mirror of
https://gitlab.isc.org/isc-projects/bind9
synced 2025-08-22 10:10:06 +00:00
Instead of relying on unreliable order of execution of the library constructors and destructors, move them to individual binaries. The advantage is that the execution time and order will remain constant and will not depend on the dynamic load dependency solver. This requires more work, but that was mitigated by a simple requirement, any executable using libisc and libdns, must include <isc/lib.h> and <dns/lib.h> respectively (in this particular order). In turn, these two headers must not be included from within any library as they contain inlined functions marked with constructor/destructor attributes.
796 lines
15 KiB
C
796 lines
15 KiB
C
/*
|
|
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
|
|
*
|
|
* SPDX-License-Identifier: MPL-2.0
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
|
|
*
|
|
* See the COPYRIGHT file distributed with this work for additional
|
|
* information regarding copyright ownership.
|
|
*/
|
|
|
|
/*
|
|
* IMPORTANT NOTE:
|
|
* These tests work by generating a large number of pseudo-random numbers
|
|
* and then statistically analyzing them to determine whether they seem
|
|
* random. The test is expected to fail on occasion by random happenstance.
|
|
*/
|
|
|
|
#include <inttypes.h>
|
|
#include <math.h>
|
|
#include <sched.h> /* IWYU pragma: keep */
|
|
#include <setjmp.h>
|
|
#include <stdarg.h>
|
|
#include <stddef.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#define UNIT_TESTING
|
|
#include <cmocka.h>
|
|
|
|
#include <isc/commandline.h>
|
|
#include <isc/lib.h>
|
|
#include <isc/mem.h>
|
|
#include <isc/nonce.h>
|
|
#include <isc/random.h>
|
|
#include <isc/result.h>
|
|
#include <isc/util.h>
|
|
|
|
#include <tests/isc.h>
|
|
|
|
#define REPS 25000
|
|
|
|
typedef double(pvalue_func_t)(uint16_t *values, size_t length);
|
|
|
|
/* igamc(), igam(), etc. were adapted (and cleaned up) from the Cephes
|
|
* math library:
|
|
*
|
|
* Cephes Math Library Release 2.8: June, 2000
|
|
* Copyright 1985, 1987, 2000 by Stephen L. Moshier
|
|
*
|
|
* The Cephes math library was released into the public domain as part
|
|
* of netlib.
|
|
*/
|
|
|
|
static double MACHEP = 1.11022302462515654042E-16;
|
|
static double MAXLOG = 7.09782712893383996843E2;
|
|
static double big = 4.503599627370496e15;
|
|
static double biginv = 2.22044604925031308085e-16;
|
|
|
|
static double
|
|
igamc(double a, double x);
|
|
static double
|
|
igam(double a, double x);
|
|
|
|
typedef enum {
|
|
ISC_RANDOM8,
|
|
ISC_RANDOM16,
|
|
ISC_RANDOM32,
|
|
ISC_RANDOM_BYTES,
|
|
ISC_RANDOM_UNIFORM,
|
|
ISC_NONCE_BYTES
|
|
} isc_random_func;
|
|
|
|
static double
|
|
igamc(double a, double x) {
|
|
