2
0
mirror of https://github.com/checkpoint-restore/criu synced 2025-08-22 01:51:51 +00:00
criu/cr-dump.c
Tycho Andersen 5fe3a138df lsm: add support for c/ring LSM profiles
This patch adds support for checkpoint and restore of two linux security
modules (apparmor and selinux). The actual checkpoint or restore code isn't
that interesting, other than that we have to do the LSM restore in the restorer
blob since it may block any number of things that we want to do as part of the
restore process.

I tried originally to get this to work using libraries in the restorer blob,
but I could _not_ get things to work correctly (I assume I was doing something
wrong with all the static linking, you can see my draft attempts here:
https://github.com/tych0/criu/commits/apparmor-using-libraries ). I can try to
resurrect this if it makes more sense, to do it that way, though.

v2: lsm_profile lives in creds.proto instead of the task core, look in a more
    canonical place for selinuxfs and don't try to special case any selinux
    profile names.
v3: only allow unconfined selinux profiles

Signed-off-by: Tycho Andersen <tycho.andersen@canonical.com>
Signed-off-by: Pavel Emelyanov <xemul@parallels.com>
2015-05-08 15:31:05 +03:00

1955 lines
40 KiB
C

#include <sys/time.h>
#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>
#include <signal.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/vfs.h>
#include <sys/sendfile.h>
#include <sched.h>
#include <sys/resource.h>
#include "protobuf.h"
#include "protobuf/fdinfo.pb-c.h"
#include "protobuf/fs.pb-c.h"
#include "protobuf/mm.pb-c.h"
#include "protobuf/creds.pb-c.h"
#include "protobuf/core.pb-c.h"
#include "protobuf/file-lock.pb-c.h"
#include "protobuf/rlimit.pb-c.h"
#include "protobuf/siginfo.pb-c.h"
#include "asm/types.h"
#include "list.h"
#include "imgset.h"
#include "file-ids.h"
#include "kcmp-ids.h"
#include "compiler.h"
#include "crtools.h"
#include "cr_options.h"
#include "servicefd.h"
#include "syscall.h"
#include "ptrace.h"
#include "util.h"
#include "namespaces.h"
#include "image.h"
#include "proc_parse.h"
#include "parasite.h"
#include "parasite-syscall.h"
#include "files.h"
#include "files-reg.h"
#include "shmem.h"
#include "sk-inet.h"
#include "pstree.h"
#include "mount.h"
#include "tty.h"
#include "net.h"
#include "sk-packet.h"
#include "cpu.h"
#include "elf.h"
#include "cgroup.h"
#include "file-lock.h"
#include "page-xfer.h"
#include "kerndat.h"
#include "stats.h"
#include "mem.h"
#include "page-pipe.h"
#include "posix-timer.h"
#include "vdso.h"
#include "vma.h"
#include "cr-service.h"
#include "plugin.h"
#include "irmap.h"
#include "sysfs_parse.h"
#include "action-scripts.h"
#include "aio.h"
#include "security.h"
#include "lsm.h"
#include "asm/dump.h"
#define NR_ATTEMPTS 5
static char loc_buf[PAGE_SIZE];
static void close_vma_file(struct vma_area *vma)
{
if (vma->vm_file_fd < 0)
return;
if (vma->e->status & VMA_AREA_SOCKET)
return;
if (vma->file_borrowed)
return;
close(vma->vm_file_fd);
}
void free_mappings(struct vm_area_list *vma_area_list)
{
struct vma_area *vma_area, *p;
list_for_each_entry_safe(vma_area, p, &vma_area_list->h, list) {
close_vma_file(vma_area);
if (!vma_area->file_borrowed)
free(vma_area->vmst);
free(vma_area);
}
INIT_LIST_HEAD(&vma_area_list->h);
vma_area_list->nr = 0;
}
int collect_mappings(pid_t pid, struct vm_area_list *vma_area_list)
{
int ret = -1;
pr_info("\n");
pr_info("Collecting mappings (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
ret = parse_smaps(pid, vma_area_list);
if (ret < 0)
goto err;
pr_info("Collected, longest area occupies %lu pages\n", vma_area_list->longest);
pr_info_vma_list(&vma_area_list->h);
pr_info("----------------------------------------\n");
err:
return ret;
}
static int dump_sched_info(int pid, ThreadCoreEntry *tc)
{
int ret;
struct sched_param sp;
BUILD_BUG_ON(SCHED_OTHER != 0); /* default in proto message */
ret = sched_getscheduler(pid);
if (ret < 0) {
pr_perror("Can't get sched policy for %d", pid);
return -1;
}
pr_info("%d has %d sched policy\n", pid, ret);
tc->has_sched_policy = true;
tc->sched_policy = ret;
if ((ret == SCHED_RR) || (ret == SCHED_FIFO)) {
ret = sched_getparam(pid, &sp);
if (ret < 0) {
pr_perror("Can't get sched param for %d", pid);
return -1;
}
pr_info("\tdumping %d prio for %d\n", sp.sched_priority, pid);
tc->has_sched_prio = true;
tc->sched_prio = sp.sched_priority;
}
/*
* The nice is ignored for RT sched policies, but is stored
* in kernel. Thus we have to take it with us in the image.
