2
0
mirror of https://github.com/checkpoint-restore/criu synced 2025-08-22 09:58:09 +00:00
criu/cr-restore.c

2865 lines
62 KiB
C
Raw Normal View History

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#include <dirent.h>
#include <string.h>
#include <fcntl.h>
#include <grp.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/vfs.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <sys/shm.h>
#include <sys/mount.h>
#include <sys/prctl.h>
#include <sched.h>
#include <sys/sendfile.h>
#include "ptrace.h"
#include "compiler.h"
#include "asm/types.h"
#include "asm/restorer.h"
#include "cr_options.h"
#include "servicefd.h"
#include "image.h"
#include "util.h"
#include "util-pie.h"
#include "log.h"
#include "syscall.h"
#include "restorer.h"
Unix sockets initial support Currently it can only work with stream sockets, which have no skbs in queues (listening or established -- both work OK). The cpt part uses the sock_diag engine that was merged to Dave recently to collect sockets. Then it dumps sockets by checking the filesystem ID of a failed-to-open through /proc/pid/fd descriptors (sockets do not allow for such tricks with opens through proc) against SOCKFS_TYPE. The rst part is more tricky. Listen sockets are just restored, this is simple. Connected sockets are restored like this: 1. One end establishes a listening anon socket at the desired descriptor; 2. The other end just creates a socket at the desired descriptor; 3. All sockets, that are to be connect()-ed call connect. Unix sockets do not block connect() till the accept() time and thus we continue with... 4. ... all listening sockets call accept() and ... dup2 the new fd into the accepting end. There's a problem with this approach -- socket names are not preserved, but looking into our OpenVZ implementation I think this is OK for existing apps. What should be done next is: 1. Need to merge the file IDs patches in our tree and make Andrey to support files sharing. This will solve the sk = socket(); fork(); case. Currently it simply doesn't work :( 2. Need to add support for DGRAM sockets -- I wrote comment how to do it in the can_dump_unix_sk() 3. Need to add support for in-flight connections 4. Implement support for UDP sockets (quite simple) 5. Implement support for listening TCP sockets (also not very complex) 6. Implement support for connected TCP scokets (hard one, Tejun's patches are not very good for this from my POV) Cyrill, plz, apply this patch and put the above descriptions onto wiki docs (do we have the plans page yet?). Andrey, plz, take care of unix sockets tests in zdtm. Most likely it won't work till you do the shared files support for sockets. Signed-off-by: Pavel Emelyanov <xemul@parallels.com> Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
2011-12-26 22:12:03 +04:00
#include "sockets.h"
#include "sk-packet.h"
#include "lock.h"
#include "files.h"
#include "files-reg.h"
#include "pipes.h"
#include "fifo.h"
#include "sk-inet.h"
#include "eventfd.h"
#include "eventpoll.h"
#include "signalfd.h"
#include "proc_parse.h"
#include "restorer-blob.h"
#include "crtools.h"
#include "namespaces.h"
#include "mem.h"
#include "mount.h"
#include "fsnotify.h"
#include "pstree.h"
#include "net.h"
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
#include "tty.h"
#include "cpu.h"
#include "file-lock.h"
#include "page-read.h"
#include "vdso.h"
#include "stats.h"
#include "tun.h"
#include "vma.h"
#include "kerndat.h"
#include "rst-malloc.h"
#include "plugin.h"
#include "cgroup.h"
#include "timerfd.h"
#include "file-lock.h"
#include "parasite-syscall.h"
#include "protobuf.h"
#include "protobuf/sa.pb-c.h"
#include "protobuf/timer.pb-c.h"
#include "protobuf/vma.pb-c.h"
#include "protobuf/rlimit.pb-c.h"
#include "protobuf/pagemap.pb-c.h"
#include "protobuf/siginfo.pb-c.h"
#include "asm/restore.h"
static struct pstree_item *current;
static int restore_task_with_children(void *);
static int sigreturn_restore(pid_t pid, CoreEntry *core);
static int prepare_restorer_blob(void);
static int prepare_rlimits(int pid, CoreEntry *core);
static int prepare_posix_timers(int pid, CoreEntry *core);
static int prepare_signals(int pid, CoreEntry *core);
static int root_as_sibling;
static int crtools_prepare_shared(void)
{
if (prepare_shared_fdinfo())
return -1;
/* Connections are unlocked from criu */
if (collect_inet_sockets())
return -1;
if (tty_prep_fds())
return -1;
if (prepare_cgroup())
return -1;
return 0;
}
/*
* Collect order information:
* - reg_file should be before remap, as the latter needs
* to find file_desc objects
* - per-pid collects (mm and fd) should be after remap and
* reg_file since both per-pid ones need to get fdesc-s
* and bump counters on remaps if they exist
*/
static struct collect_image_info *cinfos[] = {
&reg_file_cinfo,
&remap_cinfo,
&nsfile_cinfo,
&pipe_cinfo,
&fifo_cinfo,
&unix_sk_cinfo,
&packet_sk_cinfo,
&netlink_sk_cinfo,
&eventfd_cinfo,
&epoll_tfd_cinfo,
&epoll_cinfo,
&signalfd_cinfo,
&inotify_cinfo,
&inotify_mark_cinfo,
&fanotify_cinfo,
&fanotify_mark_cinfo,
&tty_info_cinfo,
&tty_cinfo,
&tunfile_cinfo,
&ext_file_cinfo,
&timerfd_cinfo,
&file_locks_cinfo,
};
static int root_prepare_shared(void)
{
int ret = 0, i;
struct pstree_item *pi;
pr_info("Preparing info about shared resources\n");
if (prepare_shared_tty())
return -1;
if (prepare_shared_reg_files())
return -1;
if (prepare_shmem_restore())
return -1;
for (i = 0; i < ARRAY_SIZE(cinfos); i++) {
ret = collect_image(cinfos[i]);
if (ret)
return -1;
}
if (collect_pipes())
return -1;
if (collect_fifo())
return -1;
if (collect_unix_sockets())
return -1;
if (tty_verify_active_pairs())
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
return -1;
for_each_pstree_item(pi) {
if (pi->state == TASK_HELPER)
continue;
ret = prepare_mm_pid(pi);
if (ret < 0)
break;
ret = prepare_fd_pid(pi);
if (ret < 0)
break;
ret = prepare_fs_pid(pi);
if (ret < 0)
break;
}
if (ret < 0)
goto err;
mark_pipe_master();
ret = tty_setup_slavery();
if (ret)
goto err;
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
ret = resolve_unix_peers();
if (ret)
goto err;
ret = prepare_restorer_blob();
if (ret)
goto err;
show_saved_shmems();
show_saved_files();
tty: Add checkpoint/restore for unix terminals v6 Usually the PTYs represent a pair of links -- master peer and slave peer. Master peer must be opened before slave. Internally, when kernel creates master peer it also generates a slave interface in a form of /dev/pts/N, where N is that named pty "index". Master/slave connection unambiguously identified by this index. Still, one master can carry multiple slaves -- for example a user opens one master via /dev/ptmx and appropriate /dev/pts/N in sequence. The result will be the following master `- slave 1 `- slave 2 both slave will have same master index but different file descriptors. Still inside the kernel pty parameters are same for both slaves. Thus only one slave parameters should be restored, there is no need to carry all parameters for every slave peer we've found. Not yet addressed problems: - At moment of restore the master peer might be already closed for any reason so to resolve such problem we need to open a fake master peer with proper index and hook a slave on it, then we close master peer. - Need to figure out how to deal with ttys which have some data in buffers not yet flushed, at moment this data will be simply lost during c/r - Need to restore control terminals - Need to fetch tty flags such as exclusive/packet-mode, this can't be done without kernel patching [ avagin@: - ideas on contol terminals restore - overall code redesign and simplification ] v4: - drop redundant pid from dump_chrdev - make sure optional fown is passed on regular ptys - add a comments about zeroifying termios - get rid of redundant empty line in files.c v5 (by avagin@): - complete rework of tty image format, now we have two files -- tty.img and tty-info.img. The idea behind to reduce data being stored. v6 (by xemul@): - packet mode should be set to true in image, until properly fetched from the kernel - verify image data on retrieval Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> CC: Andrey Vagin <avagin@openvz.org> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2012-09-12 20:00:54 +04:00
err:
return ret;
}
/* Map a private vma, if it is not mapped by a parent yet */
static int map_private_vma(pid_t pid, struct vma_area *vma, void **tgt_addr,
struct vma_area **pvma, struct list_head *pvma_list)
{
int ret;
void *addr, *paddr = NULL;
unsigned long nr_pages, size;
struct vma_area *p = *pvma;
if (vma_area_is(vma, VMA_FILE_PRIVATE)) {
ret = get_filemap_fd(vma);
if (ret < 0) {
pr_err("Can't fixup VMA's fd\n");
return -1;
}
vma->e->fd = ret;
}
nr_pages = vma_entry_len(vma->e) / PAGE_SIZE;
vma->page_bitmap = xzalloc(BITS_TO_LONGS(nr_pages) * sizeof(long));
if (vma->page_bitmap == NULL)
return -1;
list_for_each_entry_from(p, pvma_list, list) {
if (p->e->start > vma->e->start)
break;
if (!vma_priv(p->e))
continue;
if (p->e->end != vma->e->end ||
p->e->start != vma->e->start)
continue;
/* Check flags, which must be identical for both vma-s */
if ((vma->e->flags ^ p->e->flags) & (MAP_GROWSDOWN | MAP_ANONYMOUS))
break;
if (!(vma->e->flags & MAP_ANONYMOUS) &&
vma->e->shmid != p->e->shmid)
break;
pr_info("COW 0x%016"PRIx64"-0x%016"PRIx64" 0x%016"PRIx64" vma\n",
vma->e->start, vma->e->end, vma->e->pgoff);
paddr = decode_pointer(p->premmaped_addr);
break;
}
/*
* A grow-down VMA has a guard page, which protect a VMA below it.
* So one more page is mapped here to restore content of the first page
*/
if (vma->e->flags & MAP_GROWSDOWN) {
vma->e->start -= PAGE_SIZE;
if (paddr)
paddr -= PAGE_SIZE;
}
size = vma_entry_len(vma->e);
if (paddr == NULL) {
/*
* The respective memory area was NOT found in the parent.
* Map a new one.
