2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-23 10:39:16 +00:00
bind/lib/isc/tests/timer_test.c
Ondřej Surý ae01ec2823 Don't use reference counting in isc_timer unit
The reference counting and isc_timer_attach()/isc_timer_detach()
semantic are actually misleading because it cannot be used under normal
conditions.  The usual conditions under which is timer used uses the
object where timer is used as argument to the "timer" itself.  This
means that when the caller is using `isc_timer_detach()` it needs the
timer to stop and the isc_timer_detach() does that only if this would be
the last reference.  Unfortunately, this also means that if the timer is
attached elsewhere and the timer is fired it will most likely be
use-after-free, because the object used in the timer no longer exists.

Remove the reference counting from the isc_timer unit, remove
isc_timer_attach() function and rename isc_timer_detach() to
isc_timer_destroy() to better reflect how the API needs to be used.

The only caveat is that the already executed event must be destroyed
before the isc_timer_destroy() is called because the timer is no longet
attached to .ev_destroy_arg.
2022-04-02 01:23:15 +02:00

590 lines
14 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
#if HAVE_CMOCKA
#include <inttypes.h>
#include <sched.h> /* IWYU pragma: keep */
#include <setjmp.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#define UNIT_TESTING
#include <cmocka.h>
#include <isc/atomic.h>
#include <isc/commandline.h>
#include <isc/condition.h>
#include <isc/mem.h>
#include <isc/print.h>
#include <isc/task.h>
#include <isc/time.h>
#include <isc/timer.h>
#include <isc/util.h>
#include "../timer.c"
#include "isctest.h"
/* Set to true (or use -v option) for verbose output */
static bool verbose = false;
#define FUDGE_SECONDS 0 /* in absence of clock_getres() */
#define FUDGE_NANOSECONDS 500000000 /* in absence of clock_getres() */
static isc_timer_t *timer = NULL;
static isc_condition_t cv;
static isc_mutex_t mx;
static isc_time_t endtime;
static isc_mutex_t lasttime_mx;
static isc_time_t lasttime;
static int seconds;
static int nanoseconds;
static atomic_int_fast32_t eventcnt;
static atomic_uint_fast32_t errcnt;
static int nevents;
static int
_setup(void **state) {
isc_result_t result;
UNUSED(state);
/* Timer tests require two worker threads */
result = isc_test_begin(NULL, true, 2);
assert_int_equal(result, ISC_R_SUCCESS);
atomic_init(&errcnt, ISC_R_SUCCESS);
return (0);
}
static int
_teardown(void **state) {
UNUSED(state);
isc_test_end();
return (0);
}
static void
shutdown(isc_task_t *task, isc_event_t *event) {
isc_result_t result;
UNUSED(task);
/*
* Signal shutdown processing complete.
*/
result = isc_mutex_lock(&mx);
assert_int_equal(result, ISC_R_SUCCESS);
result = isc_condition_signal(&cv);
assert_int_equal(result, ISC_R_SUCCESS);
result = isc_mutex_unlock(&mx);
assert_int_equal(result, ISC_R_SUCCESS);
isc_event_free(&event);
}
static void
setup_test(isc_timertype_t timertype, isc_interval_t *interval,
void (*action)(isc_task_t *, isc_event_t *)) {
isc_result_t result;
isc_task_t *task = NULL;
isc_time_settoepoch(&endtime);
atomic_init(&eventcnt, 0);
isc_mutex_init(&mx);
isc_mutex_init(&lasttime_mx);
isc_condition_init(&cv);
atomic_store(&errcnt, ISC_R_SUCCESS);
LOCK(&mx);
result = isc_task_create(taskmgr, 0, &task);
assert_int_equal(result, ISC_R_SUCCESS);
result = isc_task_onshutdown(task, shutdown, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
isc_mutex_lock(&lasttime_mx);
result = isc_time_now(&lasttime);
isc_mutex_unlock(&lasttime_mx);
assert_int_equal(result, ISC_R_SUCCESS);
isc_timer_create(timermgr, task, action, (void *)timertype, &timer);
result = isc_timer_reset(timer, timertype, interval, false);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Wait for shutdown processing to complete.
