mirror of
https://github.com/checkpoint-restore/criu
synced 2025-08-22 01:51:51 +00:00
This patch implements the entire logic to enable the offloading of buffer object content restoration. The goal of this patch is to offload the buffer object content restoration to the main CRIU process so that this restoration can occur in parallel with other restoration logic (mainly the restoration of memory state in the restore blob, which is time-consuming) to speed up the restore phase. The restoration of buffer object content usually takes a significant amount of time for GPU applications, so parallelizing it with other operations can reduce the overall restore time. It has three parts: the first replaces the restoration of buffer objects in the target process by sending a parallel restore command to the main CRIU process; the second implements the POST_FORKING hook in the amdgpu plugin to enable buffer object content restoration in the main CRIU process; the third stops the parallel thread in the RESUME_DEVICES_LATE hook. This optimization only focuses on the single-process situation (common case). In other scenarios, it will turn to the original method. This is achieved with the new `parallel_disabled` flag. Signed-off-by: Yanning Yang <yangyanning@sjtu.edu.cn>
1458 lines
44 KiB
C
1458 lines
44 KiB
C
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <stdlib.h>
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <unistd.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/types.h>
|
|
#include <linux/limits.h>
|
|
|
|
#include <dirent.h>
|
|
#include "common/list.h"
|
|
|
|
#include "xmalloc.h"
|
|
#include "kfd_ioctl.h"
|
|
#include "amdgpu_plugin_util.h"
|
|
#include "amdgpu_plugin_topology.h"
|
|
|
|
#define TOPOLOGY_PATH "/sys/class/kfd/kfd/topology/nodes/"
|
|
#define MAX_PARAMETER_LEN 64
|
|
|
|
/* User override options */
|
|
/* Skip firmware version check */
|
|
bool kfd_fw_version_check = true;
|
|
/* Skip SDMA firmware version check */
|
|
bool kfd_sdma_fw_version_check = true;
|
|
/* Skip caches count check */
|
|
bool kfd_caches_count_check = true;
|
|
/* Skip num gws check */
|
|
bool kfd_num_gws_check = true;
|
|
/* Skip vram size check */
|
|
bool kfd_vram_size_check = true;
|
|
/* Preserve NUMA regions */
|
|
bool kfd_numa_check = true;
|
|
/* Skip capability check */
|
|
bool kfd_capability_check = true;
|
|
|
|
/*
|
|
* During dump, we can use any fd value so fd_next is always -1.
|
|
* During restore, we have to use a fd value that does not conflict with fd values in use by the target restore process.
|
|
* fd_next is initialized as 1 greater than the highest-numbered file descriptor used by the target restore process.
|
|
*/
|
|
int fd_next = -1;
|
|
|
|
int open_drm_render_device(int minor)
|
|
{
|
|
char path[128];
|
|
int fd, ret_fd;
|
|
|
|
if (minor < DRM_FIRST_RENDER_NODE || minor > DRM_LAST_RENDER_NODE) {
|
|
pr_perror("DRM render minor %d out of range [%d, %d]", minor, DRM_FIRST_RENDER_NODE,
|
|
DRM_LAST_RENDER_NODE);
|
|
return -EINVAL;
|
|
}
|
|
|
|
snprintf(path, sizeof(path), "/dev/dri/renderD%d", minor);
|
|
fd = open(path, O_RDWR | O_CLOEXEC);
|
|
if (fd < 0) {
|
|
if (errno != ENOENT && errno != EPERM) {
|
|
pr_err("Failed to open %s: %s\n", path, strerror(errno));
|
|
if (errno == EACCES)
|
|
pr_err("Check user is in \"video\" group\n");
|
|
}
|
|
return -EBADFD;
|
|
}
|
|
|
|
if (fd_next < 0)
|
|
return fd;
|
|
|
|
ret_fd = fcntl(fd, F_DUPFD, fd_next++);
|
|
close(fd);
|
|
|
|
if (ret_fd < 0)
|
|
pr_perror("Failed to duplicate fd for minor:%d (fd_next:%d)", minor, fd_next);
|
|
|
|
return ret_fd;
|
|
}
|
|
|
|
static const char *link_type(uint32_t type)
|
|
{
|
|
switch (type) {
|
|
case TOPO_IOLINK_TYPE_PCIE:
|
|
return "PCIe";
|
|
case TOPO_IOLINK_TYPE_XGMI:
|
|
return "XGMI";
|
|
}
|
|
return "Unsupported";
|
|
}
|
|
|
|
static struct tp_node *p2pgroup_get_node_by_gpu_id(const struct tp_p2pgroup *group, const uint32_t gpu_id)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &group->nodes, listm_p2pgroup) {
|
|
if (node->gpu_id == gpu_id)
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
int node_get_drm_render_device(struct tp_node *node)
|
|
{
|
|
if (node->drm_fd < 0)
|
|
node->drm_fd = open_drm_render_device(node->drm_render_minor);
|
|
|
|
return node->drm_fd;
|
|
}
|
|
|
