mutex_t lock;
/* Locked by task lock. */
int threadid;
task_state_t state;
isc_refcount_t references;
isc_refcount_t running;
isc_eventlist_t events;
isc_eventlist_t on_shutdown;
unsigned int nevents;
unsigned int quantum;
isc_stdtime_t now;
isc_time_t tnow;
char name[16];
void *tag;
bool bound;
/* Protected by atomics */
atomic_bool shuttingdown;
atomic_bool privileged;
/* Locked by task manager lock. */
LINK(isc_task_t) link;
};
#define TASK_SHUTTINGDOWN(t) (atomic_load_acquire(&(t)->shuttingdown))
#define TASK_PRIVILEGED(t) (atomic_load_acquire(&(t)->privileged))
#define TASK_MANAGER_MAGIC ISC_MAGIC('T', 'S', 'K', 'M')
#define VALID_MANAGER(m) ISC_MAGIC_VALID(m, TASK_MANAGER_MAGIC)
struct isc_taskmgr {
/* Not locked. */
unsigned int magic;
isc_refcount_t references;
isc_mem_t *mctx;
isc_mutex_t lock;
atomic_uint_fast32_t tasks_count;
isc_nm_t *netmgr;
/* Locked by task manager lock. */
unsigned int default_quantum;
LIST(isc_task_t) tasks;
atomic_uint_fast32_t mode;
atomic_bool exclusive_req;
atomic_bool exiting;
/*
* Multiple threads can read/write 'excl' at the same time, so we need
* to protect the access. We can't use 'lock' since isc_task_detach()
* will try to acquire it.
*/
isc_mutex_t excl_lock;
isc_task_t *excl;
};
#define DEFAULT_DEFAULT_QUANTUM 25
/*%
* The following are intended for internal use (indicated by "isc__"
* prefix) but are not declared as static, allowing direct access from
* unit tests etc.
*/
bool
isc_task_purgeevent(isc_task_t *task, isc_event_t *event);
void
isc_taskmgr_setexcltask(isc_taskmgr_t *mgr, isc_task_t *task);
isc_result_t
isc_taskmgr_excltask(isc_taskmgr_t *mgr, isc_task_t **taskp);
/***
*** Tasks.
***/
static void
task_finished(isc_task_t *task) {
isc_taskmgr_t *manager = task->manager;
isc_mem_t *mctx = manager->mctx;
REQUIRE(EMPTY(task->events));
REQUIRE(task->nevents == 0);
REQUIRE(EMPTY(task->on_shutdown));
REQUIRE(task->state == task_state_done);
XTRACE("task_finished");
isc_refcount_destroy(&task->running);
isc_refcount_destroy(&task->references);
LOCK(&manager->lock);
UNLINK(manager->tasks, task, link);
atomic_fetch_sub(&manager->tasks_count, 1);
UNLOCK(&manager->lock);
isc_mutex_destroy(&task->lock);
task->magic = 0;
isc_mem_put(mctx, task, sizeof(*task));
isc_taskmgr_detach(&manager);
}
isc_result_t
isc_task_create(isc_taskmgr_t *manager, unsigned int quantum,
isc_task_t **taskp) {
return (isc_task_create_bound(manager, quantum, taskp, -1));
}
isc_result_t
isc_task_create_bound(isc_taskmgr_t *manager, unsigned int quantum,
isc_task_t **taskp, int threadid) {
isc_task_t *task;
bool exiting;
REQUIRE(VALID_MANAGER(manager));
REQUIRE(taskp != NULL && *taskp == NULL);
XTRACE("isc_task_create");
task = isc_mem_get(manager->mctx, sizeof(*task));
*task = (isc_task_t){ 0 };
isc_taskmgr_attach(manager, &task->manager);
if (threadid == -1) {
/*
* Task is not pinned to a queue, it's threadid will be
* chosen when first task will be sent to it - either
* randomly or specified by isc_task_sendto.
*/
task->bound = false;
task->threadid = -1;
} else {
/*
* Task is pinned to a queue, it'll always be run
* by a specific thread.