*/
while (atomic_load(&eventcnt) != nevents) {
result = isc_condition_wait(&cv, &mx);
assert_int_equal(result, ISC_R_SUCCESS);
}
UNLOCK(&mx);
assert_int_equal(atomic_load(&errcnt), ISC_R_SUCCESS);
isc_task_detach(&task);
isc_mutex_destroy(&mx);
(void)isc_condition_destroy(&cv);
}
static void
set_global_error(isc_result_t result) {
(void)atomic_compare_exchange_strong(
&errcnt, &(uint_fast32_t){ ISC_R_SUCCESS }, result);
}
static void
subthread_assert_true(bool expected, const char *file, unsigned int line) {
if (!expected) {
printf("# %s:%u subthread_assert_true\n", file, line);
set_global_error(ISC_R_UNEXPECTED);
}
}
#define subthread_assert_true(expected) \
subthread_assert_true(expected, __FILE__, __LINE__)
static void
subthread_assert_int_equal(int observed, int expected, const char *file,
unsigned int line) {
if (observed != expected) {
printf("# %s:%u subthread_assert_int_equal(%d != %d)\n", file,
line, observed, expected);
set_global_error(ISC_R_UNEXPECTED);
}
}
#define subthread_assert_int_equal(observed, expected) \
subthread_assert_int_equal(observed, expected, __FILE__, __LINE__)
static void
subthread_assert_result_equal(isc_result_t result, isc_result_t expected,
const char *file, unsigned int line) {
if (result != expected) {
printf("# %s:%u subthread_assert_result_equal(%u != %u)\n",
file, line, result, expected);
set_global_error(result);
}
}
#define subthread_assert_result_equal(observed, expected) \
subthread_assert_result_equal(observed, expected, __FILE__, __LINE__)
static void
ticktock(isc_task_t *task, isc_event_t *event) {
isc_result_t result;
isc_time_t now;
isc_time_t base;
isc_time_t ulim;
isc_time_t llim;
isc_interval_t interval;
isc_eventtype_t expected_event_type;
int tick = atomic_fetch_add(&eventcnt, 1);
if (verbose) {
print_message("# tick %d\n", tick);
}
expected_event_type = ISC_TIMEREVENT_ONCE;
if ((uintptr_t)event->ev_arg == isc_timertype_ticker) {
expected_event_type = ISC_TIMEREVENT_TICK;
}
if (event->ev_type != expected_event_type) {
print_error("# expected event type %u, got %u\n",
expected_event_type, event->ev_type);
}
result = isc_time_now(&now);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, seconds, nanoseconds);
isc_mutex_lock(&lasttime_mx);
result = isc_time_add(&lasttime, &interval, &base);
isc_mutex_unlock(&lasttime_mx);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, FUDGE_SECONDS, FUDGE_NANOSECONDS);
result = isc_time_add(&base, &interval, &ulim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
result = isc_time_subtract(&base, &interval, &llim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
subthread_assert_true(isc_time_compare(&llim, &now) <= 0);
subthread_assert_true(isc_time_compare(&ulim, &now) >= 0);
isc_interval_set(&interval, 0, 0);
isc_mutex_lock(&lasttime_mx);
result = isc_time_add(&now, &interval, &lasttime);
isc_mutex_unlock(&lasttime_mx);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_event_free(&event);
if (atomic_load(&eventcnt) == nevents) {
result = isc_time_now(&endtime);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_timer_destroy(&timer);
isc_task_shutdown(task);
}
}
/*
* Individual unit tests
*/
/* timer type ticker */
static void
ticker(void **state) {
isc_interval_t interval;
UNUSED(state);
nevents = 12;
seconds = 0;
nanoseconds = 500000000;
isc_interval_set(&interval, seconds, nanoseconds);
setup_test(isc_timertype_ticker, &interval, ticktock);
}
static void
test_idle(isc_task_t *task, isc_event_t *event) {
isc_result_t result;