*/
pr_info("Map 0x%016"PRIx64"-0x%016"PRIx64" 0x%016"PRIx64" vma\n",
vma->e->start, vma->e->end, vma->e->pgoff);
addr = mmap(*tgt_addr, size,
vma->e->prot | PROT_WRITE,
vma->e->flags | MAP_FIXED,
vma->e->fd, vma->e->pgoff);
if (addr == MAP_FAILED) {
pr_perror("Unable to map ANON_VMA");
return -1;
}
*pvma = p;
} else {
/*
* This region was found in parent -- remap it to inherit physical
* pages (if any) from it (and COW them later if required).
*/
vma->ppage_bitmap = p->page_bitmap;
addr = mremap(paddr, size, size,
MREMAP_FIXED | MREMAP_MAYMOVE, *tgt_addr);
if (addr != *tgt_addr) {
pr_perror("Unable to remap a private vma");
return -1;
}
*pvma = list_entry(p->list.next, struct vma_area, list);
}
vma->premmaped_addr = (unsigned long) addr;
pr_debug("\tpremap 0x%016"PRIx64"-0x%016"PRIx64" -> %016lx\n",
vma->e->start, vma->e->end, (unsigned long)addr);
if (vma->e->flags & MAP_GROWSDOWN) { /* Skip gurad page */
vma->e->start += PAGE_SIZE;
vma->premmaped_addr += PAGE_SIZE;
}
if (vma_area_is(vma, VMA_FILE_PRIVATE))
close(vma->e->fd);
*tgt_addr += size;
return 0;
}
static int restore_priv_vma_content(pid_t pid)
{
struct vma_area *vma;
int ret = 0;
struct list_head *vmas = &current->rst->vmas.h;
unsigned int nr_restored = 0;
unsigned int nr_shared = 0;
unsigned int nr_droped = 0;
unsigned int nr_compared = 0;
unsigned long va;
struct page_read pr;
vma = list_first_entry(vmas, struct vma_area, list);
ret = open_page_read(pid, &pr,
opts.auto_dedup ? O_RDWR : O_RSTR, false);
if (ret)
return -1;
/*
* Read page contents.
*/
while (1) {
unsigned long off, i, nr_pages;;
struct iovec iov;
ret = pr.get_pagemap(&pr, &iov);
if (ret <= 0)
break;
va = (unsigned long)iov.iov_base;
nr_pages = iov.iov_len / PAGE_SIZE;
for (i = 0; i < nr_pages; i++) {
unsigned char buf[PAGE_SIZE];
void *p;
/*
* The lookup is over *all* possible VMAs
* read from image file.
*/
while (va >= vma->e->end) {
if (vma->list.next == vmas)
goto err_addr;
vma = list_entry(vma->list.next, struct vma_area, list);
}
/*
* Make sure the page address is inside existing VMA
* and the VMA it refers to still private one, since
* there is no guarantee that the data from pagemap is
* valid.
*/
if (va < vma->e->start)
goto err_addr;
else if (unlikely(!vma_priv(vma->e))) {
pr_err("Trying to restore page for non-private VMA\n");
goto err_addr;
}
off = (va - vma->e->start) / PAGE_SIZE;
p = decode_pointer((off) * PAGE_SIZE +
vma->premmaped_addr);
set_bit(off, vma->page_bitmap);
if (vma->ppage_bitmap) { /* inherited vma */
clear_bit(off, vma->ppage_bitmap);
ret = pr.read_page(&pr, va, buf);
if (ret < 0)
goto err_read;
va += PAGE_SIZE;
nr_compared++;
if (memcmp(p, buf, PAGE_SIZE) == 0) {
nr_shared++; /* the page is cowed */
continue;
}
memcpy(p, buf, PAGE_SIZE);
} else {
ret = pr.read_page(&pr, va, p);
if (ret < 0)
goto err_read;
va += PAGE_SIZE;
}
nr_restored++;
}
if (pr.put_pagemap)
pr.put_pagemap(&pr);
}
err_read:
pr.close(&pr);
if (ret < 0)
return ret;
/* Remove pages, which were not shared with a child */
list_for_each_entry(vma, vmas, list) {
unsigned long size, i = 0;
void *addr = decode_pointer(vma->premmaped_addr);
if (vma->ppage_bitmap == NULL)
continue;
size = vma_entry_len(vma->e) / PAGE_SIZE;
while (1) {
/* Find all pages, which are not shared with this child */
i = find_next_bit(vma->ppage_bitmap, size, i);
if ( i >= size)
break;
ret = madvise(addr + PAGE_SIZE * i,
PAGE_SIZE, MADV_DONTNEED);
if (ret < 0) {
pr_perror("madvise failed");
return -1;
}
i++;
nr_droped++;
}
}
cnt_add(CNT_PAGES_COMPARED, nr_compared);
cnt_add(CNT_PAGES_SKIPPED_COW, nr_shared);
cnt_add(CNT_PAGES_RESTORED, nr_restored);
pr_info("nr_restored_pages: %d\n", nr_restored);
pr_info("nr_shared_pages: %d\n", nr_shared);
pr_info("nr_droped_pages: %d\n", nr_droped);
return 0;
err_addr:
pr_err("Page entry address %lx outside of VMA %lx-%lx\n",
va, (long)vma->e->start, (long)vma->e->end);
return -1;
}
static int prepare_mappings(int pid)
{
int ret = 0;
struct vma_area *pvma, *vma;
void *addr;
struct vm_area_list *vmas;
struct list_head *parent_vmas = NULL;
LIST_HEAD(empty);
void *old_premmapped_addr = NULL;
unsigned long old_premmapped_len, pstart = 0;
vmas = &current->rst->vmas;
if (vmas->nr == 0) /* Zombie */
goto out;
/*
* Keep parent vmas at hands to check whether we can "inherit" them.
* See comments in map_private_vma.
*/
if (current->parent)
parent_vmas = &current->parent->rst->vmas.h;
else
parent_vmas = &empty;
/* Reserve a place for mapping private vma-s one by one */
addr = mmap(NULL, vmas->priv_size, PROT_NONE, MAP_PRIVATE | MAP_ANONYMOUS, 0, 0);
if (addr == MAP_FAILED) {
pr_perror("Unable to reserve memory (%lu bytes)", vmas->priv_size);
return -1;
}
old_premmapped_addr = current->rst->premmapped_addr;
old_premmapped_len = current->rst->premmapped_len;
current->rst->premmapped_addr = addr;
current->rst->premmapped_len = vmas->priv_size;
pvma = list_first_entry(parent_vmas, struct vma_area, list);
list_for_each_entry(vma, &vmas->h, list) {
if (pstart > vma->e->start) {
ret = -1;
pr_err("VMA-s are not sorted in the image file\n");
break;
}
pstart = vma->e->start;
if (!vma_priv(vma->e))
continue;
ret = map_private_vma(pid, vma, &addr, &pvma, parent_vmas);
if (ret < 0)
break;
}
if (ret >= 0)
ret = restore_priv_vma_content(pid);
out:
if (old_premmapped_addr &&
munmap(old_premmapped_addr, old_premmapped_len)) {
pr_perror("Unable to unmap %p(%lx)",
old_premmapped_addr, old_premmapped_len);
return -1;
}
return ret;
}
/*
* A gard page must be unmapped after restoring content and
* forking children to restore COW memory.
*/
static int unmap_guard_pages()
{
struct vma_area *vma;
struct list_head *vmas = &current->rst->vmas.h;
list_for_each_entry(vma, vmas, list) {
if (!vma_priv(vma->e))
continue;
if (vma->e->flags & MAP_GROWSDOWN) {
void *addr = decode_pointer(vma->premmaped_addr);
if (munmap(addr - PAGE_SIZE, PAGE_SIZE)) {
pr_perror("Can't unmap guard page");
return -1;
}
}
}
return 0;
}
static int open_vmas(int pid)
{
struct vma_area *vma;
int ret = 0;
struct list_head *vmas = &current->rst->vmas.h;
list_for_each_entry(vma, vmas, list) {
if (!(vma_area_is(vma, VMA_AREA_REGULAR)))
continue;
pr_info("Opening 0x%016"PRIx64"-0x%016"PRIx64" 0x%016"PRIx64" (%x) vma\n",
vma->e->start, vma->e->end,
vma->e->pgoff, vma->e->status);
if (vma_area_is(vma, VMA_AREA_SYSVIPC))
ret = vma->e->shmid;
else if (vma_area_is(vma, VMA_ANON_SHARED))
ret = get_shmem_fd(pid, vma->e);
else if (vma_area_is(vma, VMA_FILE_SHARED))
ret = get_filemap_fd(vma);
else if (vma_area_is(vma, VMA_AREA_SOCKET))
ret = get_socket_fd(pid, vma->e);
else
continue;
if (ret < 0) {
pr_err("Can't fixup fd\n");
break;
}
pr_info("\t`- setting %d as mapping fd\n", ret);
vma->e->fd = ret;
}
return ret < 0 ? -1 : 0;
}
static rt_sigaction_t sigchld_act;
static rt_sigaction_t parent_act[SIGMAX];
static bool sa_inherited(int sig, rt_sigaction_t *sa)
{
rt_sigaction_t *pa;
if (current == root_item)
return false; /* XXX -- inherit from CRIU? */
pa = &parent_act[sig];
return pa->rt_sa_handler == sa->rt_sa_handler &&
pa->rt_sa_flags == sa->rt_sa_flags &&
pa->rt_sa_restorer == sa->rt_sa_restorer &&
pa->rt_sa_mask.sig[0] == sa->rt_sa_mask.sig[0];
}
static int prepare_sigactions(void)
{
int pid = current->pid.virt;
rt_sigaction_t act;
int fd_sigact;
SaEntry *e;
int sig, rst = 0;
int ret = 0;
if (!task_alive(current))
return 0;
pr_info("Restore sigacts for %d\n", pid);
fd_sigact = open_image(CR_FD_SIGACT, O_RSTR, pid);
if (fd_sigact < 0)
return -1;
for (sig = 1; sig <= SIGMAX; sig++) {
if (sig == SIGKILL || sig == SIGSTOP)
continue;
ret = pb_read_one_eof(fd_sigact, &e, PB_SIGACT);
if (ret == 0) {
if (sig != SIGMAX_OLD + 1) { /* backward compatibility */
pr_err("Unexpected EOF %d\n", sig);
ret = -1;
break;
}
pr_warn("This format of sigacts-%d.img is deprecated\n", pid);
break;
}
if (ret < 0)
break;
ASSIGN_TYPED(act.rt_sa_handler, decode_pointer(e->sigaction));
ASSIGN_TYPED(act.rt_sa_flags, e->flags);
ASSIGN_TYPED(act.rt_sa_restorer, decode_pointer(e->restorer));
ASSIGN_TYPED(act.rt_sa_mask.sig[0], e->mask);
sa_entry__free_unpacked(e, NULL);
if (sig == SIGCHLD) {
sigchld_act = act;
continue;
}
if (sa_inherited(sig - 1, &act))
continue;
/*
* A pure syscall is used, because glibc
* sigaction overwrites se_restorer.
