2
0
mirror of https://gitlab.isc.org/isc-projects/bind9 synced 2025-08-22 10:10:06 +00:00
bind/lib/dns/rdataslab.c
Ondřej Surý d7801aec71
Move SIEVE-LRU to dns_slabtop_t structure
As the qpcache has only one active header at the time, we can move the
SIEVE-LRU members from dns_slabheader_t to dns_slabtop_t structure thus
saving a little bit of memory in each slabheader and using it only once
per type.
2025-08-18 12:36:47 +02:00

1258 lines
31 KiB
C

/*
* Copyright (C) Internet Systems Consortium, Inc. ("ISC")
*
* SPDX-License-Identifier: MPL-2.0
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, you can obtain one at https://mozilla.org/MPL/2.0/.
*
* See the COPYRIGHT file distributed with this work for additional
* information regarding copyright ownership.
*/
/*! \file */
#include <ctype.h>
#include <stdbool.h>
#include <stdlib.h>
#include <isc/ascii.h>
#include <isc/atomic.h>
#include <isc/mem.h>
#include <isc/region.h>
#include <isc/result.h>
#include <isc/string.h>
#include <isc/util.h>
#include <dns/db.h>
#include <dns/rdata.h>
#include <dns/rdataset.h>
#include <dns/rdataslab.h>
#include <dns/stats.h>
#include "rdataslab_p.h"
/*
* The memory structure of an rdataslab is as follows:
*
* header (dns_slabheader_t)
* record count (2 bytes)
* data records
* data length (2 bytes)
* order (2 bytes)
* meta data (1 byte for RRSIG, 0 for all other types)
* data (data length bytes)
*
* A "bare" rdataslab is everything after "header".
*
* When a slab is created, data records are sorted into DNSSEC order.
*/
#define peek_uint16(buffer) ({ ((uint16_t)*(buffer) << 8) | *((buffer) + 1); })
#define get_uint16(buffer) \
({ \
uint16_t __ret = peek_uint16(buffer); \
buffer += sizeof(uint16_t); \
__ret; \
})
#define put_uint16(buffer, val) \
({ \
*buffer++ = (val & 0xff00) >> 8; \
*buffer++ = (val & 0x00ff); \
})
static void
rdataset_disassociate(dns_rdataset_t *rdataset DNS__DB_FLARG);
static isc_result_t
rdataset_first(dns_rdataset_t *rdataset);
static isc_result_t
rdataset_next(dns_rdataset_t *rdataset);
static void
rdataset_current(dns_rdataset_t *rdataset, dns_rdata_t *rdata);
static void
rdataset_clone(dns_rdataset_t *source, dns_rdataset_t *target DNS__DB_FLARG);
static unsigned int
rdataset_count(dns_rdataset_t *rdataset);
static isc_result_t
rdataset_getnoqname(dns_rdataset_t *rdataset, dns_name_t *name,
dns_rdataset_t *neg, dns_rdataset_t *negsig DNS__DB_FLARG);
static isc_result_t
rdataset_getclosest(dns_rdataset_t *rdataset, dns_name_t *name,
dns_rdataset_t *neg, dns_rdataset_t *negsig DNS__DB_FLARG);
static void
rdataset_settrust(dns_rdataset_t *rdataset, dns_trust_t trust);
static void
rdataset_expire(dns_rdataset_t *rdataset DNS__DB_FLARG);
static void
rdataset_clearprefetch(dns_rdataset_t *rdataset);
static void
rdataset_setownercase(dns_rdataset_t *rdataset, const dns_name_t *name);
static void
rdataset_getownercase(const dns_rdataset_t *rdataset, dns_name_t *name);
static dns_slabheader_t *
rdataset_getheader(const dns_rdataset_t *rdataset);
static bool
rdataset_equals(const dns_rdataset_t *rdataset1,
const dns_rdataset_t *rdataset2);
dns_rdatasetmethods_t dns_rdataslab_rdatasetmethods = {
.disassociate = rdataset_disassociate,
.first = rdataset_first,
.next = rdataset_next,
.current = rdataset_current,
.clone = rdataset_clone,
.count = rdataset_count,
.getnoqname = rdataset_getnoqname,
.getclosest = rdataset_getclosest,
.settrust = rdataset_settrust,
.expire = rdataset_expire,
.clearprefetch = rdataset_clearprefetch,
.setownercase = rdataset_setownercase,
.getownercase = rdataset_getownercase,
.getheader = rdataset_getheader,
.equals = rdataset_equals,
};
/*% Note: the "const void *" are just to make qsort happy. */
static int
compare_rdata(const void *p1, const void *p2) {
return dns_rdata_compare(p1, p2);
}
static isc_result_t
makeslab(dns_rdataset_t *rdataset, isc_mem_t *mctx, isc_region_t *region,
uint32_t maxrrperset) {
/*
* Use &removed as a sentinel pointer for duplicate
* rdata as rdata.data == NULL is valid.