*/
task->bound = true;
task->threadid = threadid;
}
isc_mutex_init(&task->lock);
task->state = task_state_idle;
isc_refcount_init(&task->references, 1);
isc_refcount_init(&task->running, 0);
INIT_LIST(task->events);
INIT_LIST(task->on_shutdown);
task->nevents = 0;
task->quantum = (quantum > 0) ? quantum : manager->default_quantum;
atomic_init(&task->shuttingdown, false);
atomic_init(&task->privileged, false);
task->now = 0;
isc_time_settoepoch(&task->tnow);
memset(task->name, 0, sizeof(task->name));
task->tag = NULL;
INIT_LINK(task, link);
task->magic = TASK_MAGIC;
exiting = false;
LOCK(&manager->lock);
if (!atomic_load_relaxed(&manager->exiting)) {
APPEND(manager->tasks, task, link);
atomic_fetch_add(&manager->tasks_count, 1);
} else {
exiting = true;
}
UNLOCK(&manager->lock);
if (exiting) {
isc_refcount_destroy(&task->running);
isc_refcount_decrement(&task->references);
isc_refcount_destroy(&task->references);
isc_mutex_destroy(&task->lock);
isc_taskmgr_detach(&task->manager);
isc_mem_put(manager->mctx, task, sizeof(*task));
return (ISC_R_SHUTTINGDOWN);
}
*taskp = task;
return (ISC_R_SUCCESS);
}
void
isc_task_attach(isc_task_t *source, isc_task_t **targetp) {
/*
* Attach *targetp to source.
*/
REQUIRE(VALID_TASK(source));
REQUIRE(targetp != NULL && *targetp == NULL);
XTTRACE(source, "isc_task_attach");
isc_refcount_increment(&source->references);
*targetp = source;
}
static inline bool
task_shutdown(isc_task_t *task) {
bool was_idle = false;
isc_event_t *event, *prev;
/*
* Caller must be holding the task's lock.
*/
XTRACE("task_shutdown");
if (atomic_compare_exchange_strong(&task->shuttingdown,
&(bool){ false }, true)) {
XTRACE("shutting down");
if (task->state == task_state_idle) {
INSIST(EMPTY(task->events));
task->state = task_state_ready;
was_idle = true;
}
INSIST(task->state == task_state_ready ||
task->state == task_state_running);
/*
* Note that we post shutdown events LIFO.
*/
for (event = TAIL(task->on_shutdown); event != NULL;
event = prev) {
prev = PREV(event, ev_link);
DEQUEUE(task->on_shutdown, event, ev_link);
ENQUEUE(task->events, event, ev_link);
task->nevents++;
}
}
return (was_idle);
}
/*
* Moves a task onto the appropriate run queue.
*
* Caller must NOT hold queue lock.
*/
static inline void
task_ready(isc_task_t *task) {
isc_taskmgr_t *manager = task->manager;
REQUIRE(VALID_MANAGER(manager));
XTRACE("task_ready");
isc_refcount_increment0(&task->running);
LOCK(&task->lock);
isc_nm_task_enqueue(manager->netmgr, task, task->threadid);
UNLOCK(&task->lock);
}
void
isc_task_ready(isc_task_t *task) {
task_ready(task);
}
static inline bool
task_detach(isc_task_t *task) {
/*
* Caller must be holding the task lock.
*/
XTRACE("detach");
if (isc_refcount_decrement(&task->references) == 1 &&
task->state == task_state_idle)
{
INSIST(EMPTY(task->events));
/*
* There are no references to this task, and no
* pending events. We could try to optimize and
* either initiate shutdown or clean up the task,
* depending on its state, but it's easier to just
* make the task ready and allow run() or the event
* loop to deal with shutting down and termination.
*/
task->state = task_state_ready;
return (true);
}
return (false);
}
void
isc_task_detach(isc_task_t **taskp) {
isc_task_t *task;
bool was_idle;
/*
* Detach *taskp from its task.
*/
REQUIRE(taskp != NULL);
task = *taskp;
REQUIRE(VALID_TASK(task));
XTRACE("isc_task_detach");
LOCK(&task->lock);
was_idle = task_detach(task);
UNLOCK(&task->lock);
if (was_idle) {
task_ready(task);
}
*taskp = NULL;
}
static inline bool
task_send(isc_task_t *task, isc_event_t **eventp, int c) {
bool was_idle = false;
isc_event_t *event;
/*
* Caller must be holding the task lock.