*/
ret = sys_sigaction(sig, &act, NULL, sizeof(k_rtsigset_t));
if (ret == -1) {
pr_err("%d: Can't restore sigaction: %m\n", pid);
goto err;
}
parent_act[sig - 1] = act;
rst++;
}
pr_info("Restored %d/%d sigacts\n", rst,
SIGMAX - 3 /* KILL, STOP and CHLD */);
err:
close_safe(&fd_sigact);
return ret;
}
static int pstree_wait_helpers()
{
struct pstree_item *pi;
list_for_each_entry(pi, &current->children, sibling) {
int status, ret;
if (pi->state != TASK_HELPER)
continue;
/* Check, that a helper completed. */
ret = waitpid(pi->pid.virt, &status, 0);
if (ret == -1) {
if (errno == ECHILD)
continue; /* It has been waited in sigchld_handler */
pr_err("waitpid(%d) failed\n", pi->pid.virt);
return -1;
}
if (!WIFEXITED(status) || WEXITSTATUS(status)) {
pr_err("%d exited with non-zero code (%d,%d)\n", pi->pid.virt,
WEXITSTATUS(status), WTERMSIG(status));
return -1;
}
}
return 0;
}
static int open_cores(int pid, CoreEntry *leader_core)
{
int fd = -1, i, tpid;
CoreEntry **cores = NULL;
cores = xmalloc(sizeof(*cores)*current->nr_threads);
if (!cores)
goto err;
for (i = 0; i < current->nr_threads; i++) {
tpid = current->threads[i].virt;
if (tpid == pid)
cores[i] = leader_core;
else {
fd = open_image(CR_FD_CORE, O_RSTR, tpid);
if (fd < 0) {
pr_err("Can't open core data for thread %d\n", tpid);
goto err;
}
if (pb_read_one(fd, &cores[i], PB_CORE) <= 0)
goto err;
close(fd);
}
}
current->core = cores;
return 0;
err:
xfree(cores);
close_safe(&fd);
return -1;
}
static int restore_one_alive_task(int pid, CoreEntry *core)
{
pr_info("Restoring resources\n");
rst_mem_switch_to_private();
if (pstree_wait_helpers())
return -1;
if (prepare_fds(current))
return -1;
if (prepare_file_locks(pid))
return -1;
if (open_vmas(pid))
return -1;
if (open_cores(pid, core))
return -1;
if (prepare_signals(pid, core))
return -1;
if (prepare_posix_timers(pid, core))
return -1;
if (prepare_rlimits(pid, core) < 0)
return -1;
return sigreturn_restore(pid, core);
}
static void zombie_prepare_signals(void)
{
sigset_t blockmask;
int sig;
struct sigaction act;
sigfillset(&blockmask);
sigprocmask(SIG_UNBLOCK, &blockmask, NULL);
memset(&act, 0, sizeof(act));
act.sa_handler = SIG_DFL;
for (sig = 1; sig <= SIGMAX; sig++)
sigaction(sig, &act, NULL);
}
#define SIG_FATAL_MASK ( \
(1 << SIGHUP) |\
(1 << SIGINT) |\
(1 << SIGQUIT) |\
(1 << SIGILL) |\
(1 << SIGTRAP) |\
(1 << SIGABRT) |\
(1 << SIGIOT) |\
(1 << SIGBUS) |\
(1 << SIGFPE) |\
(1 << SIGKILL) |\
(1 << SIGUSR1) |\
(1 << SIGSEGV) |\
(1 << SIGUSR2) |\
(1 << SIGPIPE) |\
(1 << SIGALRM) |\
(1 << SIGTERM) |\
(1 << SIGXCPU) |\
(1 << SIGXFSZ) |\
(1 << SIGVTALRM)|\
(1 << SIGPROF) |\
(1 << SIGPOLL) |\
(1 << SIGIO) |\
(1 << SIGSYS) |\
(1 << SIGUNUSED)|\
(1 << SIGSTKFLT)|\
(1 << SIGPWR) \
)
static inline int sig_fatal(int sig)
{
return (sig > 0) && (sig < SIGMAX) && (SIG_FATAL_MASK & (1UL << sig));
}
struct task_entries *task_entries;
static unsigned long task_entries_pos;
static int restore_one_zombie(int pid, CoreEntry *core)
{
int exit_code = core->tc->exit_code;
pr_info("Restoring zombie with %d code\n", exit_code);
sys_prctl(PR_SET_NAME, (long)(void *)core->tc->comm, 0, 0, 0);
if (task_entries != NULL) {
restore_finish_stage(CR_STATE_RESTORE);
zombie_prepare_signals();
mutex_lock(&task_entries->zombie_lock);
}
if (exit_code & 0x7f) {
int signr;
/* prevent generating core files */
if (prctl(PR_SET_DUMPABLE, 0, 0, 0, 0))
pr_perror("Can't drop the dumpable flag");
signr = exit_code & 0x7F;
if (!sig_fatal(signr)) {
pr_warn("Exit with non fatal signal ignored\n");
signr = SIGABRT;
}
if (kill(pid, signr) < 0)
pr_perror("Can't kill myself, will just exit");
exit_code = 0;
}
exit((exit_code >> 8) & 0x7f);
/* never reached */
BUG_ON(1);
return -1;
}
static int check_core(CoreEntry *core, struct pstree_item *me)
{
int ret = -1;
if (core->mtype != CORE_ENTRY__MARCH) {
pr_err("Core march mismatch %d\n", (int)core->mtype);
goto out;
}
if (!core->tc) {
pr_err("Core task state data missed\n");
goto out;
}
if (core->tc->task_state != TASK_DEAD) {
if (!core->ids && !me->ids) {
pr_err("Core IDS data missed for non-zombie\n");
goto out;
}
if (!CORE_THREAD_ARCH_INFO(core)) {
pr_err("Core info data missed for non-zombie\n");
goto out;
}
}
ret = 0;
out:
return ret;
}
static int restore_one_task(int pid, CoreEntry *core)
{
int ret;
/* No more fork()-s => no more per-pid logs */
if (task_alive(current))
ret = restore_one_alive_task(pid, core);
else if (current->state == TASK_DEAD)
ret = restore_one_zombie(pid, core);
else if (current->state == TASK_HELPER)
ret = 0;
else {
pr_err("Unknown state in code %d\n", (int)core->tc->task_state);
ret = -1;
}
if (core)
core_entry__free_unpacked(core, NULL);
return ret;
}
/* All arguments should be above stack, because it grows down */
struct cr_clone_arg {
char stack[PAGE_SIZE] __attribute__((aligned (8)));
char stack_ptr[0];
struct pstree_item *item;
unsigned long clone_flags;
int fd;
CoreEntry *core;
};
static void maybe_clone_parent(struct pstree_item *item,
struct cr_clone_arg *ca)
{
if (opts.swrk_restore ||
(opts.restore_detach && ca->core->thread_core->pdeath_sig)) {
/*
* This means we're called from lib's criu_restore_child().
* In that case create the root task as the child one to+
* the caller. This is the only way to correctly restore the
* pdeath_sig of the root task. But also looks nice.
*
* Alternatively, if we are --restore-detached, a similar trick is
* needed to correctly restore pdeath_sig and prevent processes from
* dying once restored.
*
* There were a problem in kernel 3.11 -- CLONE_PARENT can't be
* set together with CLONE_NEWPID, which has been solved in further
* versions of the kernels, but we treat 3.11 as a base, so at
* least warn a user about potential problems.
*/
item->rst->clone_flags |= CLONE_PARENT;
root_as_sibling = 1;
if (item->rst->clone_flags & CLONE_NEWPID)
pr_warn("Set CLONE_PARENT | CLONE_NEWPID but it might cause restore problem,"
"because not all kernels support such clone flags combinations!\n");
}
}
static inline int fork_with_pid(struct pstree_item *item)
{
int ret = -1, fd;
struct cr_clone_arg ca;
pid_t pid = item->pid.virt;
if (item->state != TASK_HELPER) {
fd = open_image(CR_FD_CORE, O_RSTR, pid);
if (fd < 0)
return -1;
ret = pb_read_one(fd, &ca.core, PB_CORE);
close(fd);
if (ret < 0)
return -1;
if (check_core(ca.core, item))
return -1;
item->state = ca.core->tc->task_state;
item->rst->cg_set = ca.core->tc->cg_set;
if (item->state == TASK_DEAD)
item->parent->rst->nr_zombies++;
else if (!task_alive(item)) {
pr_err("Unknown task state %d\n", item->state);
return -1;
}
if (unlikely(item == root_item))
maybe_clone_parent(item, &ca);
} else {
/*
* Helper entry will not get moved around and thus
* will live in the parent's cgset.
*/
item->rst->cg_set = item->parent->rst->cg_set;
ca.core = NULL;
}
ret = -1;
ca.item = item;
ca.clone_flags = item->rst->clone_flags;
pr_info("Forking task with %d pid (flags 0x%lx)\n", pid, ca.clone_flags);
if (!(ca.clone_flags & CLONE_NEWPID)) {
char buf[32];
ca.fd = open_proc_rw(PROC_GEN, LAST_PID_PATH);
if (ca.fd < 0) {
pr_perror("%d: Can't open %s", pid, LAST_PID_PATH);
goto err;
}
if (flock(ca.fd, LOCK_EX)) {
close(ca.fd);
pr_perror("%d: Can't lock %s", pid, LAST_PID_PATH);
goto err;
}
snprintf(buf, sizeof(buf), "%d", pid - 1);
if (write_img_buf(ca.fd, buf, strlen(buf)))
goto err_unlock;
} else {
ca.fd = -1;
BUG_ON(pid != INIT_PID);
}
if (ca.clone_flags & CLONE_NEWNET)
/*
* When restoring a net namespace we need to communicate
* with the original (i.e. -- init) one. Thus, prepare for
* that before we leave the existing namespaces.