*/
static unsigned char removed;
dns_rdata_t *rdata = NULL;
unsigned char *rawbuf = NULL;
unsigned int headerlen = sizeof(dns_slabheader_t);
unsigned int buflen = headerlen + 2;
isc_result_t result;
unsigned int nitems;
unsigned int nalloc;
unsigned int length;
size_t i;
size_t rdatasize;
/*
* If the source rdataset is also a slab, we don't need
* to do anything special, just copy the whole slab to a
* new buffer.
*/
if (rdataset->methods == &dns_rdataslab_rdatasetmethods) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
buflen = dns_rdataslab_size(header);
rawbuf = isc_mem_get(mctx, buflen);
region->base = rawbuf;
region->length = buflen;
memmove(rawbuf, header, buflen);
return ISC_R_SUCCESS;
}
/*
* If there are no rdata then we just need to allocate a header
* with a zero record count.
*/
nitems = dns_rdataset_count(rdataset);
if (nitems == 0) {
if (rdataset->type != 0) {
return ISC_R_FAILURE;
}
rawbuf = isc_mem_get(mctx, buflen);
region->base = rawbuf;
region->length = buflen;
rawbuf += headerlen;
put_uint16(rawbuf, 0);
return ISC_R_SUCCESS;
}
if (maxrrperset > 0 && nitems > maxrrperset) {
return DNS_R_TOOMANYRECORDS;
}
if (nitems > 0xffff) {
return ISC_R_NOSPACE;
}
/*
* Remember the original number of items.
*/
nalloc = nitems;
RUNTIME_CHECK(!ISC_OVERFLOW_MUL(nalloc, sizeof(rdata[0]), &rdatasize));
rdata = isc_mem_get(mctx, rdatasize);
/*
* Save all of the rdata members into an array.
*/
result = dns_rdataset_first(rdataset);
if (result != ISC_R_SUCCESS && result != ISC_R_NOMORE) {
goto free_rdatas;
}
for (i = 0; i < nalloc && result == ISC_R_SUCCESS; i++) {
INSIST(result == ISC_R_SUCCESS);
dns_rdata_init(&rdata[i]);
dns_rdataset_current(rdataset, &rdata[i]);
INSIST(rdata[i].data != &removed);
result = dns_rdataset_next(rdataset);
}
if (i != nalloc || result != ISC_R_NOMORE) {
/*
* Somehow we iterated over fewer rdatas than
* dns_rdataset_count() said there were or there
* were more items than dns_rdataset_count said
* there were.
*/
result = ISC_R_FAILURE;
goto free_rdatas;
}
/*
* Put into DNSSEC order.
*/
if (nalloc > 1U) {
qsort(rdata, nalloc, sizeof(rdata[0]), compare_rdata);
}
/*
* Remove duplicates and compute the total storage required.
*
* If an rdata is not a duplicate, accumulate the storage size
* required for the rdata. We do not store the class, type, etc,
* just the rdata, so our overhead is 2 bytes for the number of
* records, and 2 bytes for the length of each rdata, plus the
* rdata itself.
*/
for (i = 1; i < nalloc; i++) {
if (compare_rdata(&rdata[i - 1], &rdata[i]) == 0) {
rdata[i - 1].data = &removed;
nitems--;
} else {
buflen += (2 + rdata[i - 1].length);
/*
* Provide space to store the per RR meta data.
*/
if (rdataset->type == dns_rdatatype_rrsig) {
buflen++;
}
}
}
/*
* Don't forget the last item!
*/
buflen += (2 + rdata[i - 1].length);
/*
* Provide space to store the per RR meta data.
*/
if (rdataset->type == dns_rdatatype_rrsig) {
buflen++;
}
/*
* Ensure that singleton types are actually singletons.
*/
if (nitems > 1 && dns_rdatatype_issingleton(rdataset->type)) {
/*
* We have a singleton type, but there's more than one
* RR in the rdataset.
*/
result = DNS_R_SINGLETON;
goto free_rdatas;
}
/*
* Allocate the memory, set up a buffer, start copying in
* data.
*/
rawbuf = isc_mem_get(mctx, buflen);
region->base = rawbuf;
region->length = buflen;
rawbuf += headerlen;
put_uint16(rawbuf, nitems);
for (i = 0; i < nalloc; i++) {
if (rdata[i].data == &removed) {
continue;
}
length = rdata[i].length;
if (rdataset->type == dns_rdatatype_rrsig) {
length++;
}
INSIST(length <= 0xffff);
put_uint16(rawbuf, length);
/*
* Store the per RR meta data.