*/
REQUIRE(eventp != NULL);
event = *eventp;
*eventp = NULL;
REQUIRE(event != NULL);
REQUIRE(event->ev_type > 0);
REQUIRE(task->state != task_state_done);
REQUIRE(!ISC_LINK_LINKED(event, ev_ratelink));
XTRACE("task_send");
if (task->bound) {
c = task->threadid;
} else if (c < 0) {
c = -1;
}
if (task->state == task_state_idle) {
was_idle = true;
task->threadid = c;
INSIST(EMPTY(task->events));
task->state = task_state_ready;
}
INSIST(task->state == task_state_ready ||
task->state == task_state_running);
ENQUEUE(task->events, event, ev_link);
task->nevents++;
return (was_idle);
}
void
isc_task_send(isc_task_t *task, isc_event_t **eventp) {
isc_task_sendto(task, eventp, -1);
}
void
isc_task_sendanddetach(isc_task_t **taskp, isc_event_t **eventp) {
isc_task_sendtoanddetach(taskp, eventp, -1);
}
void
isc_task_sendto(isc_task_t *task, isc_event_t **eventp, int c) {
bool was_idle;
/*
* Send '*event' to 'task'.
*/
REQUIRE(VALID_TASK(task));
XTRACE("isc_task_send");
/*
* We're trying hard to hold locks for as short a time as possible.
* We're also trying to hold as few locks as possible. This is why
* some processing is deferred until after the lock is released.
*/
LOCK(&task->lock);
was_idle = task_send(task, eventp, c);
UNLOCK(&task->lock);
if (was_idle) {
/*
* We need to add this task to the ready queue.
*
* We've waited until now to do it because making a task
* ready requires locking the manager. If we tried to do
* this while holding the task lock, we could deadlock.
*
* We've changed the state to ready, so no one else will
* be trying to add this task to the ready queue. The
* only way to leave the ready state is by executing the
* task. It thus doesn't matter if events are added,
* removed, or a shutdown is started in the interval
* between the time we released the task lock, and the time
* we add the task to the ready queue.
*/
task_ready(task);
}
}
void
isc_task_sendtoanddetach(isc_task_t **taskp, isc_event_t **eventp, int c) {
bool idle1, idle2;
isc_task_t *task;
/*
* Send '*event' to '*taskp' and then detach '*taskp' from its
* task.
*/
REQUIRE(taskp != NULL);
task = *taskp;
REQUIRE(VALID_TASK(task));
XTRACE("isc_task_sendanddetach");
LOCK(&task->lock);
idle1 = task_send(task, eventp, c);
idle2 = task_detach(task);
UNLOCK(&task->lock);
/*
* If idle1, then idle2 shouldn't be true as well since we're holding
* the task lock, and thus the task cannot switch from ready back to
* idle.
*/
INSIST(!(idle1 && idle2));
if (idle1 || idle2) {
task_ready(task);
}
*taskp = NULL;
}
#define PURGE_OK(event) (((event)->ev_attributes & ISC_EVENTATTR_NOPURGE) == 0)
static unsigned int
dequeue_events(isc_task_t *task, void *sender, isc_eventtype_t first,
isc_eventtype_t last, void *tag, isc_eventlist_t *events,
bool purging) {
isc_event_t *event, *next_event;
unsigned int count = 0;
REQUIRE(VALID_TASK(task));
REQUIRE(last >= first);
XTRACE("dequeue_events");
/*
* Events matching 'sender', whose type is >= first and <= last, and
* whose tag is 'tag' will be dequeued. If 'purging', matching events
* which are marked as unpurgable will not be dequeued.
*
* sender == NULL means "any sender", and tag == NULL means "any tag".