*/
if (netns_pre_create())
goto err_unlock;
ret = clone(restore_task_with_children, ca.stack_ptr,
ca.clone_flags | SIGCHLD, &ca);
if (ret < 0) {
pr_perror("Can't fork for %d", pid);
goto err_unlock;
}
if (item == root_item)
item->pid.real = ret;
if (opts.pidfile && root_item == item) {
int pid;
pid = ret;
ret = write_pidfile(pid);
if (ret < 0) {
pr_perror("Can't write pidfile");
kill(pid, SIGKILL);
}
}
err_unlock:
if (ca.fd >= 0) {
if (flock(ca.fd, LOCK_UN))
pr_perror("%d: Can't unlock %s", pid, LAST_PID_PATH);
close(ca.fd);
}
err:
if (ca.core)
core_entry__free_unpacked(ca.core, NULL);
return ret;
}
static void sigchld_handler(int signal, siginfo_t *siginfo, void *data)
{
struct pstree_item *pi;
pid_t pid = siginfo->si_pid;
int status;
int exit;
exit = (siginfo->si_code == CLD_EXITED);
status = siginfo->si_status;
/* skip scripts */
if (!current && root_item->pid.real != pid) {
pid = waitpid(root_item->pid.real, &status, WNOHANG);
if (pid <= 0)
return;
exit = WIFEXITED(status);
status = exit ? WEXITSTATUS(status) : WTERMSIG(status);
}
if (!current && siginfo->si_code == CLD_TRAPPED &&
siginfo->si_status == SIGCHLD) {
/* The root task is ptraced. Allow it to handle SIGCHLD */
ptrace(PTRACE_CONT, siginfo->si_pid, 0, SIGCHLD);
return;
}
if (!current || status)
goto err;
while (pid) {
pid = waitpid(-1, &status, WNOHANG);
if (pid <= 0)
return;
exit = WIFEXITED(status);
status = exit ? WEXITSTATUS(status) : WTERMSIG(status);
if (status)
break;
/* Exited (with zero code) helpers are OK */
list_for_each_entry(pi, &current->children, sibling)
if (pi->pid.virt == siginfo->si_pid)
break;
BUG_ON(&pi->sibling == &current->children);
if (pi->state != TASK_HELPER)
break;
}
err:
if (exit)
pr_err("%d exited, status=%d\n", pid, status);
else
pr_err("%d killed by signal %d\n", pid, status);
futex_abort_and_wake(&task_entries->nr_in_progress);
}
static int criu_signals_setup(void)
{
int ret;
struct sigaction act;
sigset_t blockmask;
ret = sigaction(SIGCHLD, NULL, &act);
if (ret < 0) {
pr_perror("sigaction() failed");
return -1;
}
act.sa_flags |= SA_NOCLDSTOP | SA_SIGINFO | SA_RESTART;
if (root_as_sibling)
/*
* Root task will be our sibling. This means, that
* we will not notice when (if) it dies in SIGCHLD
* handler, but we should. To do this -- attach to
* the guy with ptrace (below) and (!) make the kernel
* deliver us the signal when it will get stopped.
* It will in case of e.g. segfault before handling
* the signal.
*/
act.sa_flags &= ~SA_NOCLDSTOP;
act.sa_sigaction = sigchld_handler;
sigemptyset(&act.sa_mask);
sigaddset(&act.sa_mask, SIGCHLD);
ret = sigaction(SIGCHLD, &act, NULL);
if (ret < 0) {
pr_perror("sigaction() failed");
return -1;
}
/*
* The block mask will be restored in sigreturn.
*
* TODO: This code should be removed, when a freezer will be added.
*/
sigfillset(&blockmask);
sigdelset(&blockmask, SIGCHLD);
ret = sigprocmask(SIG_BLOCK, &blockmask, NULL);
if (ret < 0) {
pr_perror("Can't block signals");
return -1;
}
return 0;
}
static void restore_sid(void)
{
pid_t sid;
/*
* SID can only be reset to pid or inherited from parent.
* Thus we restore it right here to let our kids inherit
* one in case they need it.
*
* PGIDs are restored late when all tasks are forked and
* we can call setpgid() on custom values.
*/
if (current->pid.virt == current->sid) {
pr_info("Restoring %d to %d sid\n", current->pid.virt, current->sid);
sid = setsid();
if (sid != current->sid) {
pr_perror("Can't restore sid (%d)", sid);
exit(1);
}
} else {
sid = getsid(getpid());
if (sid != current->sid) {
/* Skip the root task if it's not init */
if (current == root_item && root_item->pid.virt != INIT_PID)
return;
pr_err("Requested sid %d doesn't match inherited %d\n",
current->sid, sid);
exit(1);
}
}
}
static void restore_pgid(void)
{
/*
* Unlike sessions, process groups (a.k.a. pgids) can be joined
* by any task, provided the task with pid == pgid (group leader)
* exists. Thus, in order to restore pgid we must make sure that
* group leader was born and created the group, then join one.
*
* We do this _before_ finishing the forking stage to make sure
* helpers are still with us.
*/
pid_t pgid, my_pgid = current->pgid;
pr_info("Restoring %d to %d pgid\n", current->pid.virt, my_pgid);
pgid = getpgrp();
if (my_pgid == pgid)
return;
if (my_pgid != current->pid.virt) {
struct pstree_item *leader;
/*
* Wait for leader to become such.
* Missing leader means we're going to crtools
* group (-j option).
*/
leader = current->rst->pgrp_leader;
if (leader) {
BUG_ON(my_pgid != leader->pid.virt);
futex_wait_until(&leader->rst->pgrp_set, 1);
}
}
pr_info("\twill call setpgid, mine pgid is %d\n", pgid);
if (setpgid(0, my_pgid) != 0) {
pr_perror("Can't restore pgid (%d/%d->%d)", current->pid.virt, pgid, current->pgid);
exit(1);
}
if (my_pgid == current->pid.virt)
futex_set_and_wake(&current->rst->pgrp_set, 1);
}
static int mount_proc(void)
{
int fd, ret;
char proc_mountpoint[] = "crtools-proc.XXXXXX";
if (mkdtemp(proc_mountpoint) == NULL) {
pr_perror("mkdtemp failed %s", proc_mountpoint);
return -1;
}
pr_info("Mount procfs in %s\n", proc_mountpoint);
if (mount("proc", proc_mountpoint, "proc", MS_MGC_VAL, NULL)) {
pr_perror("mount failed");
rmdir(proc_mountpoint);
return -1;
}
ret = fd = open_detach_mount(proc_mountpoint);
if (fd >= 0) {
ret = set_proc_fd(fd);
close(fd);
}
return ret;
}
/*
* Tasks cannot change sid (session id) arbitrary, but can either
* inherit one from ancestor, or create a new one with id equal to
* their pid. Thus sid-s restore is tied with children creation.
*/
static int create_children_and_session(void)
{
int ret;
struct pstree_item *child;
pr_info("Restoring children in alien sessions:\n");
list_for_each_entry(child, &current->children, sibling) {
if (!restore_before_setsid(child))
continue;
BUG_ON(child->born_sid != -1 && getsid(getpid()) != child->born_sid);
ret = fork_with_pid(child);
if (ret < 0)
return ret;
}
restore_sid();
pr_info("Restoring children in our session:\n");
list_for_each_entry(child, &current->children, sibling) {
if (restore_before_setsid(child))
continue;
ret = fork_with_pid(child);
if (ret < 0)
return ret;
}
return 0;
}
static int restore_task_with_children(void *_arg)
{
struct cr_clone_arg *ca = _arg;
pid_t pid;
int ret;
current = ca->item;
if (current != root_item) {
char buf[PATH_MAX];
int fd;
/* Determine PID in CRIU's namespace */
fd = get_service_fd(CR_PROC_FD_OFF);
if (fd < 0)
goto err;
ret = readlinkat(fd, "self", buf, sizeof(buf) - 1);
if (ret < 0) {
pr_perror("Unable to read the /proc/self link");
goto err;
}
buf[ret] = '\0';
current->pid.real = atoi(buf);
pr_debug("PID: real %d virt %d\n",
current->pid.real, current->pid.virt);
}
if ( !(ca->clone_flags & CLONE_FILES))
close_safe(&ca->fd);
if (current->state != TASK_HELPER) {
ret = clone_service_fd(current->rst->service_fd_id);
if (ret)
goto err;
}
pid = getpid();
if (current->pid.virt != pid) {
pr_err("Pid %d do not match expected %d\n", pid, current->pid.virt);
goto err;
}
ret = log_init_by_pid();
if (ret < 0)
goto err;
/* Restore root task */
if (current->parent == NULL) {
if (restore_finish_stage(CR_STATE_RESTORE_NS) < 0)
goto err;
if (prepare_namespace(current, ca->clone_flags))
goto err_fini_mnt;
/*
* We need non /proc proc mount for restoring pid and mount
* namespaces and do not care for the rest of the cases.
* Thus -- mount proc at custom location for any new namespace
*/
if (mount_proc())
goto err_fini_mnt;
if (close_old_fds(current))
goto err_fini_mnt;
if (root_prepare_shared())
goto err_fini_mnt;
}
if (prepare_mappings(pid))
goto err_fini_mnt;
if (!(ca->clone_flags & CLONE_FILES)) {
ret = close_old_fds(current);
if (ret)
goto err_fini_mnt;
}
/*
* Call this _before_ forking to optimize cgroups
* restore -- if all tasks live in one set of cgroups
* we will only move the root one there, others will
* just have it inherited.
*/
if (prepare_task_cgroup(current) < 0)
goto err_fini_mnt;
if (prepare_sigactions() < 0)
goto err_fini_mnt;
if (create_children_and_session())
goto err_fini_mnt;
/*
* This must be done after forking to allow child
* to get the cgroup fd so it can move into the
* correct /tasks file if it is in a different cgroup
* set than its parent
*/
close_service_fd(CGROUP_YARD);
if (restore_task_mnt_ns(current))
goto err_fini_mnt;
if (unmap_guard_pages())
goto err_fini_mnt;
restore_pgid();
if (restore_finish_stage(CR_STATE_FORKING) < 0)
goto err_fini_mnt;
if (current->parent == NULL && fini_mnt_ns())
goto err;
if (restore_one_task(current->pid.virt, ca->core))
goto err;
return 0;
err_fini_mnt:
if (current->parent == NULL)
fini_mnt_ns();
err:
if (current->parent == NULL)
futex_abort_and_wake(&task_entries->nr_in_progress);
exit(1);
}
static inline int stage_participants(int next_stage)
{
switch (next_stage) {
case CR_STATE_FAIL:
return 0;
case CR_STATE_RESTORE_NS:
return 1;
case CR_STATE_FORKING:
return task_entries->nr_tasks + task_entries->nr_helpers;
case CR_STATE_RESTORE:
case CR_STATE_RESTORE_SIGCHLD:
return task_entries->nr_threads;
case CR_STATE_RESTORE_CREDS:
return task_entries->nr_threads;
}
BUG();
return -1;
}
static int restore_wait_inprogress_tasks()
{
int ret;
futex_t *np = &task_entries->nr_in_progress;
futex_wait_while_gt(np, 0);
ret = (int)futex_get(np);
if (ret < 0)
return ret;
return 0;
}
static void __restore_switch_stage(int next_stage)
{
futex_set(&task_entries->nr_in_progress,
stage_participants(next_stage));
futex_set_and_wake(&task_entries->start, next_stage);
}
static int restore_switch_stage(int next_stage)
{
__restore_switch_stage(next_stage);
return restore_wait_inprogress_tasks();
}
static int attach_to_tasks(bool root_seized)
{
struct pstree_item *item;
for_each_pstree_item(item) {
pid_t pid = item->pid.real;
int status, i;
if (!task_alive(item))
continue;
if (parse_threads(item->pid.real, &item->threads, &item->nr_threads))
return -1;
for (i = 0; i < item->nr_threads; i++) {
pid = item->threads[i].real;
if (item != root_item || !root_seized) {
if (ptrace(PTRACE_ATTACH, pid, 0, 0)) {
pr_perror("Can't attach to %d", pid);
return -1;
}
} else {
/*
* Root item is SEIZE-d, so we only need
* to stop one (INTERRUPT) to make wait4
* and SYSCALL below work.