|
void sys_close_drm_render_devices(struct tp_system *sys)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
if (node->drm_fd >= 0) {
|
|
close(node->drm_fd);
|
|
node->drm_fd = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static struct tp_iolink *node_get_iolink_to_node_id(const struct tp_node *node, const uint32_t type,
|
|
const uint32_t node_id)
|
|
{
|
|
struct tp_iolink *iolink;
|
|
|
|
list_for_each_entry(iolink, &node->iolinks, listm) {
|
|
if (iolink->node_to_id == node_id && iolink->type == type)
|
|
return iolink;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct tp_node *sys_get_node_by_render_minor(const struct tp_system *sys, const int drm_render_minor)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
if (node->drm_render_minor == drm_render_minor)
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct tp_node *sys_get_node_by_index(const struct tp_system *sys, uint32_t index)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
if (NODE_IS_GPU(node) && index-- == 0)
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
struct tp_node *sys_get_node_by_gpu_id(const struct tp_system *sys, const uint32_t gpu_id)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
if (node->gpu_id == gpu_id)
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct tp_node *sys_get_node_by_node_id(const struct tp_system *sys, const uint32_t node_id)
|
|
{
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
if (node->id == node_id)
|
|
return node;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct tp_p2pgroup *sys_get_p2pgroup_with_gpu_id(const struct tp_system *sys, const int type,
|
|
const uint32_t gpu_id)
|
|
{
|
|
struct tp_p2pgroup *p2pgroup;
|
|
|
|
list_for_each_entry(p2pgroup, &sys->xgmi_groups, listm_system) {
|
|
if (p2pgroup->type != type)
|
|
continue;
|
|
|
|
if (p2pgroup_get_node_by_gpu_id(p2pgroup, gpu_id))
|
|
return p2pgroup;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static struct tp_iolink *get_tp_peer_iolink(const struct tp_node *from_node, const struct tp_node *to_node,
|
|
const uint8_t type)
|
|
{
|
|
struct tp_iolink *iolink;
|
|
|
|
list_for_each_entry(iolink, &from_node->iolinks, listm) {
|
|
if (iolink->node_to_id == to_node->id && iolink->type == type)
|
|
return iolink;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool maps_dest_cpu_mapped(const struct device_maps *maps, const uint32_t dest_id)
|
|
{
|
|
struct id_map *id_map;
|
|
|
|
list_for_each_entry(id_map, &maps->cpu_maps, listm) {
|
|
if (id_map->dest == dest_id)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static uint32_t maps_get_dest_cpu(const struct device_maps *maps, const uint32_t src_id)
|
|
{
|
|
struct id_map *id_map;
|
|
|
|
list_for_each_entry(id_map, &maps->cpu_maps, listm) {
|
|
if (id_map->src == src_id)
|
|
return id_map->dest;
|
|
}
|
|
return INVALID_CPU_ID;
|
|
}
|
|
|
|
bool maps_dest_gpu_mapped(const struct device_maps *maps, const uint32_t dest_id)
|
|
{
|
|
struct id_map *id_map;
|
|
|
|
list_for_each_entry(id_map, &maps->gpu_maps, listm) {
|
|
if (id_map->dest == dest_id)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint32_t maps_get_dest_gpu(const struct device_maps *maps, const uint32_t src_id)
|
|
{
|
|
struct id_map *id_map;
|
|
|
|
list_for_each_entry(id_map, &maps->gpu_maps, listm) {
|
|
if (id_map->src == src_id)
|
|
return id_map->dest;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static struct id_map *maps_add_cpu_entry(struct device_maps *maps, const uint32_t src_id, const uint32_t dest_id)
|
|
{
|
|
struct id_map *id_map = xzalloc(sizeof(*id_map));
|
|
|
|
if (!id_map) {
|
|
pr_err("Failed to allocate memory for id_map\n");
|
|
return NULL;
|
|
}
|
|
|
|
id_map->src = src_id;
|
|
id_map->dest = dest_id;
|
|
|
|
list_add_tail(&id_map->listm, &maps->cpu_maps);
|
|
|
|
maps->tail_cpu = &id_map->listm;
|
|
|
|
pr_debug("Added CPU mapping [%02d -> %02d]\n", src_id, dest_id);
|
|
return id_map;
|
|
}
|
|
|
|
struct id_map *maps_add_gpu_entry(struct device_maps *maps, const uint32_t src_id, const uint32_t dest_id)
|
|
{
|
|
struct id_map *id_map = xzalloc(sizeof(*id_map));
|
|
|
|
if (!id_map) {
|
|
pr_err("Failed to allocate memory for id_map\n");
|
|
return NULL;
|
|
}
|
|
|
|
id_map->src = src_id;
|
|
id_map->dest = dest_id;
|
|
|
|