*/
errno = 0;
ret = getpriority(PRIO_PROCESS, pid);
if (errno) {
pr_perror("Can't get nice for %d", pid);
return -1;
}
pr_info("\tdumping %d nice for %d\n", ret, pid);
tc->has_sched_nice = true;
tc->sched_nice = ret;
return 0;
}
struct cr_imgset *glob_imgset;
static int collect_fds(pid_t pid, struct parasite_drain_fd *dfds)
{
struct dirent *de;
DIR *fd_dir;
int n;
pr_info("\n");
pr_info("Collecting fds (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
fd_dir = opendir_proc(pid, "fd");
if (!fd_dir)
return -1;
n = 0;
while ((de = readdir(fd_dir))) {
if (dir_dots(de))
continue;
if (n > PARASITE_MAX_FDS - 1)
return -ENOMEM;
dfds->fds[n++] = atoi(de->d_name);
}
dfds->nr_fds = n;
pr_info("Found %d file descriptors\n", n);
pr_info("----------------------------------------\n");
closedir(fd_dir);
return 0;
}
static int fill_fd_params_special(int fd, struct fd_parms *p)
{
*p = FD_PARMS_INIT;
if (fstat(fd, &p->stat) < 0) {
pr_perror("Can't fstat exe link");
return -1;
}
if (get_fd_mntid(fd, &p->mnt_id))
return -1;
return 0;
}
static int dump_task_exe_link(pid_t pid, MmEntry *mm)
{
struct fd_parms params;
int fd, ret = 0;
fd = open_proc(pid, "exe");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &params))
return -1;
if (fd_id_generate_special(&params, &mm->exe_file_id))
ret = dump_one_reg_file(fd, mm->exe_file_id, &params);
close(fd);
return ret;
}
static int dump_task_fs(pid_t pid, struct parasite_dump_misc *misc, struct cr_imgset *imgset)
{
struct fd_parms p;
FsEntry fe = FS_ENTRY__INIT;
int fd, ret;
fe.has_umask = true;
fe.umask = misc->umask;
fd = open_proc(pid, "cwd");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &p))
return -1;
if (fd_id_generate_special(&p, &fe.cwd_id)) {
ret = dump_one_reg_file(fd, fe.cwd_id, &p);
if (ret < 0)
return ret;
}
close(fd);
fd = open_proc(pid, "root");
if (fd < 0)
return -1;
if (fill_fd_params_special(fd, &p))
return -1;
if (fd_id_generate_special(&p, &fe.root_id)) {
ret = dump_one_reg_file(fd, fe.root_id, &p);
if (ret < 0)
return ret;
}
close(fd);
pr_info("Dumping task cwd id %#x root id %#x\n",
fe.cwd_id, fe.root_id);
return pb_write_one(img_from_set(imgset, CR_FD_FS), &fe, PB_FS);
}
static inline u_int64_t encode_rlim(unsigned long val)
{
return val == RLIM_INFINITY ? -1 : val;
}
static int dump_task_rlimits(int pid, TaskRlimitsEntry *rls)
{
int res;
for (res = 0; res <rls->n_rlimits ; res++) {
struct rlimit lim;
if (prlimit(pid, res, NULL, &lim)) {
pr_perror("Can't get rlimit %d", res);
return -1;
}
rls->rlimits[res]->cur = encode_rlim(lim.rlim_cur);
rls->rlimits[res]->max = encode_rlim(lim.rlim_max);
}
return 0;
}
static int dump_filemap(pid_t pid, struct vma_area *vma_area,
const struct cr_imgset *imgset)
{
struct fd_parms p = FD_PARMS_INIT;
VmaEntry *vma = vma_area->e;
int ret = 0;
u32 id;
BUG_ON(!vma_area->vmst);
p.stat = *vma_area->vmst;
p.mnt_id = vma_area->mnt_id;
/*
* AUFS support to compensate for the kernel bug
* exposing branch pathnames in map_files.
*
* If the link found in vma_get_mapfile() pointed
* inside a branch, we should use the pathname
* from root that was saved in vma_area->aufs_rpath.
*/
if (vma_area->aufs_rpath) {
struct fd_link aufs_link;
strcpy(aufs_link.name, vma_area->aufs_rpath);
aufs_link.len = strlen(aufs_link.name);
p.link = &aufs_link;
}
/* Flags will be set during restore in get_filemap_fd() */
if (fd_id_generate_special(&p, &id))
ret = dump_one_reg_file(vma_area->vm_file_fd, id, &p);
vma->shmid = id;
return ret;
}
static int check_sysvipc_map_dump(pid_t pid, VmaEntry *vma)
{
if (root_ns_mask & CLONE_NEWIPC)
return 0;
pr_err("Task %d with SysVIPC shmem map @%"PRIx64" doesn't live in IPC ns\n",
pid, vma->start);
return -1;
}
static int get_task_auxv(pid_t pid, MmEntry *mm)
{
auxv_t mm_saved_auxv[AT_VECTOR_SIZE];
int fd, i, ret;
pr_info("Obtaining task auvx ...\n");
fd = open_proc(pid, "auxv");
if (fd < 0)
return -1;
ret = read(fd, mm_saved_auxv, sizeof(mm_saved_auxv));
if (ret < 0) {
ret = -1;
pr_perror("Error reading %d's auxv", pid);
goto err;
} else {
mm->n_mm_saved_auxv = ret / sizeof(auxv_t);
for (i = 0; i < mm->n_mm_saved_auxv; i++)
mm->mm_saved_auxv[i] = (u64)mm_saved_auxv[i];
}
ret = 0;
err:
close_safe(&fd);
return ret;
}
static int dump_task_mm(pid_t pid, const struct proc_pid_stat *stat,
const struct parasite_dump_misc *misc,
const struct vm_area_list *vma_area_list,
const struct cr_imgset *imgset)
{
MmEntry mme = MM_ENTRY__INIT;
struct vma_area *vma_area;
int ret = -1, i = 0;
pr_info("\n");
pr_info("Dumping mm (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
mme.n_vmas = vma_area_list->nr;
mme.vmas = xmalloc(mme.n_vmas * sizeof(VmaEntry *));
if (!mme.vmas)
goto err;
list_for_each_entry(vma_area, &vma_area_list->h, list) {
VmaEntry *vma = vma_area->e;
pr_info_vma(vma_area);
if (!vma_entry_is(vma, VMA_AREA_REGULAR))
ret = 0;
else if (vma_entry_is(vma, VMA_AREA_SYSVIPC))
ret = check_sysvipc_map_dump(pid, vma);
else if (vma_entry_is(vma, VMA_ANON_SHARED))
ret = add_shmem_area(pid, vma);
else if (vma_entry_is(vma, VMA_FILE_PRIVATE) ||