*/
if (ptrace(PTRACE_INTERRUPT, pid, 0, 0)) {
pr_perror("Can't interrupt task");
return -1;
}
}
if (wait4(pid, &status, __WALL, NULL) != pid) {
pr_perror("waitpid() failed");
return -1;
}
if (ptrace(PTRACE_SYSCALL, pid, NULL, NULL)) {
pr_perror("Unable to start %d", pid);
return -1;
}
}
}
return 0;
}
static void finalize_restore(int status)
{
struct pstree_item *item;
for_each_pstree_item(item) {
pid_t pid = item->pid.real;
struct parasite_ctl *ctl;
int i;
if (!task_alive(item))
continue;
if (status < 0)
goto detach;
/* Unmap the restorer blob */
ctl = parasite_prep_ctl(pid, NULL);
if (ctl == NULL)
goto detach;
parasite_unmap(ctl, (unsigned long) item->rst->munmap_restorer);
xfree(ctl);
if (item->state == TASK_STOPPED)
kill(item->pid.real, SIGSTOP);
detach:
for (i = 0; i < item->nr_threads; i++) {
pid = item->threads[i].real;
if (pid < 0) {
BUG_ON(status >= 0);
break;
}
if (ptrace(PTRACE_DETACH, pid, NULL, 0))
pr_perror("Unable to execute %d", pid);
}
}
}
static void ignore_kids(void)
{
struct sigaction sa = { .sa_handler = SIG_DFL };
if (sigaction(SIGCHLD, &sa, NULL) < 0)
pr_perror("Restoring CHLD sigaction failed");
}
static int restore_root_task(struct pstree_item *init)
{
int ret, fd;
fd = open("/proc", O_DIRECTORY | O_RDONLY);
if (fd < 0) {
pr_perror("Unable to open /proc");
return -1;
}
ret = install_service_fd(CR_PROC_FD_OFF, fd);
close(fd);
if (ret < 0)
return -1;
/*
* FIXME -- currently we assume that all the tasks live
* in the same set of namespaces. This is done to debug
* the ns contents dumping/restoring. Need to revisit
* this later.
*/
if (init->pid.virt == INIT_PID) {
if (!(root_ns_mask & CLONE_NEWPID)) {
pr_err("This process tree can only be restored "
"in a new pid namespace.\n"
"criu should be re-executed with the "
"\"--namespace pid\" option.\n");
return -1;
}
} else if (root_ns_mask & CLONE_NEWPID) {
pr_err("Can't restore pid namespace without the process init\n");
return -1;
}
futex_set(&task_entries->nr_in_progress,
stage_participants(CR_STATE_RESTORE_NS));
ret = fork_with_pid(init);
if (ret < 0)
return -1;
if (root_as_sibling) {
if (ptrace(PTRACE_SEIZE, init->pid.real, 0, 0)) {
pr_perror("Can't attach to init");
goto out;
}
}
pr_info("Wait until namespaces are created\n");
ret = restore_wait_inprogress_tasks();
if (ret)
goto out;
ret = run_scripts("setup-namespaces");
if (ret)
goto out;
timing_start(TIME_FORK);
ret = restore_switch_stage(CR_STATE_FORKING);
if (ret < 0)
goto out;
timing_stop(TIME_FORK);
ret = restore_switch_stage(CR_STATE_RESTORE);
if (ret < 0)
goto out_kill;
ret = restore_switch_stage(CR_STATE_RESTORE_SIGCHLD);
if (ret < 0)
goto out_kill;
ret = run_scripts("post-restore");
if (ret != 0) {
pr_err("Aborting restore due to script ret code %d\n", ret);
timing_stop(TIME_RESTORE);
write_stats(RESTORE_STATS);
goto out_kill;
}
/* Unlock network before disabling repair mode on sockets */
network_unlock();
/*
* Stop getting sigchld, after we resume the tasks they
* may start to exit poking criu in vain.
*/
ignore_kids();
/*
* -------------------------------------------------------------
* Below this line nothing can fail, because network is unlocked
*/
ret = restore_switch_stage(CR_STATE_RESTORE_CREDS);
BUG_ON(ret);
timing_stop(TIME_RESTORE);
ret = attach_to_tasks(root_as_sibling);
pr_info("Restore finished successfully. Resuming tasks.\n");
futex_set_and_wake(&task_entries->start, CR_STATE_COMPLETE);
if (ret == 0)
ret = parasite_stop_on_syscall(task_entries->nr_threads, __NR_rt_sigreturn);
/*
* finalize_restore() always detaches from processes and
* they continue run through sigreturn.
*/
finalize_restore(ret);
write_stats(RESTORE_STATS);
criu: Add exec-cmd option (v3) The --exec-cmd option specifies a command that will be execvp()-ed on successful restore. This way the command specified here will become the parent process of the restored process tree. Waiting for the restored processes to finish is responsibility of this command. All service FDs are closed before we call execvp(). Standad output and error of the command are redirected to the log file when we are restoring through the RPC service. This option will be used when restoring LinuX Containers and it seems helpful for perf or other use cases when restored processes must be supervised by a parent. Two directions were researched in order to integrate CRIU and LXC: 1. We tell to CRIU, that after restoring container is should execve() lxc properly explaining to it that there's a new container hanging around. 2. We make LXC set himself as child subreaper, then fork() criu and ask it to detach (-d) from restore container afterwards. Being a subreaper, it should get the container's init into his child list after it. The main reason for choosing the first option is that the second one can't work with the RPC service. If we call restore via the service then criu service will be the top-most task in the hierarchy and will not be able to reparent the restore trees to any other task in the system. Calling execve from service worker sub-task (and daemonizing it) should solve this. Signed-off-by: Deyan Doychev <deyandoichev@gmail.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-03-22 20:14:00 +04:00
if (!opts.restore_detach && !opts.exec_cmd)
wait(NULL);
return 0;
out_kill:
/*
* The processes can be killed only when all of them have been created,
* otherwise an external proccesses can be killed.
*/
if (root_ns_mask & CLONE_NEWPID) {
/* Kill init */
if (root_item->pid.real > 0)
kill(root_item->pid.real, SIGKILL);
} else {
struct pstree_item *pi;
for_each_pstree_item(pi)
if (pi->pid.virt > 0)
kill(pi->pid.virt, SIGKILL);
}
out:
__restore_switch_stage(CR_STATE_FAIL);
pr_err("Restoring FAILED.\n");
return 1;
}
static int prepare_task_entries(void)
{
task_entries_pos = rst_mem_cpos(RM_SHREMAP);
task_entries = rst_mem_alloc(sizeof(*task_entries), RM_SHREMAP);
if (!task_entries) {
pr_perror("Can't map shmem");
return -1;
}
task_entries->nr_threads = 0;
task_entries->nr_tasks = 0;
task_entries->nr_helpers = 0;
futex_set(&task_entries->start, CR_STATE_RESTORE_NS);
mutex_init(&task_entries->zombie_lock);
return 0;
}
int cr_restore_tasks(void)
{
int ret = -1;
if (cr_plugin_init())
return -1;
if (check_img_inventory() < 0)
goto err;
if (init_stats(RESTORE_STATS))
goto err;
if (kerndat_init_rst())
goto err;
timing_start(TIME_RESTORE);
if (cpu_init() < 0)
goto err;
if (vdso_init())
goto err;
if (prepare_task_entries() < 0)
goto err;
if (prepare_pstree() < 0)
goto err;
if (crtools_prepare_shared() < 0)
goto err;
if (criu_signals_setup() < 0)
goto err;
if (restore_root_task(root_item) < 0)
goto err;
ret = prepare_cgroup_properties();
err:
fini_cgroup();
cr_plugin_fini();
return ret;
}
static long restorer_get_vma_hint(pid_t pid, struct list_head *tgt_vma_list,
struct list_head *self_vma_list, long vma_len)
{
struct vma_area *t_vma, *s_vma;
long prev_vma_end = 0;
struct vma_area end_vma;
VmaEntry end_e;
end_vma.e = &end_e;
end_e.start = end_e.end = TASK_SIZE;
prev_vma_end = PAGE_SIZE * 0x10; /* CONFIG_LSM_MMAP_MIN_ADDR=65536 */
s_vma = list_first_entry(self_vma_list, struct vma_area, list);
t_vma = list_first_entry(tgt_vma_list, struct vma_area, list);
while (1) {
if (prev_vma_end + vma_len > s_vma->e->start) {
if (s_vma->list.next == self_vma_list) {
s_vma = &end_vma;
continue;
}
if (s_vma == &end_vma)
break;
if (prev_vma_end < s_vma->e->end)
prev_vma_end = s_vma->e->end;
s_vma = list_entry(s_vma->list.next, struct vma_area, list);
continue;
}
if (prev_vma_end + vma_len > t_vma->e->start) {
if (t_vma->list.next == tgt_vma_list) {
t_vma = &end_vma;
continue;
}
if (t_vma == &end_vma)
break;
if (prev_vma_end < t_vma->e->end)
prev_vma_end = t_vma->e->end;
t_vma = list_entry(t_vma->list.next, struct vma_area, list);
continue;
}
return prev_vma_end;
}
return -1;
}
static inline int timeval_valid(struct timeval *tv)
{
return (tv->tv_sec >= 0) && ((unsigned long)tv->tv_usec < USEC_PER_SEC);
}
static inline int decode_itimer(char *n, ItimerEntry *ie, struct itimerval *val)
{
if (ie->isec == 0 && ie->iusec == 0) {
memzero_p(val);
return 0;
}
val->it_interval.tv_sec = ie->isec;
val->it_interval.tv_usec = ie->iusec;
if (!timeval_valid(&val->it_interval)) {
pr_err("Invalid timer interval\n");
return -1;
}
if (ie->vsec == 0 && ie->vusec == 0) {
/*
* Remaining time was too short. Set it to
* interval to make the timer armed and work.