list_add_tail(&id_map->listm, &maps->gpu_maps);
|
|
|
|
maps->tail_gpu = &id_map->listm;
|
|
|
|
pr_debug("Added GPU mapping [0x%04X -> 0x%04X]\n", src_id, dest_id);
|
|
return id_map;
|
|
}
|
|
|
|
static void maps_print(struct device_maps *maps)
|
|
{
|
|
struct id_map *id_map;
|
|
|
|
pr_info("===Maps===============\n");
|
|
list_for_each_entry(id_map, &maps->gpu_maps, listm)
|
|
pr_info("GPU: 0x%04X -> 0x%04X\n", id_map->src, id_map->dest);
|
|
|
|
list_for_each_entry(id_map, &maps->cpu_maps, listm)
|
|
pr_info("CPU: %02d -> %02d\n", id_map->src, id_map->dest);
|
|
pr_info("======================\n");
|
|
}
|
|
|
|
void maps_init(struct device_maps *maps)
|
|
{
|
|
INIT_LIST_HEAD(&maps->cpu_maps);
|
|
INIT_LIST_HEAD(&maps->gpu_maps);
|
|
maps->tail_cpu = 0;
|
|
maps->tail_gpu = 0;
|
|
}
|
|
|
|
void maps_free(struct device_maps *maps)
|
|
{
|
|
while (!list_empty(&maps->cpu_maps)) {
|
|
struct id_map *map = list_first_entry(&maps->cpu_maps, struct id_map, listm);
|
|
|
|
list_del(&map->listm);
|
|
xfree(map);
|
|
}
|
|
while (!list_empty(&maps->gpu_maps)) {
|
|
struct id_map *map = list_first_entry(&maps->gpu_maps, struct id_map, listm);
|
|
|
|
list_del(&map->listm);
|
|
xfree(map);
|
|
}
|
|
}
|
|
|
|
static void maps_pop(struct device_maps *maps, struct device_maps *remove)
|
|
{
|
|
if (remove->tail_cpu)
|
|
list_cut_position(&remove->cpu_maps, &maps->cpu_maps, remove->tail_cpu);
|
|
|
|
if (remove->tail_gpu)
|
|
list_cut_position(&remove->gpu_maps, &maps->gpu_maps, remove->tail_gpu);
|
|
|
|
maps_free(remove);
|
|
}
|
|
|
|
static int maps_push(struct device_maps *maps, struct device_maps *new)
|
|
{
|
|
struct id_map *src_id_map, *dest_id_map;
|
|
|
|
list_for_each_entry(src_id_map, &new->cpu_maps, listm) {
|
|
list_for_each_entry(dest_id_map, &maps->cpu_maps, listm) {
|
|
if (src_id_map->src == dest_id_map->src || src_id_map->dest == dest_id_map->dest) {
|
|
pr_err("CPU mapping already exists src [%02d->%02d] new [%02d->%02d]\n",
|
|
src_id_map->src, src_id_map->dest, dest_id_map->src, dest_id_map->dest);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
list_for_each_entry(src_id_map, &new->gpu_maps, listm) {
|
|
list_for_each_entry(dest_id_map, &maps->gpu_maps, listm) {
|
|
if (src_id_map->src == dest_id_map->src || src_id_map->dest == dest_id_map->dest) {
|
|
pr_err("GPU mapping already exists src [0x%04X -> 0x%04X] new [0x%04X -> 0x%04X]\n",
|
|
src_id_map->src, src_id_map->dest, dest_id_map->src, dest_id_map->dest);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
}
|
|
|
|
list_splice(&new->cpu_maps, &maps->cpu_maps);
|
|
list_splice(&new->gpu_maps, &maps->gpu_maps);
|
|
|
|
return 0;
|
|
}
|
|
|
|
struct tp_iolink *node_add_iolink(struct tp_node *node, uint32_t type, uint32_t node_to_id)
|
|
{
|
|
struct tp_iolink *iolink = xzalloc(sizeof(*iolink));
|
|
|
|
if (!iolink)
|
|
return NULL;
|
|
|
|
iolink->type = type;
|
|
/* iolink->node_to will be filled in topology_determine_iolinks */
|
|
iolink->node_to_id = node_to_id;
|
|
iolink->node_from = node;
|
|
|
|
list_add_tail(&iolink->listm, &node->iolinks);
|
|
return iolink;
|
|
}
|
|
|
|
struct tp_p2pgroup *sys_add_group(struct tp_system *sys, uint32_t type)
|
|
{
|
|
struct tp_p2pgroup *group;
|
|
|
|
group = xzalloc(sizeof(*group));
|
|
if (!group)
|
|
return NULL;
|
|
|
|
INIT_LIST_HEAD(&group->nodes);
|
|
group->type = type;
|
|
list_add_tail(&group->listm_system, &sys->xgmi_groups);
|
|
if (type == TOPO_IOLINK_TYPE_XGMI)
|
|
sys->num_xgmi_groups++;
|
|
|
|
return group;
|
|
}
|
|
|
|
struct tp_node *sys_add_node(struct tp_system *sys, uint32_t id, uint32_t gpu_id)
|
|
{
|
|
struct tp_node *node = NULL;
|
|
|
|
node = xzalloc(sizeof(*node));
|
|
if (!node)
|
|
return NULL;
|
|
|
|
node->id = id;
|
|
node->gpu_id = gpu_id;
|
|
node->drm_fd = -1;
|
|
INIT_LIST_HEAD(&node->iolinks);
|
|
list_add_tail(&node->listm_system, &sys->nodes);
|
|
sys->num_nodes++;
|
|
|
|
return node;
|
|
}
|
|
|
|
static bool get_prop(char *line, char *name, uint64_t *value)
|
|
{
|
|
char format[16];
|
|
sprintf(format, " %%%ds %%lu", MAX_PARAMETER_LEN);
|
|
if (sscanf(line, format, name, value) != 2)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
/* Parse node properties in /sys/class/kfd/kfd/topology/nodes/N/properties */
|
|
static int parse_topo_node_properties(struct tp_node *dev, const char *dir_path)