double ans, ax, c, r, t, y, z;
|
|
double pkm1, pkm2, qkm1, qkm2;
|
|
|
|
if ((x <= 0) || (a <= 0)) {
|
|
return 1.0;
|
|
}
|
|
|
|
if ((x < 1.0) || (x < a)) {
|
|
return 1.0 - igam(a, x);
|
|
}
|
|
|
|
ax = a * log(x) - x - lgamma(a);
|
|
if (ax < -MAXLOG) {
|
|
print_error("# igamc: UNDERFLOW, ax=%f\n", ax);
|
|
return 0.0;
|
|
}
|
|
ax = exp(ax);
|
|
|
|
/* continued fraction */
|
|
y = 1.0 - a;
|
|
z = x + y + 1.0;
|
|
c = 0.0;
|
|
pkm2 = 1.0;
|
|
qkm2 = x;
|
|
pkm1 = x + 1.0;
|
|
qkm1 = z * x;
|
|
ans = pkm1 / qkm1;
|
|
|
|
do {
|
|
double yc, pk, qk;
|
|
c += 1.0;
|
|
y += 1.0;
|
|
z += 2.0;
|
|
yc = y * c;
|
|
pk = pkm1 * z - pkm2 * yc;
|
|
qk = qkm1 * z - qkm2 * yc;
|
|
if (qk != 0) {
|
|
r = pk / qk;
|
|
t = fabs((ans - r) / r);
|
|
ans = r;
|
|
} else {
|
|
t = 1.0;
|
|
}
|
|
|
|
pkm2 = pkm1;
|
|
pkm1 = pk;
|
|
qkm2 = qkm1;
|
|
qkm1 = qk;
|
|
|
|
if (fabs(pk) > big) {
|
|
pkm2 *= biginv;
|
|
pkm1 *= biginv;
|
|
qkm2 *= biginv;
|
|
qkm1 *= biginv;
|
|
}
|
|
} while (t > MACHEP);
|
|
|
|
return ans * ax;
|
|
}
|
|
|
|
static double
|
|
igam(double a, double x) {
|
|
double ans, ax, c, r;
|
|
|
|
if ((x <= 0) || (a <= 0)) {
|
|
return 0.0;
|
|
}
|
|
|
|
if ((x > 1.0) && (x > a)) {
|
|
return 1.0 - igamc(a, x);
|
|
}
|
|
|
|
/* Compute x**a * exp(-x) / md_gamma(a) */
|
|
ax = a * log(x) - x - lgamma(a);
|
|
if (ax < -MAXLOG) {
|
|
print_error("# igam: UNDERFLOW, ax=%f\n", ax);
|
|
return 0.0;
|
|
}
|
|
ax = exp(ax);
|
|
|
|
/* power series */
|
|
r = a;
|
|
c = 1.0;
|
|
ans = 1.0;
|
|
|
|
do {
|
|
r += 1.0;
|
|
c *= x / r;
|
|
ans += c;
|
|
} while (c / ans > MACHEP);
|
|
|
|
return ans * ax / a;
|
|
}
|
|
|
|
static int8_t scounts_table[65536];
|
|
static uint8_t bitcounts_table[65536];
|
|
|
|
static int8_t
|
|
scount_calculate(uint16_t n) {
|
|
int i;
|
|
int8_t sc;
|
|
|
|
sc = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
uint16_t lsb;
|
|
|
|
lsb = n & 1;
|
|
if (lsb != 0) {
|
|
sc += 1;
|
|
} else {
|
|
sc -= 1;
|
|
}
|
|
|
|
n >>= 1;
|
|
}
|
|
|
|
return sc;
|
|
}
|
|
|
|
static uint8_t
|
|
bitcount_calculate(uint16_t n) {
|
|
int i;
|
|
uint8_t bc;
|
|
|
|
bc = 0;
|
|
for (i = 0; i < 16; i++) {
|
|
uint16_t lsb;
|
|
|
|
lsb = n & 1;
|
|
if (lsb != 0) {
|
|
bc += 1;
|
|
}
|
|
|
|
n >>= 1;
|
|
}
|
|
|
|
return bc;
|
|
}
|
|
|
|
static void
|
|
tables_init(void) {
|
|
uint32_t i;
|
|
|
|
for (i = 0; i < 65536; i++) {
|
|
scounts_table[i] = scount_calculate(i);
|
|
bitcounts_table[i] = bitcount_calculate(i);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The following code for computing Marsaglia's rank is based on the
|
|
* implementation in cdbinrnk.c from the diehard tests by George
|
|
* Marsaglia.
|
|
*
|
|
* This function destroys (modifies) the data passed in bits.