vma_entry_is(vma, VMA_FILE_SHARED))
ret = dump_filemap(pid, vma_area, imgset);
else if (vma_entry_is(vma, VMA_AREA_SOCKET))
ret = dump_socket_map(vma_area);
else
ret = 0;
if (ret)
goto err;
mme.vmas[i++] = vma;
if (vma_entry_is(vma, VMA_AREA_AIORING)) {
ret = dump_aio_ring(&mme, vma_area);
if (ret)
goto err;
}
}
mme.mm_start_code = stat->start_code;
mme.mm_end_code = stat->end_code;
mme.mm_start_data = stat->start_data;
mme.mm_end_data = stat->end_data;
mme.mm_start_stack = stat->start_stack;
mme.mm_start_brk = stat->start_brk;
mme.mm_arg_start = stat->arg_start;
mme.mm_arg_end = stat->arg_end;
mme.mm_env_start = stat->env_start;
mme.mm_env_end = stat->env_end;
mme.mm_brk = misc->brk;
mme.dumpable = misc->dumpable;
mme.has_dumpable = true;
mme.n_mm_saved_auxv = AT_VECTOR_SIZE;
mme.mm_saved_auxv = xmalloc(pb_repeated_size(&mme, mm_saved_auxv));
if (!mme.mm_saved_auxv)
goto err;
if (get_task_auxv(pid, &mme))
goto err;
if (dump_task_exe_link(pid, &mme))
goto err;
ret = pb_write_one(img_from_set(imgset, CR_FD_MM), &mme, PB_MM);
xfree(mme.mm_saved_auxv);
free_aios(&mme);
err:
return ret;
}
static int dump_task_creds(struct parasite_ctl *ctl,
const struct cr_imgset *fds)
{
CredsEntry ce = CREDS_ENTRY__INIT;
pr_info("\n");
pr_info("Dumping creds for %d)\n", ctl->pid.real);
pr_info("----------------------------------------\n");
if (parasite_dump_creds(ctl, &ce) < 0)
return -1;
if (collect_lsm_profile(ctl->pid.real, &ce) < 0)
return -1;
return pb_write_one(img_from_set(fds, CR_FD_CREDS), &ce, PB_CREDS);
}
static int get_task_futex_robust_list(pid_t pid, ThreadCoreEntry *info)
{
struct robust_list_head *head = NULL;
size_t len = 0;
int ret;
ret = sys_get_robust_list(pid, &head, &len);
if (ret == -ENOSYS) {
/*
* If the kernel says get_robust_list is not implemented, then
* check whether set_robust_list is also not implemented, in
* that case we can assume it is empty, since set_robust_list
* is the only way to populate it. This case is possible when
* "futex_cmpxchg_enabled" is unset in the kernel.
*
* The following system call should always fail, even if it is
* implemented, in which case it will return -EINVAL because
* len should be greater than zero.
*/
if (sys_set_robust_list(NULL, 0) != -ENOSYS)
goto err;
head = NULL;
len = 0;
} else if (ret) {
goto err;
}
info->futex_rla = encode_pointer(head);
info->futex_rla_len = (u32)len;
return 0;
err:
pr_err("Failed obtaining futex robust list on %d\n", pid);
return -1;
}
static int get_task_personality(pid_t pid, u32 *personality)
{
int fd, ret = -1;
pr_info("Obtaining personality ... ");
fd = open_proc(pid, "personality");
if (fd < 0)
goto err;
ret = read(fd, loc_buf, sizeof(loc_buf) - 1);
close(fd);
if (ret >= 0) {
loc_buf[ret] = '\0';
*personality = atoi(loc_buf);
}
err:
return ret;
}
static DECLARE_KCMP_TREE(vm_tree, KCMP_VM);
static DECLARE_KCMP_TREE(fs_tree, KCMP_FS);
static DECLARE_KCMP_TREE(files_tree, KCMP_FILES);
static DECLARE_KCMP_TREE(sighand_tree, KCMP_SIGHAND);
static int dump_task_kobj_ids(struct pstree_item *item)
{
int new;
struct kid_elem elem;
int pid = item->pid.real;
TaskKobjIdsEntry *ids = item->ids;
elem.pid = pid;
elem.idx = 0; /* really 0 for all */
elem.genid = 0; /* FIXME optimize */
new = 0;
ids->vm_id = kid_generate_gen(&vm_tree, &elem, &new);
if (!ids->vm_id || !new) {
pr_err("Can't make VM id for %d\n", pid);
return -1;
}
new = 0;
ids->fs_id = kid_generate_gen(&fs_tree, &elem, &new);
if (!ids->fs_id || !new) {
pr_err("Can't make FS id for %d\n", pid);
return -1;
}
new = 0;
ids->files_id = kid_generate_gen(&files_tree, &elem, &new);
if (!ids->files_id || (!new && !shared_fdtable(item))) {
pr_err("Can't make FILES id for %d\n", pid);
return -1;
}
new = 0;
ids->sighand_id = kid_generate_gen(&sighand_tree, &elem, &new);
if (!ids->sighand_id || !new) {
pr_err("Can't make IO id for %d\n", pid);
return -1;
}
return 0;
}
int get_task_ids(struct pstree_item *item)
{
int ret;
item->ids = xmalloc(sizeof(*item->ids));
if (!item->ids)
goto err;
task_kobj_ids_entry__init(item->ids);
if (item->state != TASK_DEAD) {
ret = dump_task_kobj_ids(item);
if (ret)
goto err_free;
ret = dump_task_ns_ids(item);
if (ret)
goto err_free;
}
return 0;
err_free:
xfree(item->ids);
item->ids = NULL;
err:
return -1;
}
static int dump_task_ids(struct pstree_item *item, const struct cr_imgset *cr_imgset)
{
return pb_write_one(img_from_set(cr_imgset, CR_FD_IDS), item->ids, PB_IDS);
}
int dump_thread_core(int pid, CoreEntry *core, const struct parasite_dump_thread *ti)
{
int ret;
ThreadCoreEntry *tc = core->thread_core;
ret = get_task_futex_robust_list(pid, tc);
if (!ret)
ret = dump_sched_info(pid, tc);
if (!ret) {
core_put_tls(core, ti->tls);
CORE_THREAD_ARCH_INFO(core)->clear_tid_addr = encode_pointer(ti->tid_addr);
BUG_ON(!tc->sas);
copy_sas(tc->sas, &ti->sas);
if (ti->pdeath_sig) {
tc->has_pdeath_sig = true;
tc->pdeath_sig = ti->pdeath_sig;
}
}
return ret;
}
static int dump_task_core_all(struct pstree_item *item,
const struct proc_pid_stat *stat,
const struct parasite_dump_misc *misc,
const struct cr_imgset *cr_imgset)