|
|
{
|
|
FILE *file;
|
|
char path[300];
|
|
char line[300];
|
|
|
|
sprintf(path, "%s/properties", dir_path);
|
|
file = fopen(path, "r");
|
|
if (!file) {
|
|
pr_perror("Failed to access %s", path);
|
|
return -EFAULT;
|
|
}
|
|
|
|
while (fgets(line, sizeof(line), file)) {
|
|
char name[MAX_PARAMETER_LEN + 1];
|
|
uint64_t value;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (!get_prop(line, name, &value))
|
|
goto fail;
|
|
|
|
if (!strcmp(name, "cpu_cores_count"))
|
|
dev->cpu_cores_count = (uint32_t)value;
|
|
else if (!strcmp(name, "simd_count"))
|
|
dev->simd_count = (uint32_t)value;
|
|
else if (!strcmp(name, "mem_banks_count"))
|
|
dev->mem_banks_count = (uint32_t)value;
|
|
else if (!strcmp(name, "caches_count"))
|
|
dev->caches_count = (uint32_t)value;
|
|
else if (!strcmp(name, "io_links_count"))
|
|
dev->io_links_count = (uint32_t)value;
|
|
else if (!strcmp(name, "max_waves_per_simd"))
|
|
dev->max_waves_per_simd = (uint32_t)value;
|
|
else if (!strcmp(name, "lds_size_in_kb"))
|
|
dev->lds_size_in_kb = (uint32_t)value;
|
|
else if (!strcmp(name, "num_gws"))
|
|
dev->num_gws = (uint32_t)value;
|
|
else if (!strcmp(name, "wave_front_size"))
|
|
dev->wave_front_size = (uint32_t)value;
|
|
else if (!strcmp(name, "array_count"))
|
|
dev->array_count = (uint32_t)value;
|
|
else if (!strcmp(name, "simd_arrays_per_engine"))
|
|
dev->simd_arrays_per_engine = (uint32_t)value;
|
|
else if (!strcmp(name, "cu_per_simd_array"))
|
|
dev->cu_per_simd_array = (uint32_t)value;
|
|
else if (!strcmp(name, "simd_per_cu"))
|
|
dev->simd_per_cu = (uint32_t)value;
|
|
else if (!strcmp(name, "max_slots_scratch_cu"))
|
|
dev->max_slots_scratch_cu = (uint32_t)value;
|
|
else if (!strcmp(name, "vendor_id"))
|
|
dev->vendor_id = (uint32_t)value;
|
|
else if (!strcmp(name, "device_id"))
|
|
dev->device_id = (uint32_t)value;
|
|
else if (!strcmp(name, "domain"))
|
|
dev->domain = (uint32_t)value;
|
|
else if (!strcmp(name, "drm_render_minor"))
|
|
dev->drm_render_minor = (uint32_t)value;
|
|
else if (!strcmp(name, "hive_id"))
|
|
dev->hive_id = value;
|
|
else if (!strcmp(name, "num_sdma_engines"))
|
|
dev->num_sdma_engines = (uint32_t)value;
|
|
else if (!strcmp(name, "num_sdma_xgmi_engines"))
|
|
dev->num_sdma_xgmi_engines = (uint32_t)value;
|
|
else if (!strcmp(name, "num_sdma_queues_per_engine"))
|
|
dev->num_sdma_queues_per_engine = (uint32_t)value;
|
|
else if (!strcmp(name, "num_cp_queues"))
|
|
dev->num_cp_queues = (uint32_t)value;
|
|
else if (!strcmp(name, "fw_version"))
|
|
dev->fw_version = (uint32_t)value;
|
|
else if (!strcmp(name, "capability"))
|
|
dev->capability = (uint32_t)value;
|
|
else if (!strcmp(name, "sdma_fw_version"))
|
|
dev->sdma_fw_version = (uint32_t)value;
|
|
|
|
if (!dev->gpu_id && dev->cpu_cores_count >= 1) {
|
|
/* This is a CPU - we do not need to parse the other information */
|
|
break;
|
|
}
|
|
}
|
|
|
|
fclose(file);
|
|
return 0;
|
|
fail:
|
|
pr_err("Failed to parse line = %s\n", line);
|
|
fclose(file);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Parse node memory properties in /sys/class/kfd/kfd/topology/nodes/N/mem_banks */
|
|
static int parse_topo_node_mem_banks(struct tp_node *node, const char *dir_path)
|
|
{
|
|
struct dirent *dirent_node;
|
|
DIR *d_node;
|
|
char path[300];
|
|
FILE *file = NULL;
|
|
uint32_t heap_type = 0;
|
|
uint64_t mem_size = 0;
|
|
int ret;
|
|
|
|
if (!NODE_IS_GPU(node))
|
|
return 0;
|
|
|
|
sprintf(path, "%s/mem_banks", dir_path);
|
|
|
|
d_node = opendir(path);
|
|
if (!d_node) {
|
|
pr_perror("Can't open %s", path);
|
|
return -EACCES;
|
|
}
|
|
|
|
while ((dirent_node = readdir(d_node)) != NULL) {
|
|
char line[300];
|
|
char bank_path[1024];
|
|
struct stat st;
|
|
int id;
|
|
|
|
heap_type = 0;
|
|
mem_size = 0;
|
|
|
|
/* Only parse numeric directories */
|
|
if (sscanf(dirent_node->d_name, "%d", &id) != 1)
|
|
continue;
|
|
|
|
snprintf(bank_path, sizeof(bank_path), "%s/%s", path, dirent_node->d_name);
|
|
if (stat(bank_path, &st)) {
|
|
pr_err("Cannot to access %s\n", path);
|
|
ret = -EACCES;
|
|
goto fail;
|
|
}
|
|
if ((st.st_mode & S_IFMT) == S_IFDIR) {
|
|
char properties_path[PATH_MAX];
|
|
|
|
snprintf(properties_path, sizeof(properties_path), "%s/properties", bank_path);
|
|
|
|
file = fopen(properties_path, "r");