|
|
*/
|
|
static uint32_t
|
|
matrix_binaryrank(uint32_t *bits, size_t rows, size_t cols) {
|
|
unsigned int rt = 0;
|
|
uint32_t rank = 0;
|
|
uint32_t tmp;
|
|
|
|
for (size_t k = 0; k < rows; k++) {
|
|
size_t i = k;
|
|
|
|
while (rt >= cols || ((bits[i] >> rt) & 1) == 0) {
|
|
i++;
|
|
|
|
if (i < rows) {
|
|
continue;
|
|
} else {
|
|
rt++;
|
|
if (rt < cols) {
|
|
i = k;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
return rank;
|
|
}
|
|
|
|
rank++;
|
|
if (i != k) {
|
|
tmp = bits[i];
|
|
bits[i] = bits[k];
|
|
bits[k] = tmp;
|
|
}
|
|
|
|
for (size_t j = i + 1; j < rows; j++) {
|
|
if (((bits[j] >> rt) & 1) == 0) {
|
|
continue;
|
|
} else {
|
|
bits[j] ^= bits[k];
|
|
}
|
|
}
|
|
|
|
rt++;
|
|
}
|
|
|
|
return rank;
|
|
}
|
|
|
|
static void
|
|
random_test(pvalue_func_t *func, isc_random_func test_func) {
|
|
uint32_t m;
|
|
uint32_t j;
|
|
uint32_t histogram[11] = { 0 };
|
|
uint32_t passed;
|
|
double proportion;
|
|
double p_hat;
|
|
double lower_confidence, higher_confidence;
|
|
double chi_square;
|
|
double p_value_t;
|
|
double alpha;
|
|
|
|
tables_init();
|
|
|
|
m = 1000;
|
|
passed = 0;
|
|
|
|
for (j = 0; j < m; j++) {
|
|
uint32_t i;
|
|
uint32_t values[REPS];
|
|
uint16_t *uniform_values;
|
|
double p_value;
|
|
|
|
switch (test_func) {
|
|
case ISC_RANDOM8:
|
|
for (i = 0; i < (sizeof(values) / sizeof(*values)); i++)
|
|
{
|
|
values[i] = isc_random8();
|
|
}
|
|
break;
|
|
case ISC_RANDOM16:
|
|
for (i = 0; i < (sizeof(values) / sizeof(*values)); i++)
|
|
{
|
|
values[i] = isc_random16();
|
|
}
|
|
break;
|
|
case ISC_RANDOM32:
|
|
for (i = 0; i < (sizeof(values) / sizeof(*values)); i++)
|
|
{
|
|
values[i] = isc_random32();
|
|
}
|
|
break;
|
|
case ISC_RANDOM_BYTES:
|
|
isc_random_buf(values, sizeof(values));
|
|
break;
|
|
case ISC_RANDOM_UNIFORM:
|
|
uniform_values = (uint16_t *)values;
|
|
for (i = 0;
|
|
i < (sizeof(values) / (sizeof(*uniform_values)));
|
|
i++)
|
|
{
|
|
uniform_values[i] =
|
|
isc_random_uniform(UINT16_MAX);
|
|
}
|
|
break;
|
|
case ISC_NONCE_BYTES:
|
|
isc_nonce_buf(values, sizeof(values));
|
|
break;
|
|
}
|
|
|
|
p_value = (*func)((uint16_t *)values, REPS * 2);
|
|
if (p_value >= 0.01) {
|
|
passed++;
|
|
}
|
|
|
|
assert_in_range(p_value, 0.0, 1.0);
|
|
|
|
i = (int)floor(p_value * 10);
|
|
histogram[i]++;
|
|
}
|
|
|
|
/*
|
|
* Check proportion of sequences passing a test (see section
|
|
* 4.2.1 in NIST SP 800-22).