*/
LOCK(&task->lock);
for (event = HEAD(task->events); event != NULL; event = next_event) {
next_event = NEXT(event, ev_link);
if (event->ev_type >= first && event->ev_type <= last &&
(sender == NULL || event->ev_sender == sender) &&
(tag == NULL || event->ev_tag == tag) &&
(!purging || PURGE_OK(event)))
{
DEQUEUE(task->events, event, ev_link);
task->nevents--;
ENQUEUE(*events, event, ev_link);
count++;
}
}
UNLOCK(&task->lock);
return (count);
}
unsigned int
isc_task_purgerange(isc_task_t *task, void *sender, isc_eventtype_t first,
isc_eventtype_t last, void *tag) {
unsigned int count;
isc_eventlist_t events;
isc_event_t *event, *next_event;
REQUIRE(VALID_TASK(task));
/*
* Purge events from a task's event queue.
*/
XTRACE("isc_task_purgerange");
ISC_LIST_INIT(events);
count = dequeue_events(task, sender, first, last, tag, &events, true);
for (event = HEAD(events); event != NULL; event = next_event) {
next_event = NEXT(event, ev_link);
ISC_LIST_UNLINK(events, event, ev_link);
isc_event_free(&event);
}
/*
* Note that purging never changes the state of the task.
*/
return (count);
}
unsigned int
isc_task_purge(isc_task_t *task, void *sender, isc_eventtype_t type,
void *tag) {
/*
* Purge events from a task's event queue.
*/
REQUIRE(VALID_TASK(task));
XTRACE("isc_task_purge");
return (isc_task_purgerange(task, sender, type, type, tag));
}
bool
isc_task_purgeevent(isc_task_t *task, isc_event_t *event) {
isc_event_t *curr_event, *next_event;
/*
* Purge 'event' from a task's event queue.
*
* XXXRTH: WARNING: This method may be removed before beta.
*/
REQUIRE(VALID_TASK(task));
/*
* If 'event' is on the task's event queue, it will be purged,
* unless it is marked as unpurgeable. 'event' does not have to be
* on the task's event queue; in fact, it can even be an invalid
* pointer. Purging only occurs if the event is actually on the task's
* event queue.
*
* Purging never changes the state of the task.
*/
LOCK(&task->lock);
for (curr_event = HEAD(task->events); curr_event != NULL;
curr_event = next_event)
{
next_event = NEXT(curr_event, ev_link);
if (curr_event == event && PURGE_OK(event)) {
DEQUEUE(task->events, curr_event, ev_link);
task->nevents--;
break;
}
}
UNLOCK(&task->lock);
if (curr_event == NULL) {
return (false);
}
isc_event_free(&curr_event);
return (true);
}
unsigned int
isc_task_unsendrange(isc_task_t *task, void *sender, isc_eventtype_t first,
isc_eventtype_t last, void *tag, isc_eventlist_t *events) {
/*
* Remove events from a task's event queue.
*/
REQUIRE(VALID_TASK(task));
XTRACE("isc_task_unsendrange");
return (dequeue_events(task, sender, first, last, tag, events, false));
}
unsigned int
isc_task_unsend(isc_task_t *task, void *sender, isc_eventtype_t type, void *tag,
isc_eventlist_t *events) {
/*
* Remove events from a task's event queue.
*/
XTRACE("isc_task_unsend");
return (dequeue_events(task, sender, type, type, tag, events, false));
}
isc_result_t
isc_task_onshutdown(isc_task_t *task, isc_taskaction_t action, void *arg) {
bool disallowed = false;
isc_result_t result = ISC_R_SUCCESS;
isc_event_t *event;
/*
* Send a shutdown event with action 'action' and argument 'arg' when
* 'task' is shutdown.
*/
REQUIRE(VALID_TASK(task));
REQUIRE(action != NULL);
event = isc_event_allocate(task->manager->mctx, NULL,
ISC_TASKEVENT_SHUTDOWN, action, arg,
sizeof(*event));
if (TASK_SHUTTINGDOWN(task)) {
disallowed = true;
result = ISC_R_SHUTTINGDOWN;
} else {
LOCK(&task->lock);
ENQUEUE(task->on_shutdown, event, ev_link);
UNLOCK(&task->lock);
}
if (disallowed) {
isc_mem_put(task->manager->mctx, event, sizeof(*event));
}
return (result);
}
void
isc_task_shutdown(isc_task_t *task) {
bool was_idle;
/*
* Shutdown 'task'.