|
|
if (!file) {
|
|
pr_perror("Failed to access %s", properties_path);
|
|
ret = -EACCES;
|
|
goto fail;
|
|
}
|
|
|
|
while (fgets(line, sizeof(line), file)) {
|
|
char name[MAX_PARAMETER_LEN + 1];
|
|
uint64_t value;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (!get_prop(line, name, &value)) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (!strcmp(name, "heap_type"))
|
|
heap_type = (uint32_t)value;
|
|
if (!strcmp(name, "size_in_bytes"))
|
|
mem_size = value;
|
|
}
|
|
|
|
fclose(file);
|
|
file = NULL;
|
|
}
|
|
|
|
if (heap_type == TOPO_HEAP_TYPE_PUBLIC || heap_type == TOPO_HEAP_TYPE_PRIVATE)
|
|
break;
|
|
}
|
|
|
|
if ((heap_type != TOPO_HEAP_TYPE_PUBLIC && heap_type != TOPO_HEAP_TYPE_PRIVATE) || !mem_size) {
|
|
pr_err("Failed to determine memory type and size for device in %s\n", dir_path);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
node->vram_public = (heap_type == TOPO_HEAP_TYPE_PUBLIC);
|
|
node->vram_size = mem_size;
|
|
closedir(d_node);
|
|
return 0;
|
|
fail:
|
|
if (file)
|
|
fclose(file);
|
|
closedir(d_node);
|
|
return ret;
|
|
}
|
|
|
|
/* Parse node iolinks properties in /sys/class/kfd/kfd/topology/nodes/N/io_links */
|
|
static int parse_topo_node_iolinks(struct tp_node *node, const char *dir_path)
|
|
{
|
|
struct dirent *dirent_node;
|
|
DIR *d_node;
|
|
char path[300];
|
|
FILE *file = NULL;
|
|
int ret = 0;
|
|
|
|
snprintf(path, sizeof(path), "%s/io_links", dir_path);
|
|
|
|
d_node = opendir(path);
|
|
if (!d_node) {
|
|
pr_perror("Can't open %s", path);
|
|
return -EACCES;
|
|
}
|
|
|
|
while ((dirent_node = readdir(d_node)) != NULL) {
|
|
char line[300];
|
|
char iolink_path[1024];
|
|
struct stat st;
|
|
int id;
|
|
|
|
uint32_t iolink_type = 0;
|
|
uint32_t node_to_id = 0;
|
|
|
|
/* Only parse numeric directories */
|
|
if (sscanf(dirent_node->d_name, "%d", &id) != 1)
|
|
continue;
|
|
|
|
snprintf(iolink_path, sizeof(iolink_path), "%s/%s", path, dirent_node->d_name);
|
|
if (stat(iolink_path, &st)) {
|
|
pr_err("Cannot to access %s\n", path);
|
|
ret = -EACCES;
|
|
goto fail;
|
|
}
|
|
if ((st.st_mode & S_IFMT) == S_IFDIR) {
|
|
char properties_path[PATH_MAX];
|
|
|
|
snprintf(properties_path, sizeof(properties_path), "%s/properties", iolink_path);
|
|
|
|
file = fopen(properties_path, "r");
|
|
if (!file) {
|
|
pr_perror("Failed to access %s", properties_path);
|
|
ret = -EACCES;
|
|
goto fail;
|
|
}
|
|
|
|
while (fgets(line, sizeof(line), file)) {
|
|
char name[MAX_PARAMETER_LEN + 1];
|
|
uint64_t value;
|
|
|
|
memset(name, 0, sizeof(name));
|
|
if (!get_prop(line, name, &value)) {
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
|
|
if (!strcmp(name, "type"))
|
|
iolink_type = (uint32_t)value;
|
|
if (!strcmp(name, "node_to"))
|
|
node_to_id = (uint32_t)value;
|
|
}
|
|
fclose(file);
|
|
file = NULL;
|
|
}
|
|
|
|
/* We only store the link information for now, then once all topology parsing is
|
|
* finished we will confirm iolinks
|
|
*/
|
|
if (iolink_type == TOPO_IOLINK_TYPE_PCIE || iolink_type == TOPO_IOLINK_TYPE_XGMI) {
|
|
if (!node_add_iolink(node, iolink_type, node_to_id)) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
closedir(d_node);
|
|
return 0;
|
|
fail:
|
|
if (file)
|
|
fclose(file);
|
|
|
|
closedir(d_node);
|
|
return ret;
|
|
}
|
|
|
|
/* Parse a node (CPU or GPU) in /sys/class/kfd/kfd/topology/nodes/N */
|
|
static int parse_topo_node(struct tp_node *node, const char *dir_path)
|
|
{
|
|
if (parse_topo_node_properties(node, dir_path)) {
|
|
pr_err("Failed to parse node properties\n");
|
|
return -EINVAL;
|
|
}
|
|
if (parse_topo_node_mem_banks(node, dir_path)) {
|
|
pr_err("Failed to parse node mem_banks\n");
|
|
return -EINVAL;
|
|
}
|
|
if (parse_topo_node_iolinks(node, dir_path)) {
|
|
pr_err("Failed to parse node iolinks\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static const char *p2pgroup_to_str(struct tp_p2pgroup *group)
|
|
{
|
|
static char topology_printstr[200];
|
|
struct tp_node *node;
|
|
size_t str_len = 0;
|
|
|
|
topology_printstr[0] = '\0';
|
|
str_len += sprintf(&topology_printstr[str_len], "type:%s:", link_type(group->type));
|
|
|
|
list_for_each_entry(node, &group->nodes, listm_p2pgroup) {
|
|
str_len += sprintf(&topology_printstr[str_len], "0x%04X ", node->gpu_id);
|
|
}
|
|