|
|
*/
|
|
alpha = 0.01; /* the significance level */
|
|
proportion = (double)passed / (double)m;
|
|
p_hat = 1.0 - alpha;
|
|
lower_confidence = p_hat - (3.0 * sqrt((p_hat * (1.0 - p_hat)) / m));
|
|
higher_confidence = p_hat + (3.0 * sqrt((p_hat * (1.0 - p_hat)) / m));
|
|
|
|
assert_in_range(proportion, lower_confidence, higher_confidence);
|
|
|
|
/*
|
|
* Check uniform distribution of p-values (see section 4.2.2 in
|
|
* NIST SP 800-22).
|
|
*/
|
|
|
|
/* Fold histogram[10] (p_value = 1.0) into histogram[9] for
|
|
* interval [0.9, 1.0]
|
|
*/
|
|
histogram[9] += histogram[10];
|
|
histogram[10] = 0;
|
|
|
|
/* Pre-requisite that at least 55 sequences are processed. */
|
|
assert_true(m >= 55);
|
|
|
|
chi_square = 0.0;
|
|
for (j = 0; j < 10; j++) {
|
|
double numer;
|
|
double denom;
|
|
|
|
numer = (histogram[j] - (m / 10.0)) *
|
|
(histogram[j] - (m / 10.0));
|
|
denom = m / 10.0;
|
|
chi_square += numer / denom;
|
|
}
|
|
|
|
p_value_t = igamc(9 / 2.0, chi_square / 2.0);
|
|
|
|
assert_true(p_value_t >= 0.0001);
|
|
}
|
|
|
|
/*
|
|
* This is a frequency (monobits) test taken from the NIST SP 800-22
|
|
* RANDOM test suite.
|
|
*/
|
|
static double
|
|
monobit(uint16_t *values, size_t length) {
|
|
size_t i;
|
|
int32_t scount;
|
|
uint32_t numbits;
|
|
double s_obs;
|
|
double p_value;
|
|
|
|
UNUSED(mctx);
|
|
|
|
numbits = length * sizeof(*values) * 8;
|
|
scount = 0;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
scount += scounts_table[values[i]];
|
|
}
|
|
|
|
/* Preconditions (section 2.1.7 in NIST SP 800-22) */
|
|
assert_true(numbits >= 100);
|
|
|
|
s_obs = abs(scount) / sqrt(numbits);
|
|
p_value = erfc(s_obs / sqrt(2.0));
|
|
|
|
return p_value;
|
|
}
|
|
|
|
/*
|
|
* This is the runs test taken from the NIST SP 800-22 RNG test suite.
|
|
*/
|
|
static double
|
|
runs(uint16_t *values, size_t length) {
|
|
size_t i;
|
|
uint32_t bcount;
|
|
uint32_t numbits;
|
|
double pi;
|
|
double tau;
|
|
uint32_t j;
|
|
uint32_t b;
|
|
uint8_t bit_prev;
|
|
uint32_t v_obs;
|
|
double numer;
|
|
double denom;
|
|
double p_value;
|
|
|
|
UNUSED(mctx);
|
|
|
|
numbits = length * sizeof(*values) * 8;
|
|
bcount = 0;
|
|
|
|
for (i = 0; i < length; i++) {
|
|
bcount += bitcounts_table[values[i]];
|
|
}
|
|
|
|
pi = (double)bcount / (double)numbits;
|
|
tau = 2.0 / sqrt(numbits);
|
|
|
|
/* Preconditions (section 2.3.7 in NIST SP 800-22) */
|
|
assert_true(numbits >= 100);
|
|
|
|
/*
|
|
* Pre-condition implied from the monobit test. This can fail
|
|
* for some sequences, and the p-value is taken as 0 in these
|
|
* cases.