*/
REQUIRE(VALID_TASK(task));
LOCK(&task->lock);
was_idle = task_shutdown(task);
UNLOCK(&task->lock);
if (was_idle) {
task_ready(task);
}
}
void
isc_task_destroy(isc_task_t **taskp) {
/*
* Destroy '*taskp'.
*/
REQUIRE(taskp != NULL);
isc_task_shutdown(*taskp);
isc_task_detach(taskp);
}
void
isc_task_setname(isc_task_t *task, const char *name, void *tag) {
/*
* Name 'task'.
*/
REQUIRE(VALID_TASK(task));
LOCK(&task->lock);
strlcpy(task->name, name, sizeof(task->name));
task->tag = tag;
UNLOCK(&task->lock);
}
const char *
isc_task_getname(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (task->name);
}
void *
isc_task_gettag(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (task->tag);
}
isc_nm_t *
isc_task_getnetmgr(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (task->manager->netmgr);
}
/***
*** Task Manager.
***/
static isc_result_t
task_run(isc_task_t *task) {
unsigned int dispatch_count = 0;
bool finished = false;
isc_event_t *event = NULL;
isc_result_t result = ISC_R_SUCCESS;
REQUIRE(VALID_TASK(task));
LOCK(&task->lock);
/* FIXME */
if (task->state != task_state_ready) {
goto done;
}
INSIST(task->state == task_state_ready);
task->state = task_state_running;
XTRACE("running");
XTRACE(task->name);
TIME_NOW(&task->tnow);
task->now = isc_time_seconds(&task->tnow);
while (true) {
if (!EMPTY(task->events)) {
event = HEAD(task->events);
DEQUEUE(task->events, event, ev_link);
task->nevents--;
/*
* Execute the event action.
*/
XTRACE("execute action");
XTRACE(task->name);
if (event->ev_action != NULL) {
UNLOCK(&task->lock);
(event->ev_action)(task, event);
LOCK(&task->lock);
}
XTRACE("execution complete");
dispatch_count++;
}
if (isc_refcount_current(&task->references) == 0 &&
EMPTY(task->events) && !TASK_SHUTTINGDOWN(task))
{
/*
* There are no references and no pending events for
* this task, which means it will not become runnable
* again via an external action (such as sending an
* event or detaching).
*
* We initiate shutdown to prevent it from becoming a
* zombie.
*
* We do this here instead of in the "if
* EMPTY(task->events)" block below because:
*
* If we post no shutdown events, we want the task
* to finish.
*
* If we did post shutdown events, will still want
* the task's quantum to be applied.
*/
INSIST(!task_shutdown(task));
}
if (EMPTY(task->events)) {
/*
* Nothing else to do for this task right now.
*/
XTRACE("empty");
if (isc_refcount_current(&task->references) == 0 &&
TASK_SHUTTINGDOWN(task)) {
/*
* The task is done.
*/
XTRACE("done");
task->state = task_state_done;
} else if (task->state == task_state_running) {
XTRACE("idling");
task->state = task_state_idle;
}
break;
} else if (dispatch_count >= task->quantum) {
/*
* Our quantum has expired, but there is more work to be
* done. We'll requeue it to the ready queue later.
*
* We don't check quantum until dispatching at least one
* event, so the minimum quantum is one.
*/
XTRACE("quantum");
task->state = task_state_ready;
result = ISC_R_QUOTA;
break;
}
}
done:
if (isc_refcount_decrement(&task->running) == 1 &&
task->state == task_state_done)
{
finished = true;
}
UNLOCK(&task->lock);
if (finished) {
task_finished(task);
}
return (result);
}
isc_result_t
isc_task_run(isc_task_t *task) {
return (task_run(task));
}
static void
manager_free(isc_taskmgr_t *manager) {
isc_refcount_destroy(&manager->references);
isc_nm_detach(&manager->netmgr);
isc_mutex_destroy(&manager->lock);
isc_mutex_destroy(&manager->excl_lock);
manager->magic = 0;
isc_mem_putanddetach(&manager->mctx, manager, sizeof(*manager));
}
void
isc_taskmgr_attach(isc_taskmgr_t *source, isc_taskmgr_t **targetp) {
REQUIRE(VALID_MANAGER(source));
REQUIRE(targetp != NULL && *targetp == NULL);
isc_refcount_increment(&source->references);
*targetp = source;
}
void
isc_taskmgr_detach(isc_taskmgr_t **managerp) {
REQUIRE(managerp != NULL);
REQUIRE(VALID_MANAGER(*managerp));
isc_taskmgr_t *manager = *managerp;
*managerp = NULL;
if (isc_refcount_decrement(&manager->references) == 1) {
manager_free(manager);
}
}
isc_result_t
isc__taskmgr_create(isc_mem_t *mctx, unsigned int default_quantum, isc_nm_t *nm,
isc_taskmgr_t **managerp) {
isc_taskmgr_t *manager;
/*
* Create a new task manager.