return topology_printstr;
|
|
}
|
|
|
|
static const char *mapping_list_to_str(struct list_head *node_list)
|
|
{
|
|
static char topology_printstr[200];
|
|
struct tp_node *node;
|
|
size_t str_len = 0;
|
|
|
|
topology_printstr[0] = '\0';
|
|
list_for_each_entry(node, node_list, listm_mapping)
|
|
str_len += sprintf(&topology_printstr[str_len], "0x%04X ", node->gpu_id);
|
|
|
|
return topology_printstr;
|
|
}
|
|
|
|
void topology_print(const struct tp_system *sys, const char *message)
|
|
{
|
|
struct tp_node *node;
|
|
struct tp_p2pgroup *xgmi_group;
|
|
|
|
pr_info("===System Topology=[%12s]==================================\n", message);
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
struct tp_iolink *iolink;
|
|
|
|
if (!NODE_IS_GPU(node)) {
|
|
pr_info("[%d] CPU\n", node->id);
|
|
pr_info(" cpu_cores_count:%u\n", node->cpu_cores_count);
|
|
} else {
|
|
pr_info("[%d] GPU gpu_id:0x%04X\n", node->id, node->gpu_id);
|
|
pr_info(" vendor_id:%u device_id:%u\n", node->vendor_id, node->device_id);
|
|
pr_info(" vram_public:%c vram_size:%lu\n", node->vram_public ? 'Y' : 'N', node->vram_size);
|
|
pr_info(" io_links_count:%u capability:%u\n", node->io_links_count, node->capability);
|
|
pr_info(" mem_banks_count:%u caches_count:%d lds_size_in_kb:%u\n", node->mem_banks_count,
|
|
node->caches_count, node->lds_size_in_kb);
|
|
pr_info(" simd_count:%u max_waves_per_simd:%u\n", node->simd_count,
|
|
node->max_waves_per_simd);
|
|
pr_info(" num_gws:%u wave_front_size:%u array_count:%u\n", node->num_gws,
|
|
node->wave_front_size, node->array_count);
|
|
pr_info(" simd_arrays_per_engine:%u simd_per_cu:%u\n", node->simd_arrays_per_engine,
|
|
node->simd_per_cu);
|
|
pr_info(" max_slots_scratch_cu:%u cu_per_simd_array:%u\n", node->max_slots_scratch_cu,
|
|
node->cu_per_simd_array);
|
|
pr_info(" num_sdma_engines:%u\n", node->num_sdma_engines);
|
|
pr_info(" num_sdma_xgmi_engines:%u num_sdma_queues_per_engine:%u\n",
|
|
node->num_sdma_xgmi_engines, node->num_sdma_queues_per_engine);
|
|
pr_info(" num_cp_queues:%u fw_version:%u sdma_fw_version:%u\n", node->num_cp_queues,
|
|
node->fw_version, node->sdma_fw_version);
|
|
}
|
|
list_for_each_entry(iolink, &node->iolinks, listm) {
|
|
if (!iolink->valid)
|
|
continue;
|
|
|
|
pr_info(" iolink type:%s node-to:%d (0x%04X) node-from:%d bi-dir:%s\n",
|
|
link_type(iolink->type), iolink->node_to_id, iolink->node_to->gpu_id,
|
|
iolink->node_from->id, iolink->peer ? "Y" : "N");
|
|
}
|
|
}
|
|
|
|
pr_info("===Groups==========================================================\n");
|
|
list_for_each_entry(xgmi_group, &sys->xgmi_groups, listm_system)
|
|
pr_info("%s\n", p2pgroup_to_str(xgmi_group));
|
|
pr_info("===================================================================\n");
|
|
}
|
|
|
|
void topology_init(struct tp_system *sys)
|
|
{
|
|
memset(sys, 0, sizeof(*sys));
|
|
INIT_LIST_HEAD(&sys->nodes);
|
|
INIT_LIST_HEAD(&sys->xgmi_groups);
|
|
}
|
|
|
|
void topology_free(struct tp_system *sys)
|
|
{
|
|
while (!list_empty(&sys->nodes)) {
|
|
struct tp_node *node = list_first_entry(&sys->nodes, struct tp_node, listm_system);
|
|
|
|
list_del(&node->listm_system);
|
|
|
|
while (!list_empty(&node->iolinks)) {
|
|
struct tp_iolink *iolink = list_first_entry(&node->iolinks, struct tp_iolink, listm);
|
|
|
|
list_del(&iolink->listm);
|
|
xfree(iolink);
|
|
}
|
|
xfree(node);
|
|
}
|
|
|
|
while (!list_empty(&sys->xgmi_groups)) {
|
|
struct tp_p2pgroup *p2pgroup = list_first_entry(&sys->xgmi_groups, struct tp_p2pgroup, listm_system);
|
|
|
|
list_del(&p2pgroup->listm_system);
|
|
xfree(p2pgroup);
|
|
}
|
|
|
|
/* Update Topology as being freed */
|
|
sys->parsed = false;
|
|
}
|
|
|
|
/**
|
|
* @brief Validates iolinks and determine XGMI hives in a system topology
|
|
*
|
|
* On some systems, some GPUs may not be accessible because they are masked by cgroups, but the
|
|
* iolinks to these GPUs are still visible. If the peer GPU is not accessible, we consider that link
|
|
* invalid.
|
|
* In a XGMI hive, each GPU will have a bi-directional iolink to every other GPU. So we create a
|
|
* XGMI group (hive) and add all the GPUs in that hive to the group when iterating over the first
|
|
* GPU in that group.
|
|
*
|
|
* @param sys system topology
|
|
* @return 0 if successful, errno if failed.