*/
if (rdataset->type == dns_rdatatype_rrsig) {
*rawbuf++ = (rdata[i].flags & DNS_RDATA_OFFLINE)
? DNS_RDATASLAB_OFFLINE
: 0;
}
if (rdata[i].length != 0) {
memmove(rawbuf, rdata[i].data, rdata[i].length);
}
rawbuf += rdata[i].length;
}
result = ISC_R_SUCCESS;
free_rdatas:
isc_mem_put(mctx, rdata, rdatasize);
return result;
}
isc_result_t
dns_rdataslab_fromrdataset(dns_rdataset_t *rdataset, isc_mem_t *mctx,
isc_region_t *region, uint32_t maxrrperset) {
isc_result_t result;
if (rdataset->type == dns_rdatatype_none &&
rdataset->covers == dns_rdatatype_none)
{
return DNS_R_DISALLOWED;
}
result = makeslab(rdataset, mctx, region, maxrrperset);
if (result == ISC_R_SUCCESS) {
dns_slabheader_t *new = (dns_slabheader_t *)region->base;
dns_typepair_t typepair;
if (rdataset->attributes.negative) {
INSIST(rdataset->type == dns_rdatatype_none);
INSIST(rdataset->covers != dns_rdatatype_none);
typepair = DNS_TYPEPAIR_VALUE(rdataset->covers,
dns_rdatatype_none);
} else {
INSIST(rdataset->type != dns_rdatatype_none);
INSIST(dns_rdatatype_issig(rdataset->type) ||
rdataset->covers == dns_rdatatype_none);
typepair = DNS_TYPEPAIR_VALUE(rdataset->type,
rdataset->covers);
}
*new = (dns_slabheader_t){
.typepair = typepair,
.trust = rdataset->trust,
.ttl = rdataset->ttl,
};
}
return result;
}
unsigned int
dns_rdataslab_size(dns_slabheader_t *header) {
REQUIRE(header != NULL);
unsigned char *slab = (unsigned char *)header +
sizeof(dns_slabheader_t);
INSIST(slab != NULL);
unsigned char *current = slab;
uint16_t count = get_uint16(current);
while (count-- > 0) {
uint16_t length = get_uint16(current);
current += length;
}
return (unsigned int)(current - slab) + sizeof(dns_slabheader_t);
}
unsigned int
dns_rdataslab_count(dns_slabheader_t *header) {
REQUIRE(header != NULL);
unsigned char *current = (unsigned char *)header + sizeof(*header);
uint16_t count = get_uint16(current);
return count;
}
/*
* Make the dns_rdata_t 'rdata' refer to the slab item
* beginning at '*current' (which is part of a slab of type
* 'type' and class 'rdclass') and advance '*current' to
* point to the next item in the slab.
*/
static void
rdata_from_slabitem(unsigned char **current, dns_rdataclass_t rdclass,
dns_rdatatype_t type, dns_rdata_t *rdata) {
unsigned char *tcurrent = *current;
isc_region_t region;
bool offline = false;
uint16_t length = get_uint16(tcurrent);
if (type == dns_rdatatype_rrsig) {
if ((*tcurrent & DNS_RDATASLAB_OFFLINE) != 0) {
offline = true;
}
length--;
tcurrent++;
}
region.length = length;
region.base = tcurrent;
tcurrent += region.length;
dns_rdata_fromregion(rdata, rdclass, type, &region);
if (offline) {
rdata->flags |= DNS_RDATA_OFFLINE;
}
*current = tcurrent;
}
static void
rdata_to_slabitem(unsigned char **current, dns_rdatatype_t type,
dns_rdata_t *rdata) {
unsigned int length = rdata->length;
unsigned char *data = rdata->data;
unsigned char *p = *current;
if (type == dns_rdatatype_rrsig) {
length++;
data--;
}
put_uint16(p, length);
memmove(p, data, length);
p += length;
*current = p;
}
typedef struct slabinfo {
unsigned char *pos;
dns_rdata_t rdata;
bool dup;
} slabinfo_t;
isc_result_t
dns_rdataslab_merge(dns_slabheader_t *oheader, dns_slabheader_t *nheader,
isc_mem_t *mctx, dns_rdataclass_t rdclass,
dns_rdatatype_t type, unsigned int flags,
uint32_t maxrrperset, dns_slabheader_t **theaderp) {
isc_result_t result = ISC_R_SUCCESS;
unsigned char *ocurrent = NULL, *ncurrent = NULL, *tcurrent = NULL;
unsigned int ocount, ncount, tlength, tcount = 0;
slabinfo_t *oinfo = NULL, *ninfo = NULL;
size_t o = 0, n = 0;
REQUIRE(theaderp != NULL && *theaderp == NULL);
REQUIRE(oheader != NULL && nheader != NULL);
ocurrent = (unsigned char *)oheader + sizeof(dns_slabheader_t);
ocount = get_uint16(ocurrent);
ncurrent = (unsigned char *)nheader + sizeof(dns_slabheader_t);
ncount = get_uint16(ncurrent);
INSIST(ocount > 0 && ncount > 0);
if (maxrrperset > 0 && ocount + ncount > maxrrperset) {
return DNS_R_TOOMANYRECORDS;
}
/*
* Figure out the target length. Start with the header,
* plus 2 octets for the count.