*/
REQUIRE(managerp != NULL && *managerp == NULL);
REQUIRE(nm != NULL);
manager = isc_mem_get(mctx, sizeof(*manager));
*manager = (isc_taskmgr_t){ .magic = TASK_MANAGER_MAGIC };
isc_mutex_init(&manager->lock);
isc_mutex_init(&manager->excl_lock);
if (default_quantum == 0) {
default_quantum = DEFAULT_DEFAULT_QUANTUM;
}
manager->default_quantum = default_quantum;
if (nm != NULL) {
isc_nm_attach(nm, &manager->netmgr);
}
INIT_LIST(manager->tasks);
atomic_init(&manager->exiting, false);
atomic_init(&manager->mode, isc_taskmgrmode_normal);
atomic_init(&manager->exclusive_req, false);
atomic_init(&manager->tasks_count, 0);
isc_mem_attach(mctx, &manager->mctx);
isc_refcount_init(&manager->references, 1);
*managerp = manager;
return (ISC_R_SUCCESS);
}
void
isc__taskmgr_shutdown(isc_taskmgr_t *manager) {
isc_task_t *task;
REQUIRE(VALID_MANAGER(manager));
XTHREADTRACE("isc_taskmgr_shutdown");
/*
* Only one non-worker thread may ever call this routine.
* If a worker thread wants to initiate shutdown of the
* task manager, it should ask some non-worker thread to call
* isc_taskmgr_destroy(), e.g. by signalling a condition variable
* that the startup thread is sleeping on.
*/
/*
* Detach the exclusive task before acquiring the manager lock
*/
LOCK(&manager->excl_lock);
if (manager->excl != NULL) {
isc_task_detach((isc_task_t **)&manager->excl);
}
UNLOCK(&manager->excl_lock);
/*
* Unlike elsewhere, we're going to hold this lock a long time.
* We need to do so, because otherwise the list of tasks could
* change while we were traversing it.
*
* This is also the only function where we will hold both the
* task manager lock and a task lock at the same time.
*/
LOCK(&manager->lock);
/*
* Make sure we only get called once.
*/
INSIST(atomic_compare_exchange_strong(&manager->exiting,
&(bool){ false }, true));
/*
* Post shutdown event(s) to every task (if they haven't already been
* posted).