|
|
*/
|
|
if (fabs(pi - 0.5) >= tau) {
|
|
return 0.0;
|
|
}
|
|
|
|
/* Compute v_obs */
|
|
j = 0;
|
|
b = 14;
|
|
bit_prev = (values[j] & (1U << 15)) == 0 ? 0 : 1;
|
|
|
|
v_obs = 0;
|
|
|
|
for (i = 1; i < numbits; i++) {
|
|
uint8_t bit_this = (values[j] & (1U << b)) == 0 ? 0 : 1;
|
|
if (b == 0) {
|
|
b = 15;
|
|
j++;
|
|
} else {
|
|
b--;
|
|
}
|
|
|
|
v_obs += bit_this ^ bit_prev;
|
|
|
|
bit_prev = bit_this;
|
|
}
|
|
|
|
v_obs += 1;
|
|
|
|
numer = fabs(v_obs - (2.0 * numbits * pi * (1.0 - pi)));
|
|
denom = 2.0 * sqrt(2.0 * numbits) * pi * (1.0 - pi);
|
|
|
|
p_value = erfc(numer / denom);
|
|
|
|
return p_value;
|
|
}
|
|
|
|
/*
|
|
* This is the block frequency test taken from the NIST SP 800-22 RNG
|
|
* test suite.
|
|
*/
|
|
static double
|
|
blockfrequency(uint16_t *values, size_t length) {
|
|
uint32_t i;
|
|
uint32_t numbits;
|
|
uint32_t mbits;
|
|
uint32_t mwords;
|
|
uint32_t numblocks;
|
|
double *pi;
|
|
double chi_square;
|
|
double p_value;
|
|
|
|
numbits = length * sizeof(*values) * 8;
|
|
mbits = 32000;
|
|
mwords = mbits / 16;
|
|
numblocks = numbits / mbits;
|
|
|
|
/* Preconditions (section 2.2.7 in NIST SP 800-22) */
|
|
assert_true(numbits >= 100);
|
|
assert_true(mbits >= 20);
|
|
assert_true((double)mbits > (0.01 * numbits));
|
|
assert_true(numblocks < 100);
|
|
assert_true(numbits >= (mbits * numblocks));
|
|
|
|
pi = isc_mem_cget(mctx, numblocks, sizeof(double));
|
|
assert_non_null(pi);
|
|
|
|
for (i = 0; i < numblocks; i++) {
|
|
uint32_t j;
|
|
pi[i] = 0.0;
|
|
for (j = 0; j < mwords; j++) {
|
|
uint32_t idx;
|
|
|
|
idx = i * mwords + j;
|
|
pi[i] += bitcounts_table[values[idx]];
|
|
}
|
|
pi[i] /= mbits;
|
|
}
|
|
|
|
/* Compute chi_square */
|
|
chi_square = 0.0;
|
|
for (i = 0; i < numblocks; i++) {
|
|
chi_square += (pi[i] - 0.5) * (pi[i] - 0.5);
|
|
}
|
|
|
|
chi_square *= 4 * mbits;
|
|
|
|
isc_mem_cput(mctx, pi, numblocks, sizeof(double));
|
|
|
|
p_value = igamc(numblocks * 0.5, chi_square * 0.5);
|
|
|
|
return p_value;
|
|
}
|
|
|
|
/*
|
|
* This is the binary matrix rank test taken from the NIST SP 800-22 RNG
|
|
* test suite.
|
|
*/
|
|
static double
|
|
binarymatrixrank(uint16_t *values, size_t length) {
|
|
uint32_t i;
|
|
size_t matrix_m;
|
|
size_t matrix_q;
|
|
uint32_t num_matrices;
|
|
size_t numbits;
|
|
uint32_t fm_0;
|
|
uint32_t fm_1;
|
|
uint32_t fm_rest;
|
|
double term1;
|
|
double term2;
|
|
double term3;
|
|
double chi_square;
|
|
double p_value;
|
|
|
|
UNUSED(mctx);
|
|
|
|
matrix_m = 32;
|
|
matrix_q = 32;
|
|
num_matrices = length / ((matrix_m * matrix_q) / 16);
|
|
numbits = num_matrices * matrix_m * matrix_q;
|
|
|
|
/* Preconditions (section 2.5.7 in NIST SP 800-22) */
|
|
assert_int_equal(matrix_m, 32);
|
|
assert_int_equal(matrix_q, 32);
|
|
assert_true(numbits >= (38 * matrix_m * matrix_q));
|
|
|
|
fm_0 = 0;
|
|
fm_1 = 0;
|
|
fm_rest = 0;
|
|
for (i = 0; i < num_matrices; i++) {
|
|
/*
|
|
* Each uint32_t supplies 32 bits, so a 32x32 bit matrix
|
|
* takes up uint32_t array of size 32.