*/
tlength = sizeof(dns_slabheader_t) + 2;
/*
* Gather the rdatas in the old slab and add their lengths to
* the larget length.
*/
oinfo = isc_mem_cget(mctx, ocount, sizeof(struct slabinfo));
for (size_t i = 0; i < ocount; i++) {
oinfo[i].pos = ocurrent;
dns_rdata_init(&oinfo[i].rdata);
rdata_from_slabitem(&ocurrent, rdclass, type, &oinfo[i].rdata);
tlength += ocurrent - oinfo[i].pos;
}
/*
* Then add the length of rdatas in the new slab that aren't
* duplicated in the old slab.
*/
ninfo = isc_mem_cget(mctx, ncount, sizeof(struct slabinfo));
for (size_t i = 0; i < ncount; i++) {
ninfo[i].pos = ncurrent;
dns_rdata_init(&ninfo[i].rdata);
rdata_from_slabitem(&ncurrent, rdclass, type, &ninfo[i].rdata);
for (size_t j = 0; j < ocount; j++) {
if (oinfo[j].dup) {
/*
* This was already found to be
* duplicated; no need to compare
* it again.
*/
continue;
}
if (dns_rdata_compare(&oinfo[j].rdata,
&ninfo[i].rdata) == 0)
{
/*
* Found a dup. Mark the old copy as a
* duplicate so we don't check it again;
* mark the new copy as a duplicate so we
* don't copy it to the target.
*/
oinfo[j].dup = ninfo[i].dup = true;
break;
}
}
if (ninfo[i].dup) {
continue;
}
/*
* We will be copying this item to the target, so
* add its length to tlength and increment tcount.
*/
tlength += ncurrent - ninfo[i].pos;
tcount++;
}
/*
* If the EXACT flag is set, there can't be any rdata in
* the new slab that was also in the old. If tcount is less
* than ncount, then we found such a duplicate.
*/
if (((flags & DNS_RDATASLAB_EXACT) != 0) && (tcount < ncount)) {
result = DNS_R_NOTEXACT;
goto cleanup;
}
/*
* If nothing's being copied in from the new slab, and the
* FORCE flag isn't set, we're done.
*/
if (tcount == 0 && (flags & DNS_RDATASLAB_FORCE) == 0) {
result = DNS_R_UNCHANGED;
goto cleanup;
}
/* Add to tcount the total number of items from the old slab. */
tcount += ocount;
/* Resposition ncurrent at the first item. */
ncurrent = (unsigned char *)nheader + sizeof(dns_slabheader_t) + 2;
/* Single types can't have more than one RR. */
if (tcount > 1 && dns_rdatatype_issingleton(type)) {
result = DNS_R_SINGLETON;
goto cleanup;
}
if (tcount > 0xffff) {
result = ISC_R_NOSPACE;
goto cleanup;
}
/* Allocate the target buffer and copy the new slab's header */
unsigned char *tstart = isc_mem_get(mctx, tlength);
memmove(tstart, nheader, sizeof(dns_slabheader_t));
tcurrent = tstart + sizeof(dns_slabheader_t);
/* Write the new count, then start merging the slabs. */
put_uint16(tcurrent, tcount);
/*
* Now walk the sets together, adding each item in DNSSEC order,
* and skipping over any more dups in the new slab.
*/
while (o < ocount || n < ncount) {
bool fromold;
/* Skip to the next non-duplicate in the new slab. */
for (; n < ncount && ninfo[n].dup; n++)
;
if (o == ocount) {
fromold = false;
} else if (n == ncount) {
fromold = true;
} else {
fromold = dns_rdata_compare(&oinfo[o].rdata,
&ninfo[n].rdata) < 0;
}
if (fromold) {
rdata_to_slabitem(&tcurrent, type, &oinfo[o].rdata);
if (++o < ocount) {
/* Skip to the next rdata in the old slab */
continue;
}
} else {
rdata_to_slabitem(&tcurrent, type, &ninfo[n++].rdata);
}
}
INSIST(tcurrent == tstart + tlength);
*theaderp = (dns_slabheader_t *)tstart;
cleanup:
isc_mem_cput(mctx, oinfo, ocount, sizeof(struct slabinfo));
isc_mem_cput(mctx, ninfo, ncount, sizeof(struct slabinfo));
return result;
}
isc_result_t
dns_rdataslab_subtract(dns_slabheader_t *oheader, dns_slabheader_t *sheader,
isc_mem_t *mctx, dns_rdataclass_t rdclass,
dns_rdatatype_t type, unsigned int flags,
dns_slabheader_t **theaderp) {
isc_result_t result = ISC_R_SUCCESS;
unsigned char *ocurrent = NULL, *scurrent = NULL;
unsigned char *tstart = NULL, *tcurrent = NULL;
unsigned int ocount, scount, tlength;
unsigned int tcount = 0, rcount = 0;
slabinfo_t *oinfo = NULL, *sinfo = NULL;
REQUIRE(theaderp != NULL && *theaderp == NULL);
REQUIRE(oheader != NULL && sheader != NULL);
ocurrent = (unsigned char *)oheader + sizeof(dns_slabheader_t);
ocount = get_uint16(ocurrent);
scurrent = (unsigned char *)sheader + sizeof(dns_slabheader_t);
scount = get_uint16(scurrent);
INSIST(ocount > 0 && scount > 0);
/* Get info about the rdatas being subtracted */
sinfo = isc_mem_cget(mctx, scount, sizeof(struct slabinfo));
for (size_t i = 0; i < scount; i++) {
sinfo[i].pos = scurrent;
dns_rdata_init(&sinfo[i].rdata);
rdata_from_slabitem(&scurrent, rdclass, type, &sinfo[i].rdata);
}
/*
* Figure out the target length. Start with the header,
* plus 2 octets for the count.