*/
val->it_value.tv_sec = ie->isec;
val->it_value.tv_usec = ie->iusec;
} else {
val->it_value.tv_sec = ie->vsec;
val->it_value.tv_usec = ie->vusec;
}
if (!timeval_valid(&val->it_value)) {
pr_err("Invalid timer value\n");
return -1;
}
pr_info("Restored %s timer to %ld.%ld -> %ld.%ld\n", n,
val->it_value.tv_sec, val->it_value.tv_usec,
val->it_interval.tv_sec, val->it_interval.tv_usec);
return 0;
}
/*
* Legacy itimers restore from CR_FD_ITIMERS
*/
static int prepare_itimers_from_fd(int pid, struct task_restore_args *args)
{
int fd, ret = -1;
ItimerEntry *ie;
fd = open_image(CR_FD_ITIMERS, O_RSTR, pid);
if (fd < 0)
return fd;
ret = pb_read_one(fd, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("real", ie, &args->itimers[0]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
ret = pb_read_one(fd, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("virt", ie, &args->itimers[1]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
ret = pb_read_one(fd, &ie, PB_ITIMER);
if (ret < 0)
goto out;
ret = decode_itimer("prof", ie, &args->itimers[2]);
itimer_entry__free_unpacked(ie, NULL);
if (ret < 0)
goto out;
out:
close_safe(&fd);
return ret;
}
static int prepare_itimers(int pid, CoreEntry *core, struct task_restore_args *args)
{
int ret = 0;
TaskTimersEntry *tte = core->tc->timers;
if (!tte)
return prepare_itimers_from_fd(pid, args);
ret |= decode_itimer("real", tte->real, &args->itimers[0]);
ret |= decode_itimer("virt", tte->virt, &args->itimers[1]);
ret |= decode_itimer("prof", tte->prof, &args->itimers[2]);
return ret;
}
static inline int timespec_valid(struct timespec *ts)
{
return (ts->tv_sec >= 0) && ((unsigned long)ts->tv_nsec < NSEC_PER_SEC);
}
static inline int decode_posix_timer(PosixTimerEntry *pte,
struct restore_posix_timer *pt)
{
pt->val.it_interval.tv_sec = pte->isec;
pt->val.it_interval.tv_nsec = pte->insec;
if (!timespec_valid(&pt->val.it_interval)) {
pr_err("Invalid timer interval(posix)\n");
return -1;
}
if (pte->vsec == 0 && pte->vnsec == 0) {
// Remaining time was too short. Set it to
// interval to make the timer armed and work.
pt->val.it_value.tv_sec = pte->isec;
pt->val.it_value.tv_nsec = pte->insec;
} else {
pt->val.it_value.tv_sec = pte->vsec;
pt->val.it_value.tv_nsec = pte->vnsec;
}
if (!timespec_valid(&pt->val.it_value)) {
pr_err("Invalid timer value(posix)\n");
return -1;
}
pt->spt.it_id = pte->it_id;
pt->spt.clock_id = pte->clock_id;
pt->spt.si_signo = pte->si_signo;
pt->spt.it_sigev_notify = pte->it_sigev_notify;
pt->spt.sival_ptr = decode_pointer(pte->sival_ptr);
pt->overrun = pte->overrun;
return 0;
}
static int cmp_posix_timer_proc_id(const void *p1, const void *p2)
{
return ((struct restore_posix_timer *)p1)->spt.it_id - ((struct restore_posix_timer *)p2)->spt.it_id;
}
static unsigned long posix_timers_cpos;
static unsigned int posix_timers_nr;
static void sort_posix_timers(void)
{
/*
* This is required for restorer's create_posix_timers(),
* it will probe them one-by-one for the desired ID, since
* kernel doesn't provide another API for timer creation
* with given ID.
*/
if (posix_timers_nr > 0)
qsort(rst_mem_remap_ptr(posix_timers_cpos, RM_PRIVATE),
posix_timers_nr,
sizeof(struct restore_posix_timer),
cmp_posix_timer_proc_id);
}
/*
* Legacy posix timers restoration from CR_FD_POSIX_TIMERS
*/
static int prepare_posix_timers_from_fd(int pid)
{
int fd = -1;
int ret = -1;
struct restore_posix_timer *t;
fd = open_image(CR_FD_POSIX_TIMERS, O_RSTR, pid);
if (fd < 0) {
if (errno == ENOENT) /* backward compatibility */
return 0;
else
return fd;
}
while (1) {
PosixTimerEntry *pte;
ret = pb_read_one_eof(fd, &pte, PB_POSIX_TIMER);
if (ret <= 0)
break;
t = rst_mem_alloc(sizeof(struct restore_posix_timer), RM_PRIVATE);
if (!t)
break;
ret = decode_posix_timer(pte, t);
if (ret < 0)
break;
posix_timer_entry__free_unpacked(pte, NULL);
posix_timers_nr++;
}
close_safe(&fd);
if (!ret)
sort_posix_timers();
return ret;
}
static int prepare_posix_timers(int pid, CoreEntry *core)
{
int i, ret = -1;
TaskTimersEntry *tte = core->tc->timers;
struct restore_posix_timer *t;
posix_timers_cpos = rst_mem_cpos(RM_PRIVATE);
if (!tte)
return prepare_posix_timers_from_fd(pid);
posix_timers_nr = tte->n_posix;
for (i = 0; i < posix_timers_nr; i++) {
t = rst_mem_alloc(sizeof(struct restore_posix_timer), RM_PRIVATE);
if (!t)
goto out;
if (decode_posix_timer(tte->posix[i], t))
goto out;
}
ret = 0;
sort_posix_timers();
out:
return ret;
}
static inline int verify_cap_size(CredsEntry *ce)
{
return ((ce->n_cap_inh == CR_CAP_SIZE) && (ce->n_cap_eff == CR_CAP_SIZE) &&
(ce->n_cap_prm == CR_CAP_SIZE) && (ce->n_cap_bnd == CR_CAP_SIZE));
}
static int prepare_creds(int pid, struct task_restore_args *args)
{
int fd, ret;
CredsEntry *ce;
fd = open_image(CR_FD_CREDS, O_RSTR, pid);
if (fd < 0)
return fd;
ret = pb_read_one(fd, &ce, PB_CREDS);
close_safe(&fd);
if (ret < 0)
return ret;
if (!verify_cap_size(ce)) {
pr_err("Caps size mismatch %d %d %d %d\n",
(int)ce->n_cap_inh, (int)ce->n_cap_eff,
(int)ce->n_cap_prm, (int)ce->n_cap_bnd);
return -1;
}
if (!may_restore(ce))
return -1;
args->creds = *ce;
args->creds.cap_inh = args->cap_inh;
memcpy(args->cap_inh, ce->cap_inh, sizeof(args->cap_inh));
args->creds.cap_eff = args->cap_eff;
memcpy(args->cap_eff, ce->cap_eff, sizeof(args->cap_eff));
args->creds.cap_prm = args->cap_prm;
memcpy(args->cap_prm, ce->cap_prm, sizeof(args->cap_prm));
args->creds.cap_bnd = args->cap_bnd;
memcpy(args->cap_bnd, ce->cap_bnd, sizeof(args->cap_bnd));
/*
* We can set supplementary groups here. This won't affect any
* permission checks for us (we're still root) and will not be
* reset by subsequent creds changes in restorer.
*/
BUILD_BUG_ON(sizeof(*ce->groups) != sizeof(gid_t));
if (setgroups(ce->n_groups, ce->groups) < 0) {
pr_perror("Can't set supplementary groups");
return -1;
}
creds_entry__free_unpacked(ce, NULL);
args->cap_last_cap = kern_last_cap;
/* XXX -- validate creds here? */
return 0;
}
static int prepare_mm(pid_t pid, struct task_restore_args *args)
{
int exe_fd, i, ret = -1;
MmEntry *mm = current->rst->mm;
args->mm = *mm;
args->mm.n_mm_saved_auxv = 0;
args->mm.mm_saved_auxv = NULL;
if (mm->n_mm_saved_auxv > AT_VECTOR_SIZE) {
pr_err("Image corrupted on pid %d\n", pid);
goto out;
}
args->mm_saved_auxv_size = mm->n_mm_saved_auxv*sizeof(auxv_t);
for (i = 0; i < mm->n_mm_saved_auxv; ++i) {
args->mm_saved_auxv[i] = (auxv_t)mm->mm_saved_auxv[i];
}
exe_fd = open_reg_by_id(mm->exe_file_id);
if (exe_fd < 0)
goto out;
args->fd_exe_link = exe_fd;
ret = 0;
out:
return ret;
}
static void *restorer;
static unsigned long restorer_len;
static int prepare_restorer_blob(void)
{
/*
* We map anonymous mapping, not mremap the restorer itself later.
* Otherwise the restorer vma would be tied to criu binary which
* in turn will lead to set-exe-file prctl to fail with EBUSY.
*/
restorer_len = round_up(sizeof(restorer_blob), PAGE_SIZE);
restorer = mmap(NULL, restorer_len,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANON, 0, 0);
if (restorer == MAP_FAILED) {
pr_perror("Can't map restorer code");
return -1;
}
memcpy(restorer, &restorer_blob, sizeof(restorer_blob));
return 0;
}
static int remap_restorer_blob(void *addr)
{
void *mem;
mem = mremap(restorer, restorer_len, restorer_len,
MREMAP_FIXED | MREMAP_MAYMOVE, addr);
if (mem != addr) {
pr_perror("Can't remap restorer blob");
return -1;
}
return 0;
}
static int validate_sched_parm(struct rst_sched_param *sp)
{
if ((sp->nice < -20) || (sp->nice > 19))
return 0;
switch (sp->policy) {
case SCHED_RR:
case SCHED_FIFO:
return ((sp->prio > 0) && (sp->prio < 100));
case SCHED_IDLE:
case SCHED_OTHER:
case SCHED_BATCH:
return sp->prio == 0;
}
return 0;
}
static int prep_sched_info(struct rst_sched_param *sp, ThreadCoreEntry *tc)
{
if (!tc->has_sched_policy) {
sp->policy = SCHED_OTHER;
sp->nice = 0;
return 0;
}
sp->policy = tc->sched_policy;
sp->nice = tc->sched_nice;
sp->prio = tc->sched_prio;
if (!validate_sched_parm(sp)) {
pr_err("Inconsistent sched params received (%d.%d.%d)\n",
sp->policy, sp->nice, sp->prio);
return -1;
}
return 0;
}
static unsigned long decode_rlim(u_int64_t ival)
{
return ival == -1 ? RLIM_INFINITY : ival;
}
static unsigned long rlims_cpos;
static unsigned int rlims_nr;
/*
* Legacy rlimits restore from CR_FD_RLIMIT
*/
static int prepare_rlimits_from_fd(int pid)
{
struct rlimit *r;
int fd, ret;
/*
* Old image -- read from the file.