{
struct cr_img *img;
CoreEntry *core = item->core[0];
pid_t pid = item->pid.real;
int ret = -1;
pr_info("\n");
pr_info("Dumping core (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
ret = get_task_personality(pid, &core->tc->personality);
if (ret < 0)
goto err;
strncpy((char *)core->tc->comm, stat->comm, TASK_COMM_LEN);
core->tc->flags = stat->flags;
core->tc->task_state = item->state;
core->tc->exit_code = 0;
ret = dump_thread_core(pid, core, &misc->ti);
if (ret)
goto err;
ret = dump_task_rlimits(pid, core->tc->rlimits);
if (ret)
goto err;
core->tc->has_cg_set = true;
ret = dump_task_cgroup(item, &core->tc->cg_set);
if (ret)
goto err;
img = img_from_set(cr_imgset, CR_FD_CORE);
ret = pb_write_one(img, core, PB_CORE);
if (ret < 0)
goto err;
err:
pr_info("----------------------------------------\n");
return ret;
}
static int parse_children(pid_t pid, pid_t **_c, int *_n)
{
pid_t *ch = NULL;
int nr = 0;
DIR *dir;
struct dirent *de;
dir = opendir_proc(pid, "task");
if (dir == NULL)
return -1;
while ((de = readdir(dir))) {
int fd, len;
char *pos;
if (dir_dots(de))
continue;
fd = open_proc(pid, "task/%s/children", de->d_name);
if (fd < 0)
goto err;
len = read(fd, loc_buf, sizeof(loc_buf) - 1);
close(fd);
if (len < 0)
goto err;
loc_buf[len] = '\0';
pos = loc_buf;
while (1) {
pid_t val, *tmp;
val = strtol(pos, &pos, 0);
if (!val) {
BUG_ON(*pos != '\0');
break;
}
tmp = xrealloc(ch, (nr + 1) * sizeof(pid_t));
if (!tmp)
goto err;
ch = tmp;
ch[nr] = val;
nr++;
pos++; /* space goes after each pid */
}
}
*_c = ch;
*_n = nr;
closedir(dir);
return 0;
err:
closedir(dir);
xfree(ch);
return -1;
}
static inline bool child_collected(struct pstree_item *i, pid_t pid)
{
struct pstree_item *c;
list_for_each_entry(c, &i->children, sibling)
if (c->pid.real == pid)
return true;
return false;
}
static int collect_task(struct pstree_item *item);
static int collect_children(struct pstree_item *item)
{
pid_t *ch;
int ret, i, nr_children, nr_inprogress;
ret = parse_children(item->pid.real, &ch, &nr_children);
if (ret < 0)
return ret;
nr_inprogress = 0;
for (i = 0; i < nr_children; i++) {
struct pstree_item *c;
pid_t pid = ch[i];
/* Is it already frozen? */
if (child_collected(item, pid))
continue;
nr_inprogress++;
pr_info("Seized task %d, state %d\n", pid, ret);
c = alloc_pstree_item();
if (c == NULL) {
ret = -1;
goto free;
}
ret = seize_task(pid, item->pid.real);
if (ret < 0) {
/*
* Here is a race window between parse_children() and seize(),
* so the task could die for these time.
* Don't worry, will try again on the next attempt. The number
* of attempts is restricted, so it will exit if something
* really wrong.
*/
ret = 0;
xfree(c);
continue;
}
c->pid.real = pid;
c->parent = item;
c->state = ret;
list_add_tail(&c->sibling, &item->children);
/* Here is a recursive call (Depth-first search) */
ret = collect_task(c);
if (ret < 0)
goto free;
}
free:
xfree(ch);
return ret < 0 ? ret : nr_inprogress;
}
static void unseize_task_and_threads(const struct pstree_item *item, int st)
{
int i;
if (item->state == TASK_DEAD)
return;
/*
* The st is the state we want to switch tasks into,
* the item->state is the state task was in when we seized one.
*/
unseize_task(item->pid.real, item->state, st);
for (i = 1; i < item->nr_threads; i++)
ptrace(PTRACE_DETACH, item->threads[i].real, NULL, NULL);
}
static void pstree_switch_state(struct pstree_item *root_item, int st)
{
struct pstree_item *item = root_item;
pr_info("Unfreezing tasks into %d\n", st);
for_each_pstree_item(item)
unseize_task_and_threads(item, st);
}
static pid_t item_ppid(const struct pstree_item *item)
{
item = item->parent;
return item ? item->pid.real : -1;
}
static inline bool thread_collected(struct pstree_item *i, pid_t tid)
{
int t;
if (i->pid.real == tid) /* thread leader is collected as task */
return true;
for (t = 0; t < i->nr_threads; t++)
if (tid == i->threads[t].real)
return true;
return false;
}
static int collect_threads(struct pstree_item *item)
{
struct pid *threads = NULL;
int nr_threads = 0, i = 0, ret, nr_inprogress, nr_stopped = 0;
ret = parse_threads(item->pid.real, &threads, &nr_threads);
if (ret < 0)
goto err;
if ((item->state == TASK_DEAD) && (nr_threads > 1)) {
pr_err("Zombies with threads are not supported\n");
goto err;
}
/* The number of threads can't be less than allready frozen */
item->threads = xrealloc(item->threads, nr_threads * sizeof(struct pid));
if (item->threads == NULL)
return -1;
if (item->nr_threads == 0) {
item->threads[0].real = item->pid.real;
item->nr_threads = 1;
}
nr_inprogress = 0;
for (i = 0; i < nr_threads; i++) {
pid_t pid = threads[i].real;
if (thread_collected(item, pid))
continue;
nr_inprogress++;
pr_info("\tSeizing %d's %d thread\n",
item->pid.real, pid);
ret = seize_task(pid, item_ppid(item));
if (ret < 0) {
/*
* Here is a race window between parse_threads() and seize(),
* so the task could die for these time.
* Don't worry, will try again on the next attempt. The number
* of attempts is restricted, so it will exit if something
* really wrong.