*/
tlength = sizeof(dns_slabheader_t) + 2;
/*
* Add the length of the rdatas in the old slab that
* aren't being subtracted.
*/
oinfo = isc_mem_cget(mctx, ocount, sizeof(struct slabinfo));
for (size_t i = 0; i < ocount; i++) {
bool matched = false;
oinfo[i].pos = ocurrent;
dns_rdata_init(&oinfo[i].rdata);
rdata_from_slabitem(&ocurrent, rdclass, type, &oinfo[i].rdata);
for (size_t j = 0; j < scount; j++) {
if (sinfo[j].dup) {
continue;
} else if (dns_rdata_compare(&oinfo[i].rdata,
&sinfo[j].rdata) == 0)
{
matched = true;
oinfo[i].dup = sinfo[j].dup = true;
break;
}
}
if (matched) {
/* This item will be subtracted. */
rcount++;
} else {
/*
* This rdata wasn't in the slab to be subtracted,
* so copy it to the target. Add its length to
* tlength and increment tcount.
*/
tlength += ocurrent - oinfo[i].pos;
tcount++;
}
}
/*
* If the EXACT flag wasn't set, check that all the records that
* were to be subtracted actually did exist in the original slab.
* (The numeric check works here because rdataslabs do not contain
* duplicates.)
*/
if ((flags & DNS_RDATASLAB_EXACT) != 0 && rcount != scount) {
result = DNS_R_NOTEXACT;
goto cleanup;
}
/*
* If the resulting rdataslab would be empty, don't bother to
* create a new buffer, just return.
*/
if (tcount == 0) {
result = DNS_R_NXRRSET;
goto cleanup;
}
/*
* If nothing is going to change, stop.
*/
if (rcount == 0) {
result = DNS_R_UNCHANGED;
goto cleanup;
}
/*
* Allocate the target buffer and copy the old slab's header.
*/
tstart = isc_mem_get(mctx, tlength);
memmove(tstart, oheader, sizeof(dns_slabheader_t));
tcurrent = tstart + sizeof(dns_slabheader_t);
/*
* Write the new count.
*/
put_uint16(tcurrent, tcount);
/*
* Copy the parts of the old slab that didn't have duplicates.
*/
for (size_t i = 0; i < ocount; i++) {
if (!oinfo[i].dup) {
rdata_to_slabitem(&tcurrent, type, &oinfo[i].rdata);
}
}
INSIST(tcurrent == tstart + tlength);
*theaderp = (dns_slabheader_t *)tstart;
cleanup:
isc_mem_cput(mctx, oinfo, ocount, sizeof(struct slabinfo));
isc_mem_cput(mctx, sinfo, scount, sizeof(struct slabinfo));
return result;
}
bool
dns_rdataslab_equal(dns_slabheader_t *slab1, dns_slabheader_t *slab2) {
unsigned char *current1 = NULL, *current2 = NULL;
unsigned int count1, count2;
current1 = (unsigned char *)slab1 + sizeof(dns_slabheader_t);
count1 = get_uint16(current1);
current2 = (unsigned char *)slab2 + sizeof(dns_slabheader_t);
count2 = get_uint16(current2);
if (count1 != count2) {
return false;
} else if (count1 == 0) {
return true;
}
while (count1-- > 0) {
unsigned int length1 = get_uint16(current1);
unsigned int length2 = get_uint16(current2);
if (length1 != length2 ||
memcmp(current1, current2, length1) != 0)
{
return false;
}
current1 += length1;
current2 += length1;
}
return true;
}
bool
dns_rdataslab_equalx(dns_slabheader_t *slab1, dns_slabheader_t *slab2,
dns_rdataclass_t rdclass, dns_rdatatype_t type) {
unsigned char *current1 = NULL, *current2 = NULL;
unsigned int count1, count2;
current1 = (unsigned char *)slab1 + sizeof(dns_slabheader_t);
count1 = get_uint16(current1);
current2 = (unsigned char *)slab2 + sizeof(dns_slabheader_t);
count2 = get_uint16(current2);
if (count1 != count2) {
return false;
} else if (count1 == 0) {
return true;
}
while (count1-- > 0) {
dns_rdata_t rdata1 = DNS_RDATA_INIT;
dns_rdata_t rdata2 = DNS_RDATA_INIT;
rdata_from_slabitem(&current1, rdclass, type, &rdata1);
rdata_from_slabitem(&current2, rdclass, type, &rdata2);
if (dns_rdata_compare(&rdata1, &rdata2) != 0) {
return false;
}
}
return true;
}
void *
dns_slabheader_raw(dns_slabheader_t *header) {
return header + 1;
}
void
dns_slabheader_setownercase(dns_slabheader_t *header, const dns_name_t *name) {
REQUIRE(!CASESET(header));
bool casefullylower = true;
/*
* We do not need to worry about label lengths as they are all
* less than or equal to 63.