isc_time_t now;
isc_time_t base;
isc_time_t ulim;
isc_time_t llim;
isc_interval_t interval;
int tick = atomic_fetch_add(&eventcnt, 1);
if (verbose) {
print_message("# tick %d\n", tick);
}
result = isc_time_now(&now);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, seconds, nanoseconds);
isc_mutex_lock(&lasttime_mx);
result = isc_time_add(&lasttime, &interval, &base);
isc_mutex_unlock(&lasttime_mx);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, FUDGE_SECONDS, FUDGE_NANOSECONDS);
result = isc_time_add(&base, &interval, &ulim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
result = isc_time_subtract(&base, &interval, &llim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
subthread_assert_true(isc_time_compare(&llim, &now) <= 0);
subthread_assert_true(isc_time_compare(&ulim, &now) >= 0);
isc_interval_set(&interval, 0, 0);
isc_mutex_lock(&lasttime_mx);
isc_time_add(&now, &interval, &lasttime);
isc_mutex_unlock(&lasttime_mx);
subthread_assert_int_equal(event->ev_type, ISC_TIMEREVENT_ONCE);
isc_event_free(&event);
isc_timer_destroy(&timer);
isc_task_shutdown(task);
}
/* timer type once idles out */
static void
once_idle(void **state) {
isc_interval_t interval;
UNUSED(state);
nevents = 1;
seconds = 1;
nanoseconds = 200000000;
isc_interval_set(&interval, seconds, nanoseconds);
setup_test(isc_timertype_once, &interval, test_idle);
}
/* timer reset */
static void
test_reset(isc_task_t *task, isc_event_t *event) {
isc_result_t result;
isc_time_t now;
isc_time_t base;
isc_time_t ulim;
isc_time_t llim;
isc_interval_t interval;
int tick = atomic_fetch_add(&eventcnt, 1);
if (verbose) {
print_message("# tick %d\n", tick);
}
/*
* Check expired time.
*/
result = isc_time_now(&now);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, seconds, nanoseconds);
isc_mutex_lock(&lasttime_mx);
result = isc_time_add(&lasttime, &interval, &base);
isc_mutex_unlock(&lasttime_mx);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, FUDGE_SECONDS, FUDGE_NANOSECONDS);
result = isc_time_add(&base, &interval, &ulim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
result = isc_time_subtract(&base, &interval, &llim);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
subthread_assert_true(isc_time_compare(&llim, &now) <= 0);
subthread_assert_true(isc_time_compare(&ulim, &now) >= 0);
isc_interval_set(&interval, 0, 0);
isc_mutex_lock(&lasttime_mx);
isc_time_add(&now, &interval, &lasttime);
isc_mutex_unlock(&lasttime_mx);
int _eventcnt = atomic_load(&eventcnt);
if (_eventcnt < 3) {
subthread_assert_int_equal(event->ev_type, ISC_TIMEREVENT_TICK);
if (_eventcnt == 2) {
isc_interval_set(&interval, seconds, nanoseconds);
result = isc_timer_reset(timer, isc_timertype_once,
&interval, false);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
}
isc_event_free(&event);
} else {
subthread_assert_int_equal(event->ev_type, ISC_TIMEREVENT_ONCE);
isc_event_free(&event);
isc_timer_destroy(&timer);
isc_task_shutdown(task);
}
}
static void
reset(void **state) {
isc_interval_t interval;
UNUSED(state);
nevents = 3;
seconds = 0;
nanoseconds = 750000000;
isc_interval_set(&interval, seconds, nanoseconds);
setup_test(isc_timertype_ticker, &interval, test_reset);
}
static atomic_bool startflag;
static atomic_bool shutdownflag;
static isc_timer_t *tickertimer = NULL;
static isc_timer_t *oncetimer = NULL;
static isc_task_t *task1 = NULL;
static isc_task_t *task2 = NULL;
/*
* task1 blocks on mx while events accumulate
* in its queue, until signaled by task2.