*/
continue;
}
BUG_ON(item->nr_threads + 1 > nr_threads);
item->threads[item->nr_threads].real = pid;
item->nr_threads++;
if (ret == TASK_DEAD) {
pr_err("Zombie thread not supported\n");
goto err;
}
if (ret == TASK_STOPPED) {
nr_stopped++;
}
}
if (nr_stopped && nr_stopped != nr_inprogress) {
pr_err("Individually stopped threads not supported\n");
goto err;
}
xfree(threads);
return nr_inprogress;
err:
xfree(threads);
return -1;
}
static int collect_loop(struct pstree_item *item,
int (*collect)(struct pstree_item *))
{
int attempts = NR_ATTEMPTS, nr_inprogress = 1;
/*
* While we scan the proc and seize the children/threads
* new ones can appear (with clone(CLONE_PARENT) or with
* pthread_create). Thus, after one go, we need to repeat
* the scan-and-freeze again collecting new arrivals. As
* new guys may appear again we do NR_ATTEMPTS passes and
* fail to seize the item if new tasks/threads still
* appear.
*/
while (nr_inprogress > 0 && attempts) {
attempts--;
nr_inprogress = collect(item);
}
/*
* We may fail to collect items or run out of attempts.
* In the former case nr_inprogress will be negative, in
* the latter -- positive. Thus it's enough just to check
* for "no more new stuff" and say "we're OK" if so.
*/
return (nr_inprogress == 0) ? 0 : -1;
}
static int collect_task(struct pstree_item *item)
{
int ret;
ret = collect_loop(item, collect_threads);
if (ret < 0)
goto err_close;
/* Depth-first search (DFS) is used for traversing a process tree. */
ret = collect_loop(item, collect_children);
if (ret < 0)
goto err_close;
if ((item->state == TASK_DEAD) && !list_empty(&item->children)) {
pr_err("Zombie with children?! O_o Run, run, run!\n");
goto err_close;
}
if (pstree_alloc_cores(item))
goto err_close;
pr_info("Collected %d in %d state\n", item->pid.real, item->state);
return 0;
err_close:
close_pid_proc();
return -1;
}
static int collect_pstree_ids_predump(void)
{
struct pstree_item *item;
struct {
struct pstree_item i;
struct dmp_info d;
} crt = { };
/*
* This thing is normally done inside
* write_img_inventory().
*/
crt.i.state = TASK_ALIVE;
crt.i.pid.real = getpid();
if (predump_task_ns_ids(&crt.i))
return -1;
for_each_pstree_item(item) {
if (item->state == TASK_DEAD)
continue;
if (predump_task_ns_ids(item))
return -1;
}
return 0;
}
int collect_pstree_ids(void)
{
struct pstree_item *item;
for_each_pstree_item(item)
if (get_task_ids(item))
return -1;
return 0;
}
static int collect_pstree(pid_t pid)
{
int ret;
timing_start(TIME_FREEZING);
root_item = alloc_pstree_item();
if (root_item == NULL)
return -1;
root_item->pid.real = pid;
ret = seize_task(pid, -1);
if (ret < 0)
goto err;
pr_info("Seized task %d, state %d\n", pid, ret);
root_item->state = ret;
ret = collect_task(root_item);
if (ret < 0)
goto err;
timing_stop(TIME_FREEZING);
timing_start(TIME_FROZEN);
return 0;
err:
pstree_switch_state(root_item, TASK_ALIVE);
return -1;
}
static int collect_file_locks(void)
{
return parse_file_locks();
}
static int dump_task_thread(struct parasite_ctl *parasite_ctl,
const struct pstree_item *item, int id)
{
struct pid *tid = &item->threads[id];
CoreEntry *core = item->core[id];
pid_t pid = tid->real;
int ret = -1;
struct cr_img *img;
pr_info("\n");
pr_info("Dumping core for thread (pid: %d)\n", pid);
pr_info("----------------------------------------\n");
ret = parasite_dump_thread_seized(parasite_ctl, id, tid, core);
if (ret) {
pr_err("Can't dump thread for pid %d\n", pid);
goto err;
}
img = open_image(CR_FD_CORE, O_DUMP, tid->virt);
if (!img)
goto err;
ret = pb_write_one(img, core, PB_CORE);
close_image(img);
err:
pr_info("----------------------------------------\n");
return ret;
}
static int dump_one_zombie(const struct pstree_item *item,
const struct proc_pid_stat *pps)
{
CoreEntry *core;
int ret = -1;
struct cr_img *img;
core = core_entry_alloc(0, 1);
if (!core)
return -1;
strncpy((char *)core->tc->comm, pps->comm, TASK_COMM_LEN);
core->tc->task_state = TASK_DEAD;
core->tc->exit_code = pps->exit_code;
img = open_image(CR_FD_CORE, O_DUMP, item->pid.virt);
if (!img)
goto err;
ret = pb_write_one(img, core, PB_CORE);
close_image(img);
err:
core_entry_free(core);
return ret;
}
#define SI_BATCH 32
static int dump_signal_queue(pid_t tid, SignalQueueEntry **sqe, bool group)
{
struct ptrace_peeksiginfo_args arg;
int ret;
SignalQueueEntry *queue = NULL;
pr_debug("Dump %s signals of %d\n", group ? "shared" : "private", tid);
arg.nr = SI_BATCH;
arg.flags = 0;
if (group)
arg.flags |= PTRACE_PEEKSIGINFO_SHARED;
arg.off = 0;
queue = xmalloc(sizeof(*queue));
if (!queue)
return -1;
signal_queue_entry__init(queue);
while (1) {
int nr, si_pos;
siginfo_t *si;
si = xmalloc(SI_BATCH * sizeof(*si));
if (!si) {
ret = -1;
break;
}
nr = ret = ptrace(PTRACE_PEEKSIGINFO, tid, &arg, si);
if (ret == 0)
break; /* Finished */
if (ret < 0) {
if (errno == EIO) {
pr_warn("ptrace doesn't support PTRACE_PEEKSIGINFO\n");
ret = 0;
} else
pr_perror("ptrace");
break;
}
queue->n_signals += nr;
queue->signals = xrealloc(queue->signals, sizeof(*queue->signals) * queue->n_signals);
if (!queue->signals) {
ret = -1;
break;
}
for (si_pos = queue->n_signals - nr;
si_pos < queue->n_signals; si_pos++) {
SiginfoEntry *se;
se = xmalloc(sizeof(*se));
if (!se) {
ret = -1;
break;
}
siginfo_entry__init(se);
se->siginfo.len = sizeof(siginfo_t);
se->siginfo.data = (void *)si++; /* XXX we don't free cores, but when
* we will, this would cause problems
*/
queue->signals[si_pos] = se;
}
if (ret < 0)
break;
arg.off += nr;
}
*sqe = queue;
return ret;
}
static int dump_task_signals(pid_t pid, struct pstree_item *item)
{
int i, ret;
/* Dump private signals for each thread */
for (i = 0; i < item->nr_threads; i++) {
ret = dump_signal_queue(item->threads[i].real, &item->core[i]->thread_core->signals_p, false);
if (ret) {
pr_err("Can't dump private signals for thread %d\n", item->threads[i].real);
return -1;
}
}
/* Dump shared signals */
ret = dump_signal_queue(pid, &item->core[0]->tc->signals_s, true);
if (ret) {
pr_err("Can't dump shared signals (pid: %d)\n", pid);
return -1;
}
return 0;
}
static struct proc_pid_stat pps_buf;
static int dump_task_threads(struct parasite_ctl *parasite_ctl,
const struct pstree_item *item)
{
int i;
for (i = 0; i < item->nr_threads; i++) {
/* Leader is already dumped */
if (item->pid.real == item->threads[i].real) {
item->threads[i].virt = item->pid.virt;
continue;
}
if (dump_task_thread(parasite_ctl, item, i))
return -1;
}
return 0;
}
/*
* What this routine does is just reads pid-s of dead
* tasks in item's children list from item's ns proc.