*/
memset(header->upper, 0, sizeof(header->upper));
for (size_t i = 0; i < name->length; i++) {
if (isupper(name->ndata[i])) {
header->upper[i / 8] |= 1 << (i % 8);
casefullylower = false;
}
}
if (casefullylower) {
DNS_SLABHEADER_SETATTR(header,
DNS_SLABHEADERATTR_CASEFULLYLOWER);
}
DNS_SLABHEADER_SETATTR(header, DNS_SLABHEADERATTR_CASESET);
}
void
dns_slabheader_copycase(dns_slabheader_t *dest, dns_slabheader_t *src) {
REQUIRE(!CASESET(dest));
if (CASESET(src)) {
memmove(dest->upper, src->upper, sizeof(src->upper));
if (CASEFULLYLOWER(src)) {
DNS_SLABHEADER_SETATTR(
dest, DNS_SLABHEADERATTR_CASEFULLYLOWER);
}
DNS_SLABHEADER_SETATTR(dest, DNS_SLABHEADERATTR_CASESET);
}
}
void
dns_slabheader_reset(dns_slabheader_t *h, dns_dbnode_t *node) {
h->heap_index = 0;
h->heap = NULL;
h->node = node;
atomic_init(&h->attributes, 0);
atomic_init(&h->last_refresh_fail_ts, 0);
STATIC_ASSERT(sizeof(h->attributes) == 2,
"The .attributes field of dns_slabheader_t needs to be "
"16-bit int type exactly.");
}
dns_slabheader_t *
dns_slabheader_new(isc_mem_t *mctx, dns_dbnode_t *node) {
dns_slabheader_t *h = NULL;
h = isc_mem_get(mctx, sizeof(*h));
*h = (dns_slabheader_t){
.node = node,
};
return h;
}
void
dns_slabheader_destroy(dns_slabheader_t **headerp) {
unsigned int size;
dns_slabheader_t *header = *headerp;
*headerp = NULL;
isc_mem_t *mctx = header->node->mctx;
dns_db_deletedata(header->node, header);
if (EXISTS(header)) {
size = dns_rdataslab_size(header);
} else {
size = sizeof(*header);
}
isc_mem_put(mctx, header, size);
}
void
dns_slabheader_freeproof(isc_mem_t *mctx, dns_slabheader_proof_t **proofp) {
unsigned int buflen;
uint8_t *rawbuf;
dns_slabheader_proof_t *proof = *proofp;
*proofp = NULL;
if (dns_name_dynamic(&proof->name)) {
dns_name_free(&proof->name, mctx);
}
if (proof->neg != NULL) {
rawbuf = proof->neg;
rawbuf -= sizeof(dns_slabheader_t);
buflen = dns_rdataslab_size((dns_slabheader_t *)rawbuf);
isc_mem_put(mctx, rawbuf, buflen);
}
if (proof->negsig != NULL) {
rawbuf = proof->negsig;
rawbuf -= sizeof(dns_slabheader_t);
buflen = dns_rdataslab_size((dns_slabheader_t *)rawbuf);
isc_mem_put(mctx, rawbuf, buflen);
}
isc_mem_put(mctx, proof, sizeof(*proof));
}
/* Fixed RRSet helper macros */
static void
rdataset_disassociate(dns_rdataset_t *rdataset DNS__DB_FLARG) {
dns_dbnode_t *node = rdataset->slab.node;
dns__db_detachnode(&node DNS__DB_FLARG_PASS);
}
static isc_result_t
rdataset_first(dns_rdataset_t *rdataset) {
unsigned char *raw = rdataset->slab.raw;
uint16_t count = peek_uint16(raw);
if (count == 0) {
rdataset->slab.iter_pos = NULL;
rdataset->slab.iter_count = 0;
return ISC_R_NOMORE;
}
/*
* iter_count is the number of rdata beyond the cursor
* position, so we decrement the total count by one before
* storing it.
*
* 'raw' points to the first record.