|
|
*/
|
|
int topology_determine_iolinks(struct tp_system *sys)
|
|
{
|
|
int ret = 0;
|
|
struct tp_node *node;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system) {
|
|
struct tp_iolink *iolink;
|
|
|
|
list_for_each_entry(iolink, &node->iolinks, listm) {
|
|
struct tp_p2pgroup *group = NULL;
|
|
struct tp_node *peer_node = NULL;
|
|
struct tp_iolink *peer_iolink = NULL;
|
|
|
|
peer_node = sys_get_node_by_node_id(sys, iolink->node_to_id);
|
|
if (!peer_node) {
|
|
/* node not accessible, usually because it is masked by cgroups */
|
|
iolink->valid = false;
|
|
continue;
|
|
}
|
|
iolink->valid = true;
|
|
node->num_valid_iolinks++;
|
|
|
|
iolink->node_to = peer_node;
|
|
peer_iolink = get_tp_peer_iolink(peer_node, node, iolink->type);
|
|
if (!peer_iolink)
|
|
continue; /* This is a one-dir link */
|
|
|
|
/* We confirmed both sides have same type of iolink */
|
|
iolink->peer = peer_iolink;
|
|
peer_iolink->peer = iolink;
|
|
|
|
if (iolink->type == TOPO_IOLINK_TYPE_XGMI) {
|
|
group = sys_get_p2pgroup_with_gpu_id(sys, iolink->type, node->gpu_id);
|
|
if (!group) {
|
|
/* This GPU does not already belong to a group so we create
|
|
* a new group
|
|
*/
|
|
group = sys_add_group(sys, iolink->type);
|
|
if (!group) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
list_add_tail(&node->listm_p2pgroup, &group->nodes);
|
|
}
|
|
|
|
/* Also add peer GPU to this group */
|
|
if (!p2pgroup_get_node_by_gpu_id(group, peer_node->gpu_id))
|
|
list_add_tail(&peer_node->listm_p2pgroup, &group->nodes);
|
|
}
|
|
}
|
|
}
|
|
|
|
fail:
|
|
/* In case of failure, caller function will call topology_free which will free groups that
|
|
* were successfully allocated
|
|
*/
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* @brief Parse system topology
|
|
*
|
|
* Parse system topology exposed by the drivers in /sys/class/kfd/kfd/topology and fill in the
|
|
* system topology structure.
|
|
*
|
|
* @param sys system topology structure to be filled by this function
|
|
* @param message print this message when printing the topology to logs
|
|
* @return 0 if successful, errno if failed.
|
|
*/
|
|
int topology_parse(struct tp_system *sys, const char *message)
|
|
{
|
|
struct dirent *dirent_system;
|
|
DIR *d_system;
|
|
char path[300];
|
|
int ret;
|
|
|
|
if (sys->parsed)
|
|
return 0;
|
|
|
|
sys->parsed = true;
|
|
INIT_LIST_HEAD(&sys->nodes);
|
|
INIT_LIST_HEAD(&sys->xgmi_groups);
|
|
|
|
d_system = opendir(TOPOLOGY_PATH);
|
|
if (!d_system) {
|
|
pr_perror("Can't open %s", TOPOLOGY_PATH);
|
|
return -EACCES;
|
|
}
|
|
|
|
while ((dirent_system = readdir(d_system)) != NULL) {
|
|
struct stat stbuf;
|
|
int id, fd;
|
|
|
|
/* Only parse numeric directories */
|
|
if (sscanf(dirent_system->d_name, "%d", &id) != 1)
|
|
continue;
|
|
|
|
sprintf(path, "%s%s", TOPOLOGY_PATH, dirent_system->d_name);
|
|
if (stat(path, &stbuf)) {
|
|
/* When cgroup is masking some devices, the path exists, but it is not
|
|
* accessible, this is not an error
|
|
*/
|
|
pr_info("Cannot to access %s\n", path);
|
|
continue;
|
|
}
|
|
|
|
if ((stbuf.st_mode & S_IFMT) == S_IFDIR) {
|
|
struct tp_node *node;
|
|
int len;
|
|
char gpu_id_path[300];
|
|
char read_buf[7]; /* Max gpu_id len is 6 chars */
|
|
unsigned int gpu_id;
|
|
|
|
sprintf(gpu_id_path, "%s/%s/gpu_id", TOPOLOGY_PATH, dirent_system->d_name);
|
|
fd = open(gpu_id_path, O_RDONLY);
|
|
if (fd < 0) {
|
|
pr_perror("Failed to access %s", gpu_id_path);
|
|
continue;
|
|
}
|
|
|
|
len = read(fd, read_buf, sizeof(read_buf) - 1);
|
|
close(fd);
|
|
if (len < 0)
|
|
continue;
|
|
|
|
read_buf[len] = '\0';
|
|
|
|
if (sscanf(read_buf, "%d", &gpu_id) != 1)
|
|
continue;
|
|
|
|
node = sys_add_node(sys, id, gpu_id);
|
|
if (!node) {
|
|
ret = -ENOMEM;
|
|
goto fail;
|
|
}
|
|
|
|
if (parse_topo_node(node, path)) {
|
|
pr_err("Failed to parse node %s\n", path);
|
|
ret = -EINVAL;
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
closedir(d_system);
|
|
return 0;
|
|
|
|
fail:
|
|
topology_free(sys);
|
|
return ret;
|
|
}
|
|
|
|
static bool device_properties_match(struct tp_node *src, struct tp_node *dest)
|
|
{
|
|
if (src->simd_count == dest->simd_count && src->mem_banks_count == dest->mem_banks_count &&
|
|
src->io_links_count == dest->io_links_count && src->max_waves_per_simd == dest->max_waves_per_simd &&
|
|
src->lds_size_in_kb == dest->lds_size_in_kb && src->wave_front_size == dest->wave_front_size &&
|
|
src->array_count == dest->array_count && src->simd_arrays_per_engine == dest->simd_arrays_per_engine &&
|
|
src->cu_per_simd_array == dest->cu_per_simd_array && src->simd_per_cu == dest->simd_per_cu &&
|
|
src->max_slots_scratch_cu == dest->max_slots_scratch_cu && src->vendor_id == dest->vendor_id &&
|
|
src->device_id == dest->device_id && src->num_sdma_engines == dest->num_sdma_engines &&
|
|