*
* It does *not* find wihch real pid corresponds to
* which virtual one, but it's not required -- all we
* need to dump for zombie can be found in the same
* ns proc.
*/
static int fill_zombies_pids(struct pstree_item *item)
{
struct pstree_item *child;
int i, nr;
pid_t *ch;
/*
* Pids read here are virtual -- caller has set up
* the proc of target pid namespace.
*/
if (parse_children(item->pid.virt, &ch, &nr) < 0)
return -1;
/*
* Step 1 -- filter our ch's pid of alive tasks
*/
list_for_each_entry(child, &item->children, sibling) {
if (child->pid.virt < 0)
continue;
for (i = 0; i < nr; i++) {
if (ch[i] == child->pid.virt) {
ch[i] = -1;
break;
}
}
}
/*
* Step 2 -- assign remaining pids from ch on
* children's items in arbitrary order. The caller
* will then re-read everything needed to dump
* zombies using newly obtained virtual pids.
*/
i = 0;
list_for_each_entry(child, &item->children, sibling) {
if (child->pid.virt > 0)
continue;
for (; i < nr; i++) {
if (ch[i] < 0)
continue;
child->pid.virt = ch[i];
ch[i] = -1;
break;
}
BUG_ON(i == nr);
}
xfree(ch);
return 0;
}
static int dump_zombies(void)
{
struct pstree_item *item;
int ret = -1;
int pidns = root_ns_mask & CLONE_NEWPID;
if (pidns && set_proc_fd(get_service_fd(CR_PROC_FD_OFF)))
return -1;
/*
* We dump zombies separately becase for pid-ns case
* we'd have to resolve their pids w/o parasite via
* target ns' proc.
*/
for_each_pstree_item(item) {
if (item->state != TASK_DEAD)
continue;
if (item->pid.virt < 0) {
if (!pidns)
item->pid.virt = item->pid.real;
else if (root_item == item) {
pr_err("A root task is dead\n");
goto err;
} else if (fill_zombies_pids(item->parent))
goto err;
}
pr_info("Obtaining zombie stat ... ");
if (parse_pid_stat(item->pid.virt, &pps_buf) < 0)
goto err;
item->sid = pps_buf.sid;
item->pgid = pps_buf.pgid;
BUG_ON(!list_empty(&item->children));
if (dump_one_zombie(item, &pps_buf) < 0)
goto err;
}
ret = 0;
err:
if (pidns)
close_proc();
return ret;
}
static int pre_dump_one_task(struct pstree_item *item, struct list_head *ctls)
{
pid_t pid = item->pid.real;
struct vm_area_list vmas;
struct parasite_ctl *parasite_ctl;
int ret = -1;
struct parasite_dump_misc misc;
INIT_LIST_HEAD(&vmas.h);
vmas.nr = 0;
pr_info("========================================\n");
pr_info("Pre-dumping task (pid: %d)\n", pid);
pr_info("========================================\n");
if (item->state == TASK_STOPPED) {
pr_warn("Stopped tasks are not supported\n");
return 0;
}
if (item->state == TASK_DEAD)
return 0;
ret = collect_mappings(pid, &vmas);
if (ret) {
pr_err("Collect mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
ret = -1;
parasite_ctl = parasite_infect_seized(pid, item, &vmas);
if (!parasite_ctl) {
pr_err("Can't infect (pid: %d) with parasite\n", pid);
goto err_free;
}
ret = parasite_fixup_vdso(parasite_ctl, pid, &vmas);
if (ret) {
pr_err("Can't fixup vdso VMAs (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_dump_misc_seized(parasite_ctl, &misc);
if (ret) {
pr_err("Can't dump misc (pid: %d)\n", pid);
goto err_cure;
}
ret = predump_task_files(pid);
if (ret) {
pr_err("Pre-dumping files failed (pid: %d)\n", pid);
goto err_cure;
}
parasite_ctl->pid.virt = item->pid.virt = misc.pid;
ret = parasite_dump_pages_seized(parasite_ctl, &vmas, &parasite_ctl->mem_pp);
if (ret)
goto err_cure;
if (parasite_cure_remote(parasite_ctl))
pr_err("Can't cure (pid: %d) from parasite\n", pid);
list_add_tail(&parasite_ctl->pre_list, ctls);
err_free:
free_mappings(&vmas);
err:
return ret;
err_cure:
if (parasite_cure_seized(parasite_ctl))
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err_free;
}
static int dump_one_task(struct pstree_item *item)
{
pid_t pid = item->pid.real;
struct vm_area_list vmas;
struct parasite_ctl *parasite_ctl;
int ret, exit_code = -1;
struct parasite_dump_misc misc;
struct cr_imgset *cr_imgset = NULL;
struct parasite_drain_fd *dfds = NULL;
struct proc_posix_timers_stat proc_args;
INIT_LIST_HEAD(&vmas.h);
vmas.nr = 0;
pr_info("========================================\n");
pr_info("Dumping task (pid: %d)\n", pid);
pr_info("========================================\n");
if (item->state == TASK_DEAD)
/*
* zombies are dumped separately in dump_zombies()
*/
return 0;
pr_info("Obtaining task stat ... ");
ret = parse_pid_stat(pid, &pps_buf);
if (ret < 0)
goto err;
ret = collect_mappings(pid, &vmas);
if (ret) {
pr_err("Collect mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
if (!shared_fdtable(item)) {