*/
rdataset->slab.iter_pos = raw + sizeof(uint16_t);
rdataset->slab.iter_count = count - 1;
return ISC_R_SUCCESS;
}
static isc_result_t
rdataset_next(dns_rdataset_t *rdataset) {
uint16_t count = rdataset->slab.iter_count;
if (count == 0) {
rdataset->slab.iter_pos = NULL;
return ISC_R_NOMORE;
}
rdataset->slab.iter_count = count - 1;
/*
* Skip forward one record (length + 4) or one offset (4).
*/
unsigned char *raw = rdataset->slab.iter_pos;
uint16_t length = peek_uint16(raw);
raw += length;
rdataset->slab.iter_pos = raw + sizeof(uint16_t);
return ISC_R_SUCCESS;
}
static void
rdataset_current(dns_rdataset_t *rdataset, dns_rdata_t *rdata) {
unsigned char *raw = NULL;
unsigned int length;
isc_region_t r;
unsigned int flags = 0;
raw = rdataset->slab.iter_pos;
REQUIRE(raw != NULL);
/*
* Find the start of the record if not already in iter_pos
* then skip the length and order fields.
*/
length = get_uint16(raw);
if (rdataset->type == dns_rdatatype_rrsig) {
if (*raw & DNS_RDATASLAB_OFFLINE) {
flags |= DNS_RDATA_OFFLINE;
}
length--;
raw++;
}
r.length = length;
r.base = raw;
dns_rdata_fromregion(rdata, rdataset->rdclass, rdataset->type, &r);
rdata->flags |= flags;
}
static void
rdataset_clone(dns_rdataset_t *source, dns_rdataset_t *target DNS__DB_FLARG) {
dns_dbnode_t *node = source->slab.node;
dns_dbnode_t *cloned_node = NULL;
dns__db_attachnode(node, &cloned_node DNS__DB_FLARG_PASS);
INSIST(!ISC_LINK_LINKED(target, link));
*target = *source;
ISC_LINK_INIT(target, link);
target->slab.iter_pos = NULL;
target->slab.iter_count = 0;
}
static unsigned int
rdataset_count(dns_rdataset_t *rdataset) {
unsigned char *raw = NULL;
unsigned int count;
raw = rdataset->slab.raw;
count = get_uint16(raw);
return count;
}
static isc_result_t
rdataset_getnoqname(dns_rdataset_t *rdataset, dns_name_t *name,
dns_rdataset_t *nsec,
dns_rdataset_t *nsecsig DNS__DB_FLARG) {
dns_db_t *db = rdataset->slab.db;
dns_dbnode_t *node = rdataset->slab.node;
const dns_slabheader_proof_t *noqname = rdataset->slab.noqname;
/*
* Normally, rdataset->slab.raw points to the data immediately
* following a dns_slabheader in memory. Here, though, it will
* point to a bare rdataslab, a pointer to which is stored in
* the dns_slabheader's `noqname` field.
*
* The 'keepcase' attribute is set to prevent setownercase and
* getownercase methods from affecting the case of NSEC/NSEC3
* owner names.
*/
dns__db_attachnode(node, &(dns_dbnode_t *){ NULL } DNS__DB_FLARG_PASS);
*nsec = (dns_rdataset_t){
.methods = &dns_rdataslab_rdatasetmethods,
.rdclass = db->rdclass,
.type = noqname->type,
.ttl = rdataset->ttl,
.trust = rdataset->trust,
.slab.db = db,
.slab.node = node,
.slab.raw = noqname->neg,
.link = nsec->link,
.count = nsec->count,
.attributes = nsec->attributes,
.magic = nsec->magic,
};
nsec->attributes.keepcase = true;
dns__db_attachnode(node, &(dns_dbnode_t *){ NULL } DNS__DB_FLARG_PASS);
*nsecsig = (dns_rdataset_t){
.methods = &dns_rdataslab_rdatasetmethods,
.rdclass = db->rdclass,
.type = dns_rdatatype_rrsig,
.covers = noqname->type,
.ttl = rdataset->ttl,
.trust = rdataset->trust,
.slab.db = db,
.slab.node = node,
.slab.raw = noqname->negsig,
.link = nsecsig->link,
.count = nsecsig->count,
.attributes = nsecsig->attributes,
.magic = nsecsig->magic,
};
nsecsig->attributes.keepcase = true;
dns_name_clone(&noqname->name, name);
return ISC_R_SUCCESS;
}
static isc_result_t
rdataset_getclosest(dns_rdataset_t *rdataset, dns_name_t *name,
dns_rdataset_t *nsec,
dns_rdataset_t *nsecsig DNS__DB_FLARG) {
dns_db_t *db = rdataset->slab.db;
dns_dbnode_t *node = rdataset->slab.node;
const dns_slabheader_proof_t *closest = rdataset->slab.closest;
/*
* Normally, rdataset->slab.raw points to the data immediately
* following a dns_slabheader in memory. Here, though, it will
* point to a bare rdataslab, a pointer to which is stored in
* the dns_slabheader's `closest` field.