*/
static void
tick_event(isc_task_t *task, isc_event_t *event) {
isc_result_t result;
isc_time_t expires;
isc_interval_t interval;
UNUSED(task);
if (!atomic_load(&startflag)) {
if (verbose) {
print_message("# tick_event %d\n", -1);
}
isc_event_free(&event);
return;
}
int tick = atomic_fetch_add(&eventcnt, 1);
if (verbose) {
print_message("# tick_event %d\n", tick);
}
/*
* On the first tick, purge all remaining tick events
* and then shut down the task.
*/
if (tick == 0) {
isc_time_settoepoch(&expires);
isc_interval_set(&interval, seconds, 0);
result = isc_timer_reset(tickertimer, isc_timertype_ticker,
&interval, true);
subthread_assert_result_equal(result, ISC_R_SUCCESS);
isc_task_shutdown(task);
}
isc_event_free(&event);
}
static void
once_event(isc_task_t *task, isc_event_t *event) {
if (verbose) {
print_message("# once_event\n");
}
/*
* Allow task1 to start processing events.
*/
atomic_store(&startflag, true);
isc_event_free(&event);
isc_task_shutdown(task);
}
static void
shutdown_purge(isc_task_t *task, isc_event_t *event) {
UNUSED(task);
UNUSED(event);
if (verbose) {
print_message("# shutdown_event\n");
}
/*
* Signal shutdown processing complete.
*/
atomic_store(&shutdownflag, 1);
isc_event_free(&event);
}
/* timer events purged */
static void
purge(void **state) {
isc_result_t result;
isc_interval_t interval;
UNUSED(state);
atomic_init(&startflag, 0);
atomic_init(&shutdownflag, 0);
atomic_init(&eventcnt, 0);
seconds = 1;
nanoseconds = 0;
result = isc_task_create(taskmgr, 0, &task1);
assert_int_equal(result, ISC_R_SUCCESS);
result = isc_task_onshutdown(task1, shutdown_purge, NULL);
assert_int_equal(result, ISC_R_SUCCESS);
result = isc_task_create(taskmgr, 0, &task2);
assert_int_equal(result, ISC_R_SUCCESS);
isc_interval_set(&interval, seconds, 0);
tickertimer = NULL;
isc_timer_create(timermgr, task1, tick_event, NULL, &tickertimer);
result = isc_timer_reset(tickertimer, isc_timertype_ticker, &interval,
false);
assert_int_equal(result, ISC_R_SUCCESS);
oncetimer = NULL;
isc_interval_set(&interval, (seconds * 2) + 1, 0);
isc_timer_create(timermgr, task2, once_event, NULL, &oncetimer);
result = isc_timer_reset(oncetimer, isc_timertype_once, &interval,
false);
assert_int_equal(result, ISC_R_SUCCESS);
/*
* Wait for shutdown processing to complete.
*/
while (!atomic_load(&shutdownflag)) {
isc_test_nap(1000);
}
assert_int_equal(atomic_load(&errcnt), ISC_R_SUCCESS);
assert_int_equal(atomic_load(&eventcnt), 1);
isc_timer_destroy(&tickertimer);
isc_timer_destroy(&oncetimer);
isc_task_destroy(&task1);
isc_task_destroy(&task2);
}
int
main(int argc, char **argv) {
const struct CMUnitTest tests[] = {
cmocka_unit_test(ticker),
cmocka_unit_test(once_idle),
cmocka_unit_test(reset),
cmocka_unit_test(purge),
};
int c;
while ((c = isc_commandline_parse(argc, argv, "v")) != -1) {
switch (c) {
case 'v':
verbose = true;
break;
default:
break;
}
}
return (cmocka_run_group_tests(tests, _setup, _teardown));
}
#else /* HAVE_CMOCKA */
#include <stdio.h>
int
main(void) {
printf("1..0 # Skipped: cmocka not available\n");
return (SKIPPED_TEST_EXIT_CODE);
}
#endif /* if HAVE_CMOCKA */