dfds = xmalloc(sizeof(*dfds));
if (!dfds)
goto err;
ret = collect_fds(pid, dfds);
if (ret) {
pr_err("Collect fds (pid: %d) failed with %d\n", pid, ret);
goto err;
}
parasite_ensure_args_size(drain_fds_size(dfds));
}
ret = parse_posix_timers(pid, &proc_args);
if (ret < 0) {
pr_err("Can't read posix timers file (pid: %d)\n", pid);
goto err;
}
parasite_ensure_args_size(posix_timers_dump_size(proc_args.timer_n));
ret = dump_task_signals(pid, item);
if (ret) {
pr_err("Dump %d signals failed %d\n", pid, ret);
goto err;
}
parasite_ctl = parasite_infect_seized(pid, item, &vmas);
if (!parasite_ctl) {
pr_err("Can't infect (pid: %d) with parasite\n", pid);
goto err;
}
if (root_ns_mask & CLONE_NEWPID && root_item == item) {
int pfd;
pfd = parasite_get_proc_fd_seized(parasite_ctl);
if (pfd < 0) {
pr_err("Can't get proc fd (pid: %d)\n", pid);
goto err_cure_imgset;
}
if (install_service_fd(CR_PROC_FD_OFF, pfd) < 0)
goto err_cure_imgset;
close(pfd);
}
ret = parasite_fixup_vdso(parasite_ctl, pid, &vmas);
if (ret) {
pr_err("Can't fixup vdso VMAs (pid: %d)\n", pid);
goto err_cure_imgset;
}
ret = parasite_check_aios(parasite_ctl, &vmas); /* FIXME -- merge with above */
if (ret) {
pr_err("Failed to check aio rings (pid: %d)\n", pid);
goto err_cure_imgset;
}
ret = parasite_dump_misc_seized(parasite_ctl, &misc);
if (ret) {
pr_err("Can't dump misc (pid: %d)\n", pid);
goto err_cure_imgset;
}
parasite_ctl->pid.virt = item->pid.virt = misc.pid;
item->sid = misc.sid;
item->pgid = misc.pgid;
pr_info("sid=%d pgid=%d pid=%d\n",
item->sid, item->pgid, item->pid.virt);
if (item->sid == 0) {
pr_err("A session leader of %d(%d) is outside of its pid namespace\n",
item->pid.real, item->pid.virt);
goto err_cure;
}
cr_imgset = cr_task_imgset_open(item->pid.virt, O_DUMP);
if (!cr_imgset)
goto err_cure;
ret = dump_task_ids(item, cr_imgset);
if (ret) {
pr_err("Dump ids (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
if (dfds) {
ret = dump_task_files_seized(parasite_ctl, item, dfds);
if (ret) {
pr_err("Dump files (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
}
ret = parasite_dump_pages_seized(parasite_ctl, &vmas, NULL);
if (ret)
goto err_cure;
ret = parasite_dump_sigacts_seized(parasite_ctl, cr_imgset);
if (ret) {
pr_err("Can't dump sigactions (pid: %d) with parasite\n", pid);
goto err_cure;
}
ret = parasite_dump_itimers_seized(parasite_ctl, item);
if (ret) {
pr_err("Can't dump itimers (pid: %d)\n", pid);
goto err_cure;
}
ret = parasite_dump_posix_timers_seized(&proc_args, parasite_ctl, item);
if (ret) {
pr_err("Can't dump posix timers (pid: %d)\n", pid);
goto err_cure;
}
ret = dump_task_core_all(item, &pps_buf, &misc, cr_imgset);
if (ret) {
pr_err("Dump core (pid: %d) failed with %d\n", pid, ret);
goto err_cure;
}
ret = dump_task_creds(parasite_ctl, cr_imgset);
if (ret) {
pr_err("Dump creds (pid: %d) failed with %d\n", pid, ret);
goto err;
}
ret = parasite_stop_daemon(parasite_ctl);
if (ret) {
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err;
}
ret = dump_task_threads(parasite_ctl, item);
if (ret) {
pr_err("Can't dump threads\n");
goto err;
}
ret = parasite_cure_seized(parasite_ctl);
if (ret) {
pr_err("Can't cure (pid: %d) from parasite\n", pid);
goto err;
}
ret = dump_task_mm(pid, &pps_buf, &misc, &vmas, cr_imgset);
if (ret) {
pr_err("Dump mappings (pid: %d) failed with %d\n", pid, ret);
goto err;
}
ret = dump_task_fs(pid, &misc, cr_imgset);
if (ret) {
pr_err("Dump fs (pid: %d) failed with %d\n", pid, ret);
goto err;
}
close_cr_imgset(&cr_imgset);
exit_code = 0;
err:
close_pid_proc();
free_mappings(&vmas);
xfree(dfds);
return exit_code;
err_cure:
close_cr_imgset(&cr_imgset);
err_cure_imgset:
parasite_cure_seized(parasite_ctl);
goto err;
}
int cr_pre_dump_tasks(pid_t pid)
{
struct pstree_item *item;
int ret = -1;
LIST_HEAD(ctls);
struct parasite_ctl *ctl, *n;
if (!opts.track_mem) {
pr_info("Enforcing memory tracking for pre-dump.\n");
opts.track_mem = true;
}
if (opts.final_state == TASK_DEAD) {
pr_info("Enforcing tasks run after pre-dump.\n");
opts.final_state = TASK_ALIVE;
}
if (init_stats(DUMP_STATS))
goto err;
if (kerndat_init())
goto err;
if (irmap_load_cache())
goto err;
if (cpu_init())
goto err;
if (vdso_init())
goto err;
if (connect_to_page_server())
goto err;
if (collect_pstree(pid))
goto err;
if (collect_pstree_ids_predump())
goto err;
if (collect_namespaces(false) < 0)
goto err;
for_each_pstree_item(item)
if (pre_dump_one_task(item, &ctls))
goto err;
if (irmap_predump_prep())
goto err;