*/
fd = open_image(CR_FD_RLIMIT, O_RSTR | O_OPT, pid);
if (fd < 0) {
if (fd == -ENOENT) {
pr_info("Skip rlimits for %d\n", pid);
return 0;
}
return -1;
}
while (1) {
RlimitEntry *re;
ret = pb_read_one_eof(fd, &re, PB_RLIMIT);
if (ret <= 0)
break;
r = rst_mem_alloc(sizeof(*r), RM_PRIVATE);
if (!r) {
pr_err("Can't allocate memory for resource %d\n",
rlims_nr);
return -1;
}
r->rlim_cur = decode_rlim(re->cur);
r->rlim_max = decode_rlim(re->max);
if (r->rlim_cur > r->rlim_max) {
pr_err("Can't restore cur > max for %d.%d\n",
pid, rlims_nr);
r->rlim_cur = r->rlim_max;
}
rlimit_entry__free_unpacked(re, NULL);
rlims_nr++;
}
close(fd);
return 0;
}
static int prepare_rlimits(int pid, CoreEntry *core)
{
int i;
TaskRlimitsEntry *rls = core->tc->rlimits;
struct rlimit *r;
rlims_cpos = rst_mem_cpos(RM_PRIVATE);
if (!rls)
return prepare_rlimits_from_fd(pid);
for (i = 0; i < rls->n_rlimits; i++) {
r = rst_mem_alloc(sizeof(*r), RM_PRIVATE);
if (!r) {
pr_err("Can't allocate memory for resource %d\n", i);
return -1;
}
r->rlim_cur = decode_rlim(rls->rlimits[i]->cur);
r->rlim_max = decode_rlim(rls->rlimits[i]->max);
if (r->rlim_cur > r->rlim_max) {
pr_warn("Can't restore cur > max for %d.%d\n", pid, i);
r->rlim_cur = r->rlim_max;
}
}
rlims_nr = rls->n_rlimits;
return 0;
}
static int signal_to_mem(SiginfoEntry *sie)
{
siginfo_t *info, *t;
info = (siginfo_t *) sie->siginfo.data;
t = rst_mem_alloc(sizeof(siginfo_t), RM_PRIVATE);
if (!t)
return -1;
memcpy(t, info, sizeof(*info));
return 0;
}
static int open_signal_image(int type, pid_t pid, unsigned int *nr)
{
int fd, ret;
fd = open_image(type, O_RSTR | O_OPT, pid);
if (fd < 0) {
if (fd == -ENOENT) /* backward compatibility */
return 0;
else
return -1;
}
*nr = 0;
while (1) {
SiginfoEntry *sie;
ret = pb_read_one_eof(fd, &sie, PB_SIGINFO);
if (ret <= 0)
break;
if (sie->siginfo.len != sizeof(siginfo_t)) {
pr_err("Unknown image format");
ret = -1;
break;
}
ret = signal_to_mem(sie);
if (ret)
break;
(*nr)++;
siginfo_entry__free_unpacked(sie, NULL);
}
close(fd);
return ret ? : 0;
}
static int prepare_one_signal_queue(SignalQueueEntry *sqe, unsigned int *nr)
{
int i;
for (i = 0; i < sqe->n_signals; i++)
if (signal_to_mem(sqe->signals[i]))
return -1;
*nr = sqe->n_signals;
return 0;
}
static unsigned long siginfo_cpos;
static unsigned int siginfo_nr, *siginfo_priv_nr;
static int prepare_signals(int pid, CoreEntry *leader_core)
{
int ret = -1, i;
siginfo_cpos = rst_mem_cpos(RM_PRIVATE);
siginfo_priv_nr = xmalloc(sizeof(int) * current->nr_threads);
if (siginfo_priv_nr == NULL)
goto out;
/* Prepare shared signals */
if (!leader_core->tc->signals_s)/*backward compatibility*/
ret = open_signal_image(CR_FD_SIGNAL, pid, &siginfo_nr);
else
ret = prepare_one_signal_queue(leader_core->tc->signals_s, &siginfo_nr);
if (ret < 0)
goto out;
for (i = 0; i < current->nr_threads; i++) {
if (!current->core[i]->thread_core->signals_p)/*backward compatibility*/
ret = open_signal_image(CR_FD_PSIGNAL,
current->threads[i].virt, &siginfo_priv_nr[i]);
else
ret = prepare_one_signal_queue(current->core[i]->thread_core->signals_p,
&siginfo_priv_nr[i]);
if (ret < 0)
goto out;
}
out:
return ret;
}
extern void __gcov_flush(void) __attribute__((weak));
void __gcov_flush(void) {}
static int sigreturn_restore(pid_t pid, CoreEntry *core)
{
void *mem = MAP_FAILED;
void *restore_thread_exec_start;
void *restore_task_exec_start;
long new_sp, exec_mem_hint;
long ret;
long restore_bootstrap_len;
struct task_restore_args *task_args;
struct thread_restore_args *thread_args;
long args_len;
struct vma_area *vma;
unsigned long tgt_vmas;
void *tcp_socks_mem;
unsigned long tcp_socks;
void *timerfd_mem;
unsigned long timerfd_mem_cpos;
#ifdef CONFIG_VDSO
unsigned long vdso_rt_size = 0;
unsigned long vdso_rt_delta = 0;
#endif
struct vm_area_list self_vmas;
struct vm_area_list *vmas = &current->rst->vmas;
int i;
pr_info("Restore via sigreturn\n");
/* pr_info_vma_list(&self_vma_list); */
BUILD_BUG_ON(sizeof(struct task_restore_args) & 1);
BUILD_BUG_ON(sizeof(struct thread_restore_args) & 1);
args_len = round_up(sizeof(*task_args) + sizeof(*thread_args) * current->nr_threads, PAGE_SIZE);
pr_info("%d threads require %ldK of memory\n",
current->nr_threads, KBYTES(args_len));
/*
* Copy VMAs to private rst memory so that it's able to
* walk them and m(un|re)map.
*/
tgt_vmas = rst_mem_cpos(RM_PRIVATE);
list_for_each_entry(vma, &vmas->h, list) {
VmaEntry *vme;
vme = rst_mem_alloc(sizeof(*vme), RM_PRIVATE);
if (!vme)
goto err_nv;
*vme = *vma->e;
if (vma_priv(vma->e))
vma_premmaped_start(vme) = vma->premmaped_addr;
}
/*
* Copy tcp sockets fds to rst memory -- restorer will
* turn repair off before going sigreturn
*/
tcp_socks = rst_mem_cpos(RM_PRIVATE);
tcp_socks_mem = rst_mem_alloc(rst_tcp_socks_len(), RM_PRIVATE);
if (!tcp_socks_mem)
goto err_nv;
memcpy(tcp_socks_mem, rst_tcp_socks, rst_tcp_socks_len());
/*
* Copy timerfd params for restorer args, we need to proceed
* timer setting at the very late.
*/
timerfd_mem_cpos = rst_mem_cpos(RM_PRIVATE);
timerfd_mem = rst_mem_alloc(rst_timerfd_len(), RM_PRIVATE);
if (!timerfd_mem)
goto err_nv;
memcpy(timerfd_mem, rst_timerfd, rst_timerfd_len());
/*
* We're about to search for free VM area and inject the restorer blob
* into it. No irrelevent mmaps/mremaps beyond this point, otherwise
* this unwanted mapping might get overlapped by the restorer.
*/
ret = parse_self_maps_lite(&self_vmas);
if (ret < 0)
goto err;
restore_bootstrap_len = restorer_len + args_len +
rst_mem_remap_size();
#ifdef CONFIG_VDSO
/*
vdso: x86 -- Add handling of vvar zones New kernel 3.16 will have old vDSO zone splitted into the two vmas: one for vdso code itself and second that named vvar for data been referenced from vdso code. Because I can't do 'dump' and 'restore' parts of the code separately (otherwise test would fail) the commit is pretty big one and hard to read so here is detailed explanation what's going on. 1) When start dumping we detect vvar zone by reading /proc/pid/smap and looking up for "[vvar]" token. Note the vvar zone is mapped by a kernel with PF/IO flags so we should not fail here. Also it's assumed that at least for now kernel won't be changed much and [vvar] zone always follows the [vdso] zone, otherwise criu will print error. 2) In previous commits we disabled dumping vvar area contents so the restorer code never try to read vvar data but still we need to map vvar zone thus vma entry remains in image. 3) As with previous vdso format we might have 2 cases a) Dump and restore is happening on same kernel b) Dump and restore are done on different kernels To detect which case we have we parse vdso data from image and find symbols offsets then compare their values with runtime symbols provided us by a kernel. If they match and (!!!) the size of vvar zone is the same -- we simply remap both zones from runtime kernel into the positions dumpee had at checkpoint time. This is that named "inplace" remap (a). If this happens the vdso_proxify() routine drops VMA_AREA_REGULAR from vvar area provided by a caller code and restorer won't try to handle this vma. It looks somehow strange and probably should be reworked but for now I left it as is to minimize the patch. In case of (b) we need to generate a proxy. We do that in same way as we were before just include vvar zone into proxy and save vvar proxy address inside vdso mark injected into vdso area. Thus on subsequent checkpoint we can detect proxy vvar zone and rip it off the list of vmas to handle. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Andrew Vagin <avagin@parallels.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-06-20 19:35:08 +04:00
* Figure out how much memory runtime vdso and vvar will need.