*/
for (task = HEAD(manager->tasks); task != NULL; task = NEXT(task, link))
{
bool was_idle;
LOCK(&task->lock);
was_idle = task_shutdown(task);
UNLOCK(&task->lock);
if (was_idle) {
task_ready(task);
}
}
UNLOCK(&manager->lock);
}
void
isc__taskmgr_destroy(isc_taskmgr_t **managerp) {
REQUIRE(managerp != NULL && VALID_MANAGER(*managerp));
XTHREADTRACE("isc_taskmgr_destroy");
#ifdef ISC_TASK_TRACE
int counter = 0;
while (isc_refcount_current(&(*managerp)->references) > 1 &&
counter++ < 1000) {
usleep(10 * 1000);
}
INSIST(counter < 1000);
#else
while (isc_refcount_current(&(*managerp)->references) > 1) {
usleep(10 * 1000);
}
#endif
isc_taskmgr_detach(managerp);
}
void
isc_taskmgr_setexcltask(isc_taskmgr_t *mgr, isc_task_t *task) {
REQUIRE(VALID_MANAGER(mgr));
REQUIRE(VALID_TASK(task));
LOCK(&task->lock);
REQUIRE(task->threadid == 0);
UNLOCK(&task->lock);
LOCK(&mgr->excl_lock);
if (mgr->excl != NULL) {
isc_task_detach(&mgr->excl);
}
isc_task_attach(task, &mgr->excl);
UNLOCK(&mgr->excl_lock);
}
isc_result_t
isc_taskmgr_excltask(isc_taskmgr_t *mgr, isc_task_t **taskp) {
isc_result_t result = ISC_R_SUCCESS;
REQUIRE(VALID_MANAGER(mgr));
REQUIRE(taskp != NULL && *taskp == NULL);
LOCK(&mgr->excl_lock);
if (mgr->excl != NULL) {
isc_task_attach(mgr->excl, taskp);
} else {
result = ISC_R_NOTFOUND;
}
UNLOCK(&mgr->excl_lock);
return (result);
}
isc_result_t
isc_task_beginexclusive(isc_task_t *task) {
isc_taskmgr_t *manager;
REQUIRE(VALID_TASK(task));
manager = task->manager;
REQUIRE(task->state == task_state_running);
LOCK(&manager->excl_lock);
REQUIRE(task == task->manager->excl ||
(atomic_load_relaxed(&task->manager->exiting) &&
task->manager->excl == NULL));
UNLOCK(&manager->excl_lock);
if (!atomic_compare_exchange_strong(&manager->exclusive_req,
&(bool){ false }, true))
{
return (ISC_R_LOCKBUSY);
}
isc_nm_pause(manager->netmgr);
return (ISC_R_SUCCESS);
}
void
isc_task_endexclusive(isc_task_t *task) {
isc_taskmgr_t *manager;
REQUIRE(VALID_TASK(task));
REQUIRE(task->state == task_state_running);
manager = task->manager;
isc_nm_resume(manager->netmgr);
REQUIRE(atomic_compare_exchange_strong(&manager->exclusive_req,
&(bool){ true }, false));
}
void
isc_taskmgr_setmode(isc_taskmgr_t *manager, isc_taskmgrmode_t mode) {
atomic_store(&manager->mode, mode);
}
isc_taskmgrmode_t
isc_taskmgr_mode(isc_taskmgr_t *manager) {
return (atomic_load(&manager->mode));
}
void
isc_task_setprivilege(isc_task_t *task, bool priv) {
REQUIRE(VALID_TASK(task));
atomic_store_release(&task->privileged, priv);
}
bool
isc_task_getprivilege(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (TASK_PRIVILEGED(task));
}
bool
isc_task_privileged(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (isc_taskmgr_mode(task->manager) && TASK_PRIVILEGED(task));
}
bool
isc_task_exiting(isc_task_t *task) {
REQUIRE(VALID_TASK(task));
return (TASK_SHUTTINGDOWN(task));
}
#ifdef HAVE_LIBXML2
#define TRY0(a) \
do { \
xmlrc = (a); \
if (xmlrc < 0) \
goto error; \
} while (0)
int
isc_taskmgr_renderxml(isc_taskmgr_t *mgr, void *writer0) {
isc_task_t *task = NULL;
int xmlrc;
xmlTextWriterPtr writer = (xmlTextWriterPtr)writer0;
LOCK(&mgr->lock);
/*
* Write out the thread-model, and some details about each depending
* on which type is enabled.