*
* The 'keepcase' attribute is set to prevent setownercase and
* getownercase methods from affecting the case of NSEC/NSEC3
* owner names.
*/
dns__db_attachnode(node, &(dns_dbnode_t *){ NULL } DNS__DB_FLARG_PASS);
*nsec = (dns_rdataset_t){
.methods = &dns_rdataslab_rdatasetmethods,
.rdclass = db->rdclass,
.type = closest->type,
.ttl = rdataset->ttl,
.trust = rdataset->trust,
.slab.db = db,
.slab.node = node,
.slab.raw = closest->neg,
.link = nsec->link,
.count = nsec->count,
.attributes = nsec->attributes,
.magic = nsec->magic,
};
nsec->attributes.keepcase = true;
dns__db_attachnode(node, &(dns_dbnode_t *){ NULL } DNS__DB_FLARG_PASS);
*nsecsig = (dns_rdataset_t){
.methods = &dns_rdataslab_rdatasetmethods,
.rdclass = db->rdclass,
.type = dns_rdatatype_rrsig,
.covers = closest->type,
.ttl = rdataset->ttl,
.trust = rdataset->trust,
.slab.db = db,
.slab.node = node,
.slab.raw = closest->negsig,
.link = nsecsig->link,
.count = nsecsig->count,
.attributes = nsecsig->attributes,
.magic = nsecsig->magic,
};
nsecsig->attributes.keepcase = true;
dns_name_clone(&closest->name, name);
return ISC_R_SUCCESS;
}
static void
rdataset_settrust(dns_rdataset_t *rdataset, dns_trust_t trust) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
dns_db_locknode(header->node, isc_rwlocktype_write);
header->trust = rdataset->trust = trust;
dns_db_unlocknode(header->node, isc_rwlocktype_write);
}
static void
rdataset_expire(dns_rdataset_t *rdataset DNS__DB_FLARG) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
dns_db_expiredata(header->node, header);
}
static void
rdataset_clearprefetch(dns_rdataset_t *rdataset) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
dns_db_locknode(header->node, isc_rwlocktype_write);
DNS_SLABHEADER_CLRATTR(header, DNS_SLABHEADERATTR_PREFETCH);
dns_db_unlocknode(header->node, isc_rwlocktype_write);
}
static void
rdataset_setownercase(dns_rdataset_t *rdataset, const dns_name_t *name) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
/* The case could be set just once for the same header */
if (CASESET(header)) {
return;
}
dns_db_locknode(header->node, isc_rwlocktype_write);
dns_slabheader_setownercase(header, name);
dns_db_unlocknode(header->node, isc_rwlocktype_write);
}
static void
rdataset_getownercase(const dns_rdataset_t *rdataset, dns_name_t *name) {
dns_slabheader_t *header = dns_rdataset_getheader(rdataset);
uint8_t mask = (1 << 7);
uint8_t bits = 0;
if (!CASESET(header)) {
return;
}
if (CASEFULLYLOWER(header)) {
isc_ascii_lowercopy(name->ndata, name->ndata, name->length);
return;
}
uint8_t *nd = name->ndata;
for (size_t i = 0; i < name->length; i++) {
if (mask == (1 << 7)) {
bits = header->upper[i / 8];
mask = 1;
} else {
mask <<= 1;
}
nd[i] = (bits & mask) ? isc_ascii_toupper(nd[i])
: isc_ascii_tolower(nd[i]);
}
}
static dns_slabheader_t *
rdataset_getheader(const dns_rdataset_t *rdataset) {
dns_slabheader_t *header = (dns_slabheader_t *)rdataset->slab.raw;
return header - 1;
}
static bool
rdataset_equals(const dns_rdataset_t *rdataset1,
const dns_rdataset_t *rdataset2) {
if (rdataset1->rdclass != rdataset2->rdclass ||
rdataset1->type != rdataset2->type)
{
return false;
}
dns_slabheader_t *header1 = (dns_slabheader_t *)rdataset1->slab.raw - 1;
dns_slabheader_t *header2 = (dns_slabheader_t *)rdataset2->slab.raw - 1;
return dns_rdataslab_equalx(header1, header2, rdataset1->rdclass,
rdataset2->type);
}
dns_slabtop_t *
dns_slabtop_new(isc_mem_t *mctx, dns_typepair_t typepair) {
dns_slabtop_t *top = isc_mem_get(mctx, sizeof(*top));
*top = (dns_slabtop_t){
.typepair = typepair,
.link = ISC_LINK_INITIALIZER,
};
return top;
}
void
dns_slabtop_destroy(isc_mem_t *mctx, dns_slabtop_t **topp) {
REQUIRE(topp != NULL && *topp != NULL);
dns_slabtop_t *top = *topp;
*topp = NULL;
isc_mem_put(mctx, top, sizeof(*top));
}