*/
vdso_rt_size = vdso_vma_size(&vdso_sym_rt);
if (vdso_rt_size) {
vdso_rt_delta = ALIGN(restore_bootstrap_len, PAGE_SIZE) - restore_bootstrap_len;
vdso_rt_size += vdso_rt_delta;
vdso: x86 -- Add handling of vvar zones New kernel 3.16 will have old vDSO zone splitted into the two vmas: one for vdso code itself and second that named vvar for data been referenced from vdso code. Because I can't do 'dump' and 'restore' parts of the code separately (otherwise test would fail) the commit is pretty big one and hard to read so here is detailed explanation what's going on. 1) When start dumping we detect vvar zone by reading /proc/pid/smap and looking up for "[vvar]" token. Note the vvar zone is mapped by a kernel with PF/IO flags so we should not fail here. Also it's assumed that at least for now kernel won't be changed much and [vvar] zone always follows the [vdso] zone, otherwise criu will print error. 2) In previous commits we disabled dumping vvar area contents so the restorer code never try to read vvar data but still we need to map vvar zone thus vma entry remains in image. 3) As with previous vdso format we might have 2 cases a) Dump and restore is happening on same kernel b) Dump and restore are done on different kernels To detect which case we have we parse vdso data from image and find symbols offsets then compare their values with runtime symbols provided us by a kernel. If they match and (!!!) the size of vvar zone is the same -- we simply remap both zones from runtime kernel into the positions dumpee had at checkpoint time. This is that named "inplace" remap (a). If this happens the vdso_proxify() routine drops VMA_AREA_REGULAR from vvar area provided by a caller code and restorer won't try to handle this vma. It looks somehow strange and probably should be reworked but for now I left it as is to minimize the patch. In case of (b) we need to generate a proxy. We do that in same way as we were before just include vvar zone into proxy and save vvar proxy address inside vdso mark injected into vdso area. Thus on subsequent checkpoint we can detect proxy vvar zone and rip it off the list of vmas to handle. Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org> Acked-by: Andrew Vagin <avagin@parallels.com> Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2014-06-20 19:35:08 +04:00
if (vvar_vma_size(&vdso_sym_rt))
vdso_rt_size += ALIGN(vvar_vma_size(&vdso_sym_rt), PAGE_SIZE);
}
restore_bootstrap_len += vdso_rt_size;
#endif
/*
* Restorer is a blob (code + args) that will get mapped in some
* place, that should _not_ intersect with both -- current mappings
* and mappings of the task we're restoring here. The subsequent
* call finds the start address for the restorer.
*
* After the start address is found we populate it with the restorer
* parts one by one (some are remap-ed, some are mmap-ed and copied
* or inited from scratch).
*/
exec_mem_hint = restorer_get_vma_hint(pid, &vmas->h, &self_vmas.h,
restore_bootstrap_len);
if (exec_mem_hint == -1) {
pr_err("No suitable area for task_restore bootstrap (%ldK)\n",
restore_bootstrap_len);
goto err;
}
pr_info("Found bootstrap VMA hint at: 0x%lx (needs ~%ldK)\n", exec_mem_hint,
KBYTES(restore_bootstrap_len));
ret = remap_restorer_blob((void *)exec_mem_hint);
if (ret < 0)
goto err;
/*
* Prepare a memory map for restorer. Note a thread space
* might be completely unused so it's here just for convenience.
*/
restore_thread_exec_start = restorer_sym(exec_mem_hint, __export_restore_thread);
restore_task_exec_start = restorer_sym(exec_mem_hint, __export_restore_task);
current->rst->munmap_restorer = restorer_sym(exec_mem_hint, __export_unmap);
exec_mem_hint += restorer_len;
/* VMA we need to run task_restore code */
mem = mmap((void *)exec_mem_hint, args_len,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED, 0, 0);
if (mem != (void *)exec_mem_hint) {
pr_err("Can't mmap section for restore code\n");
goto err;
}
exec_mem_hint -= restorer_len;
memzero(mem, args_len);
task_args = mem;
thread_args = (struct thread_restore_args *)(task_args + 1);
/*
* Get a reference to shared memory area which is
* used to signal if shmem restoration complete
* from low-level restore code.
*
* This shmem area is mapped right after the whole area of
* sigreturn rt code. Note we didn't allocated it before
* but this area is taken into account for 'hint' memory
* address.
*/
mem += args_len;
if (rst_mem_remap(mem))
goto err;
task_args->task_entries = rst_mem_remap_ptr(task_entries_pos, RM_SHREMAP);
task_args->rst_mem = mem;
task_args->rst_mem_size = rst_mem_remap_size();
task_args->bootstrap_start = (void *)exec_mem_hint;
task_args->bootstrap_len = restore_bootstrap_len;
#ifdef CONFIG_VDSO
task_args->vdso_rt_size = vdso_rt_size;
#endif
task_args->premmapped_addr = (unsigned long) current->rst->premmapped_addr;
task_args->premmapped_len = current->rst->premmapped_len;
task_args->shmems = rst_mem_remap_ptr(rst_shmems, RM_SHREMAP);
task_args->nr_shmems = nr_shmems;
task_args->nr_vmas = vmas->nr;
task_args->tgt_vmas = rst_mem_remap_ptr(tgt_vmas, RM_PRIVATE);
task_args->timer_n = posix_timers_nr;
task_args->posix_timers = rst_mem_remap_ptr(posix_timers_cpos, RM_PRIVATE);
task_args->timerfd_n = rst_timerfd_nr;
task_args->timerfd = rst_mem_remap_ptr(timerfd_mem_cpos, RM_PRIVATE);
task_args->siginfo_nr = siginfo_nr;
task_args->siginfo = rst_mem_remap_ptr(siginfo_cpos, RM_PRIVATE);
task_args->tcp_socks_nr = rst_tcp_socks_nr;
task_args->tcp_socks = rst_mem_remap_ptr(tcp_socks, RM_PRIVATE);
/*
* Arguments for task restoration.
*/
BUG_ON(core->mtype != CORE_ENTRY__MARCH);
task_args->logfd = log_get_fd();
task_args->loglevel = log_get_loglevel();
task_args->sigchld_act = sigchld_act;
strncpy(task_args->comm, core->tc->comm, sizeof(task_args->comm));
task_args->nr_rlim = rlims_nr;
if (rlims_nr)
task_args->rlims = rst_mem_remap_ptr(rlims_cpos, RM_PRIVATE);
/*
* Fill up per-thread data.
*/
for (i = 0; i < current->nr_threads; i++) {
CoreEntry *tcore;
struct rt_sigframe *sigframe;
thread_args[i].pid = current->threads[i].virt;
thread_args[i].siginfo_nr = siginfo_priv_nr[i];
thread_args[i].siginfo = rst_mem_remap_ptr(siginfo_cpos, RM_PRIVATE);
thread_args[i].siginfo += siginfo_nr;
siginfo_nr += thread_args[i].siginfo_nr;
/* skip self */
if (thread_args[i].pid == pid) {
task_args->t = thread_args + i;
tcore = core;
} else
tcore = current->core[i];
if ((tcore->tc || tcore->ids) && thread_args[i].pid != pid) {
pr_err("Thread has optional fields present %d\n",
thread_args[i].pid);
ret = -1;
}
if (ret < 0) {
pr_err("Can't read core data for thread %d\n",
thread_args[i].pid);
goto err;
}
thread_args[i].ta = task_args;
thread_args[i].gpregs = *CORE_THREAD_ARCH_INFO(tcore)->gpregs;
thread_args[i].clear_tid_addr = CORE_THREAD_ARCH_INFO(tcore)->clear_tid_addr;
core_get_tls(tcore, &thread_args[i].tls);
if (tcore->thread_core) {
thread_args[i].has_futex = true;
thread_args[i].futex_rla = tcore->thread_core->futex_rla;
thread_args[i].futex_rla_len = tcore->thread_core->futex_rla_len;
thread_args[i].pdeath_sig = tcore->thread_core->pdeath_sig;
if (tcore->thread_core->pdeath_sig > _KNSIG) {
pr_err("Pdeath signal is too big\n");
goto err;
}
ret = prep_sched_info(&thread_args[i].sp, tcore->thread_core);
if (ret)
goto err;
}
sigframe = (struct rt_sigframe *)thread_args[i].mem_zone.rt_sigframe;
if (construct_sigframe(sigframe, sigframe, tcore))
goto err;
if (thread_args[i].pid != pid)
core_entry__free_unpacked(tcore, NULL);
pr_info("Thread %4d stack %8p rt_sigframe %8p\n",
i, thread_args[i].mem_zone.stack,
thread_args[i].mem_zone.rt_sigframe);
}
#ifdef CONFIG_VDSO
/*
* Restorer needs own copy of vdso parameters. Runtime
* vdso must be kept non intersecting with anything else,
* since we need it being accessible even when own
* self-vmas are unmaped.
*/
mem += rst_mem_remap_size();
task_args->vdso_rt_parked_at = (unsigned long)mem + vdso_rt_delta;
task_args->vdso_sym_rt = vdso_sym_rt;
#endif
new_sp = restorer_stack(task_args->t);
ret = prepare_itimers(pid, core, task_args);
if (ret < 0)
goto err;
ret = prepare_creds(pid, task_args);
if (ret < 0)
goto err;
ret = prepare_mm(pid, task_args);
if (ret < 0)
goto err;
/* No longer need it */
core_entry__free_unpacked(core, NULL);
xfree(current->core);
/*
* Open the last_pid syscl early, since restorer (maybe) lives
* in chroot and has no access to "/proc/..." paths.
*/
task_args->fd_last_pid = open_proc_rw(PROC_GEN, LAST_PID_PATH);
if (task_args->fd_last_pid < 0) {
pr_perror("Can't open sys.ns_last_pid");
goto err;
}
/*
* Now prepare run-time data for threads restore.
*/
task_args->nr_threads = current->nr_threads;
task_args->nr_zombies = current->rst->nr_zombies;
task_args->clone_restore_fn = (void *)restore_thread_exec_start;
task_args->thread_args = thread_args;
/*
* Make root and cwd restore _that_ late not to break any
* attempts to open files by paths above (e.g. /proc).
*/
if (restore_fs(current))
goto err;
close_image_dir();
close_proc();
close_service_fd(ROOT_FD_OFF);
__gcov_flush();
pr_info("task_args: %p\n"
"task_args->pid: %d\n"
"task_args->nr_threads: %d\n"
"task_args->clone_restore_fn: %p\n"
"task_args->thread_args: %p\n",
task_args, task_args->t->pid,
task_args->nr_threads,
task_args->clone_restore_fn,
task_args->thread_args);
/*
* An indirect call to task_restore, note it never returns
* and restoring core is extremely destructive.
*/
JUMP_TO_RESTORER_BLOB(new_sp, restore_task_exec_start, task_args);
err:
free_mappings(&self_vmas);
err_nv:
/* Just to be sure */
exit(1);
return -1;
}