*/
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "thread-model"));
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "type"));
TRY0(xmlTextWriterWriteString(writer, ISC_XMLCHAR "threaded"));
TRY0(xmlTextWriterEndElement(writer)); /* type */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "default-quantum"));
TRY0(xmlTextWriterWriteFormatString(writer, "%d",
mgr->default_quantum));
TRY0(xmlTextWriterEndElement(writer)); /* default-quantum */
TRY0(xmlTextWriterEndElement(writer)); /* thread-model */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "tasks"));
task = ISC_LIST_HEAD(mgr->tasks);
while (task != NULL) {
LOCK(&task->lock);
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "task"));
if (task->name[0] != 0) {
TRY0(xmlTextWriterStartElement(writer,
ISC_XMLCHAR "name"));
TRY0(xmlTextWriterWriteFormatString(writer, "%s",
task->name));
TRY0(xmlTextWriterEndElement(writer)); /* name */
}
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "reference"
"s"));
TRY0(xmlTextWriterWriteFormatString(
writer, "%" PRIuFAST32,
isc_refcount_current(&task->references)));
TRY0(xmlTextWriterEndElement(writer)); /* references */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "id"));
TRY0(xmlTextWriterWriteFormatString(writer, "%p", task));
TRY0(xmlTextWriterEndElement(writer)); /* id */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "state"));
TRY0(xmlTextWriterWriteFormatString(writer, "%s",
statenames[task->state]));
TRY0(xmlTextWriterEndElement(writer)); /* state */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "quantum"));
TRY0(xmlTextWriterWriteFormatString(writer, "%d",
task->quantum));
TRY0(xmlTextWriterEndElement(writer)); /* quantum */
TRY0(xmlTextWriterStartElement(writer, ISC_XMLCHAR "events"));
TRY0(xmlTextWriterWriteFormatString(writer, "%d",
task->nevents));
TRY0(xmlTextWriterEndElement(writer)); /* events */
TRY0(xmlTextWriterEndElement(writer));
UNLOCK(&task->lock);
task = ISC_LIST_NEXT(task, link);
}
TRY0(xmlTextWriterEndElement(writer)); /* tasks */
error:
if (task != NULL) {
UNLOCK(&task->lock);
}
UNLOCK(&mgr->lock);
return (xmlrc);
}
#endif /* HAVE_LIBXML2 */
#ifdef HAVE_JSON_C
#define CHECKMEM(m) \
do { \
if (m == NULL) { \
result = ISC_R_NOMEMORY; \
goto error; \
} \
} while (0)
isc_result_t
isc_taskmgr_renderjson(isc_taskmgr_t *mgr, void *tasks0) {
isc_result_t result = ISC_R_SUCCESS;
isc_task_t *task = NULL;
json_object *obj = NULL, *array = NULL, *taskobj = NULL;
json_object *tasks = (json_object *)tasks0;
LOCK(&mgr->lock);
/*
* Write out the thread-model, and some details about each depending
* on which type is enabled.
*/
obj = json_object_new_string("threaded");
CHECKMEM(obj);
json_object_object_add(tasks, "thread-model", obj);
obj = json_object_new_int(mgr->default_quantum);
CHECKMEM(obj);
json_object_object_add(tasks, "default-quantum", obj);
array = json_object_new_array();
CHECKMEM(array);
for (task = ISC_LIST_HEAD(mgr->tasks); task != NULL;
task = ISC_LIST_NEXT(task, link))
{
char buf[255];
LOCK(&task->lock);
taskobj = json_object_new_object();
CHECKMEM(taskobj);
json_object_array_add(array, taskobj);
snprintf(buf, sizeof(buf), "%p", task);
obj = json_object_new_string(buf);
CHECKMEM(obj);
json_object_object_add(taskobj, "id", obj);
if (task->name[0] != 0) {
obj = json_object_new_string(task->name);
CHECKMEM(obj);
json_object_object_add(taskobj, "name", obj);
}
obj = json_object_new_int(
isc_refcount_current(&task->references));
CHECKMEM(obj);
json_object_object_add(taskobj, "references", obj);
obj = json_object_new_string(statenames[task->state]);
CHECKMEM(obj);
json_object_object_add(taskobj, "state", obj);
obj = json_object_new_int(task->quantum);
CHECKMEM(obj);
json_object_object_add(taskobj, "quantum", obj);
obj = json_object_new_int(task->nevents);
CHECKMEM(obj);
json_object_object_add(taskobj, "events", obj);
UNLOCK(&task->lock);
}
json_object_object_add(tasks, "tasks", array);
array = NULL;
result = ISC_R_SUCCESS;
error:
if (array != NULL) {
json_object_put(array);
}
if (task != NULL) {
UNLOCK(&task->lock);
}
UNLOCK(&mgr->lock);
return (result);
}
#endif /* ifdef HAVE_JSON_C */