|
|
*/
|
|
uint32_t bits[32];
|
|
int j;
|
|
uint32_t rank;
|
|
|
|
for (j = 0; j < 32; j++) {
|
|
size_t idx;
|
|
uint32_t r1;
|
|
uint32_t r2;
|
|
|
|
idx = i * ((matrix_m * matrix_q) / 16);
|
|
idx += j * 2;
|
|
|
|
r1 = values[idx];
|
|
r2 = values[idx + 1];
|
|
bits[j] = (r1 << 16) | r2;
|
|
}
|
|
|
|
rank = matrix_binaryrank(bits, matrix_m, matrix_q);
|
|
|
|
if (rank == matrix_m) {
|
|
fm_0++;
|
|
} else if (rank == (matrix_m - 1)) {
|
|
fm_1++;
|
|
} else {
|
|
fm_rest++;
|
|
}
|
|
}
|
|
|
|
/* Compute chi_square */
|
|
term1 = ((fm_0 - (0.2888 * num_matrices)) *
|
|
(fm_0 - (0.2888 * num_matrices))) /
|
|
(0.2888 * num_matrices);
|
|
term2 = ((fm_1 - (0.5776 * num_matrices)) *
|
|
(fm_1 - (0.5776 * num_matrices))) /
|
|
(0.5776 * num_matrices);
|
|
term3 = ((fm_rest - (0.1336 * num_matrices)) *
|
|
(fm_rest - (0.1336 * num_matrices))) /
|
|
(0.1336 * num_matrices);
|
|
|
|
chi_square = term1 + term2 + term3;
|
|
|
|
p_value = exp(-chi_square * 0.5);
|
|
|
|
return p_value;
|
|
}
|
|
|
|
/***
|
|
*** Tests for isc_random32() function
|
|
***/
|
|
|
|
/* Ensure the RNG has been automatically seeded. */
|
|
ISC_RUN_TEST_IMPL(isc_random32_initialized) {
|
|
UNUSED(state);
|
|
|
|
assert_int_not_equal(isc_random32(), 0);
|
|
}
|
|
|
|
/* Monobit test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random32_monobit) {
|
|
UNUSED(state);
|
|
|
|
random_test(monobit, ISC_RANDOM32);
|
|
}
|
|
|
|
/* Runs test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random32_runs) {
|
|
UNUSED(state);
|
|
|
|
random_test(runs, ISC_RANDOM32);
|
|
}
|
|
|
|
/* Block frequency test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random32_blockfrequency) {
|
|
UNUSED(state);
|
|
|
|
random_test(blockfrequency, ISC_RANDOM32);
|
|
}
|
|
|
|
/* Binary matrix rank test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random32_binarymatrixrank) {
|
|
UNUSED(state);
|
|
|
|
random_test(binarymatrixrank, ISC_RANDOM32);
|
|
}
|
|
|
|
/***
|
|
*** Tests for isc_random_bytes() function
|
|
***/
|
|
|
|
/* Monobit test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_bytes_monobit) {
|
|
UNUSED(state);
|
|
|
|
random_test(monobit, ISC_RANDOM_BYTES);
|
|
}
|
|
|
|
/* Runs test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_bytes_runs) {
|
|
UNUSED(state);
|
|
|
|
random_test(runs, ISC_RANDOM_BYTES);
|
|
}
|
|
|
|
/* Block frequency test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_bytes_blockfrequency) {
|
|
UNUSED(state);
|
|
|
|
random_test(blockfrequency, ISC_RANDOM_BYTES);
|
|
}
|
|
|
|
/* Binary matrix rank test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_bytes_binarymatrixrank) {