ret = 0;
err:
pstree_switch_state(root_item,
ret ? TASK_ALIVE : opts.final_state);
free_pstree(root_item);
timing_stop(TIME_FROZEN);
pr_info("Pre-dumping tasks' memory\n");
list_for_each_entry_safe(ctl, n, &ctls, pre_list) {
struct page_xfer xfer;
pr_info("\tPre-dumping %d\n", ctl->pid.virt);
timing_start(TIME_MEMWRITE);
ret = open_page_xfer(&xfer, CR_FD_PAGEMAP, ctl->pid.virt);
if (ret < 0)
break;
ret = page_xfer_dump_pages(&xfer, ctl->mem_pp, 0);
xfer.close(&xfer);
if (ret)
break;
timing_stop(TIME_MEMWRITE);
destroy_page_pipe(ctl->mem_pp);
list_del(&ctl->pre_list);
parasite_cure_local(ctl);
}
if (irmap_predump_run())
ret = -1;
if (disconnect_from_page_server())
ret = -1;
if (bfd_flush_images())
ret = -1;
if (ret)
pr_err("Pre-dumping FAILED.\n");
else {
write_stats(DUMP_STATS);
pr_info("Pre-dumping finished successfully\n");
}
return ret;
}
int cr_dump_tasks(pid_t pid)
{
struct pstree_item *item;
int post_dump_ret = 0;
int ret = -1;
pr_info("========================================\n");
pr_info("Dumping processes (pid: %d)\n", pid);
pr_info("========================================\n");
if (init_stats(DUMP_STATS))
goto err;
if (cr_plugin_init(CR_PLUGIN_STAGE__DUMP))
goto err;
if (kerndat_init())
goto err;
if (irmap_load_cache())
goto err;
if (cpu_init())
goto err;
if (vdso_init())
goto err;
if (parse_cg_info())
goto err;
if (write_img_inventory())
goto err;
if (opts.cpu_cap & (CPU_CAP_CPU | CPU_CAP_INS)) {
if (cpu_dump_cpuinfo())
goto err;
}
if (connect_to_page_server())
goto err;
/*
* The collect_pstree will also stop (PTRACE_SEIZE) the tasks
* thus ensuring that they don't modify anything we collect
* afterwards.
*/
if (collect_pstree(pid))
goto err;
if (collect_pstree_ids())
goto err;
if (network_lock())
goto err;
if (collect_file_locks())
goto err;
if (collect_namespaces(true) < 0)
goto err;
glob_imgset = cr_glob_imgset_open(O_DUMP);
if (!glob_imgset)
goto err;
for_each_pstree_item(item) {
if (dump_one_task(item))
goto err;
}
/* MNT namespaces are dumped after files to save remapped links */
if (dump_mnt_namespaces() < 0)
goto err;
if (dump_file_locks())
goto err;
if (dump_verify_tty_sids())
goto err;
if (dump_zombies())
goto err;
if (dump_pstree(root_item))
goto err;
if (root_ns_mask)
if (dump_namespaces(root_item, root_ns_mask) < 0)
goto err;
ret = dump_cgroups();
if (ret)
goto err;
ret = cr_dump_shmem();
if (ret)
goto err;
ret = fix_external_unix_sockets();
if (ret)
goto err;
ret = tty_verify_active_pairs();
if (ret)
goto err;
fd_id_show_tree();
err:
if (disconnect_from_page_server())
ret = -1;
close_cr_imgset(&glob_imgset);
if (bfd_flush_images())
ret = -1;
cr_plugin_fini(CR_PLUGIN_STAGE__DUMP, ret);
if (!ret) {
/*
* It might be a migration case, where we're asked
* to dump everything, then some script transfer
* image on a new node and we're supposed to kill
* dumpee because it continue running somewhere
* else.
*
* Thus ask user via script if we're to break
* checkpoint.
*/
post_dump_ret = run_scripts(ACT_POST_DUMP);
if (post_dump_ret) {
post_dump_ret = WEXITSTATUS(post_dump_ret);
pr_info("Post dump script passed with %d\n", post_dump_ret);
}
}
/*
* Dump is complete at this stage. To choose what
* to do next we need to consider the following
* scenarios
*
* - error happened during checkpoint: just clean up
* everything and continue execution of the dumpee;
*
* - dump successed but post-dump script returned
* some ret code: same as in previous scenario --
* just clean up everything and continue execution,
* we will return script ret code back to criu caller
* and it's up to a caller what to do with running instance
* of the dumpee -- either kill it, or continue running;
*
* - dump successed but -R option passed, pointing that
* we're asked to continue execution of the dumpee. It's
* assumed that a user will use post-dump script to keep
* consistency of the FS and other resources, we simply
* start rollback procedure and cleanup everyhting.
*/
if (ret || post_dump_ret || opts.final_state == TASK_ALIVE) {
network_unlock();
delete_link_remaps();
}
pstree_switch_state(root_item,
(ret || post_dump_ret) ?
TASK_ALIVE : opts.final_state);
timing_stop(TIME_FROZEN);
free_pstree(root_item);
free_file_locks();
free_link_remaps();
free_aufs_branches();
free_userns_maps();
close_service_fd(CR_PROC_FD_OFF);
if (ret) {
kill_inventory();
pr_err("Dumping FAILED.\n");
} else {
write_stats(DUMP_STATS);
pr_info("Dumping finished successfully\n");
}
return post_dump_ret ? : (ret != 0);
}