|
|
UNUSED(state);
|
|
|
|
random_test(binarymatrixrank, ISC_RANDOM_BYTES);
|
|
}
|
|
|
|
/***
|
|
*** Tests for isc_random_uniform() function:
|
|
***/
|
|
|
|
/* Monobit test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_uniform_monobit) {
|
|
UNUSED(state);
|
|
|
|
random_test(monobit, ISC_RANDOM_UNIFORM);
|
|
}
|
|
|
|
/* Runs test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_uniform_runs) {
|
|
UNUSED(state);
|
|
|
|
random_test(runs, ISC_RANDOM_UNIFORM);
|
|
}
|
|
|
|
/* Block frequency test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_uniform_blockfrequency) {
|
|
UNUSED(state);
|
|
|
|
random_test(blockfrequency, ISC_RANDOM_UNIFORM);
|
|
}
|
|
|
|
/* Binary matrix rank test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_random_uniform_binarymatrixrank) {
|
|
UNUSED(state);
|
|
|
|
random_test(binarymatrixrank, ISC_RANDOM_UNIFORM);
|
|
}
|
|
|
|
/* Tests for isc_nonce_bytes() function */
|
|
|
|
/* Monobit test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_nonce_bytes_monobit) {
|
|
UNUSED(state);
|
|
|
|
random_test(monobit, ISC_NONCE_BYTES);
|
|
}
|
|
|
|
/* Runs test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_nonce_bytes_runs) {
|
|
UNUSED(state);
|
|
|
|
random_test(runs, ISC_NONCE_BYTES);
|
|
}
|
|
|
|
/* Block frequency test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_nonce_bytes_blockfrequency) {
|
|
UNUSED(state);
|
|
|
|
random_test(blockfrequency, ISC_NONCE_BYTES);
|
|
}
|
|
|
|
/* Binary matrix rank test for the RANDOM */
|
|
ISC_RUN_TEST_IMPL(isc_nonce_bytes_binarymatrixrank) {
|
|
UNUSED(state);
|
|
|
|
random_test(binarymatrixrank, ISC_NONCE_BYTES);
|
|
}
|
|
|
|
ISC_TEST_LIST_START
|
|
|
|
ISC_TEST_ENTRY(isc_random32_initialized)
|
|
ISC_TEST_ENTRY(isc_random32_monobit)
|
|
ISC_TEST_ENTRY(isc_random32_runs)
|
|
ISC_TEST_ENTRY(isc_random32_blockfrequency)
|
|
ISC_TEST_ENTRY(isc_random32_binarymatrixrank)
|
|
ISC_TEST_ENTRY(isc_random_bytes_monobit)
|
|
ISC_TEST_ENTRY(isc_random_bytes_runs)
|
|
ISC_TEST_ENTRY(isc_random_bytes_blockfrequency)
|
|
ISC_TEST_ENTRY(isc_random_bytes_binarymatrixrank)
|
|
ISC_TEST_ENTRY(isc_random_uniform_monobit)
|
|
ISC_TEST_ENTRY(isc_random_uniform_runs)
|
|
ISC_TEST_ENTRY(isc_random_uniform_blockfrequency)
|
|
ISC_TEST_ENTRY(isc_random_uniform_binarymatrixrank)
|
|
ISC_TEST_ENTRY(isc_nonce_bytes_monobit)
|
|
ISC_TEST_ENTRY(isc_nonce_bytes_runs)
|
|
ISC_TEST_ENTRY(isc_nonce_bytes_blockfrequency)
|
|
ISC_TEST_ENTRY(isc_nonce_bytes_binarymatrixrank)
|
|
|
|
ISC_TEST_LIST_END
|
|
|
|
ISC_TEST_MAIN
|