src->num_sdma_xgmi_engines == dest->num_sdma_xgmi_engines &&
|
|
src->num_sdma_queues_per_engine == dest->num_sdma_queues_per_engine &&
|
|
src->num_cp_queues == dest->num_cp_queues && src->vram_public == dest->vram_public &&
|
|
(!kfd_capability_check || (src->capability == dest->capability)) &&
|
|
(!kfd_vram_size_check || (src->vram_size <= dest->vram_size)) &&
|
|
(!kfd_num_gws_check || (src->num_gws <= dest->num_gws)) &&
|
|
(!kfd_caches_count_check || (src->caches_count <= dest->caches_count)) &&
|
|
(!kfd_fw_version_check || (src->fw_version <= dest->fw_version)) &&
|
|
(!kfd_sdma_fw_version_check || (src->sdma_fw_version <= dest->sdma_fw_version))) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Determines whether iolink dest can be used to replace src
|
|
*
|
|
* @param src source iolink
|
|
* @param dest destination iolink
|
|
* @return true if dest can replace src
|
|
*/
|
|
static bool iolink_match(struct tp_iolink *src, struct tp_iolink *dest)
|
|
{
|
|
if (!src->valid)
|
|
return true;
|
|
|
|
if (!dest->valid)
|
|
return false;
|
|
|
|
if (NODE_IS_GPU(src->node_to) != NODE_IS_GPU(dest->node_to))
|
|
return false;
|
|
|
|
/* XGMI link can replace PCIE links */
|
|
if (src->type == TOPO_IOLINK_TYPE_XGMI && dest->type == TOPO_IOLINK_TYPE_PCIE)
|
|
return false;
|
|
|
|
/* bi-directional links can replace uni-directional links */
|
|
if (src->peer != NULL && dest->peer == NULL)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Determines whether src_node can be mapped to dest_node
|
|
*
|
|
* Nodes compatibility are determined by:
|
|
* 1. Comparing the node properties
|
|
* 2. Making sure iolink mappings to CPUs would be compatible with existing iolink mappings in maps
|
|
*
|
|
* If src_node and dest_node are mappable, then map_device will push the new mapping
|
|
* for src_node -> dest_node into new_maps.
|
|
* @param src_sys system topology information on source system
|
|
* @param dest_sys system topology information on destination system
|
|
* @param src_node source GPU
|
|
* @param dest_node destination GPU
|
|
* @param maps list of existing device maps
|
|
* @param new_maps if nodes are mappable, then GPU and CPU mappings will be added to this list
|
|
* @return true if src_node and dest_node are mappable
|
|
*/
|
|
static bool map_device(struct tp_system *src_sys, struct tp_system *dest_sys, struct tp_node *src_node,
|
|
struct tp_node *dest_node, struct device_maps *maps, struct device_maps *new_maps)
|
|
{
|
|
struct tp_iolink *src_iolink;
|
|
|
|
pr_debug("Evaluating mapping nodes [0x%04X -> 0x%04X]\n", src_node->gpu_id, dest_node->gpu_id);
|
|
|
|
/* Compare GPU properties from /sys/class/kfd/kfd/topology/nodes/N/properties */
|
|
if (!device_properties_match(src_node, dest_node)) {
|
|
pr_debug("[0x%04X -> 0x%04X] Device properties do not match\n", src_node->gpu_id, dest_node->gpu_id);
|
|
return false;
|
|
}
|
|
|
|
if (src_node->num_valid_iolinks > dest_node->num_valid_iolinks) {
|
|
pr_debug("[0x%04X -> 0x%04X] Mismatch between number of iolinks\n", src_node->gpu_id,
|
|
dest_node->gpu_id);
|
|
return false;
|
|
}
|
|
|
|
list_for_each_entry(src_iolink, &src_node->iolinks, listm) {
|
|
/* Go through list of iolinks to CPU and compare them */
|
|
|
|
if (!NODE_IS_GPU(src_iolink->node_to)) {
|
|
bool matched_iolink = false;
|
|
/* This is a iolink to CPU */
|
|
pr_debug("Found link to CPU node:%02d\n", src_iolink->node_to->id);
|
|
|
|
if (!kfd_numa_check) {
|
|
struct tp_iolink *dest_iolink;
|
|
|
|
list_for_each_entry(dest_iolink, &dest_node->iolinks, listm) {
|
|
if (iolink_match(src_iolink, dest_iolink))
|
|
matched_iolink = true;
|
|
}
|
|
} else {
|
|
uint32_t dest_cpu_node_id;
|
|
|
|
dest_cpu_node_id = maps_get_dest_cpu(maps, src_iolink->node_to->id);
|
|
if (dest_cpu_node_id == INVALID_CPU_ID)
|
|
dest_cpu_node_id = maps_get_dest_cpu(new_maps, src_iolink->node_to->id);
|
|
|
|
if (dest_cpu_node_id == INVALID_CPU_ID) {
|
|
struct tp_iolink *dest_iolink;
|
|
list_for_each_entry(dest_iolink, &dest_node->iolinks, listm) {
|
|
if (iolink_match(src_iolink, dest_iolink) &&
|
|
!maps_dest_cpu_mapped(maps, dest_iolink->node_to->id) &&
|
|
!maps_dest_cpu_mapped(new_maps, dest_iolink->node_to->id)) {
|
|
if (!maps_add_cpu_entry(new_maps, src_iolink->node_to->id,
|
|
dest_iolink->node_to->id))
|
|
/* This is a critical error because
|
|
* we are out of memory
|
|
*/
|
|
return false;
|
|
|
|
matched_iolink = true;
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
pr_debug("Existing CPU mapping found [%02d-%02d]\n", src_iolink->node_to->id,
|
|
dest_cpu_node_id);
|
|
/* Confirm that the link to this CPU is same or better */
|
|
|
|
struct tp_iolink *dest_iolink = node_get_iolink_to_node_id(
|
|
dest_node, src_iolink->type, dest_cpu_node_id);
|
|
|
|
if (dest_iolink && iolink_match(src_iolink, dest_iolink))
|
|
matched_iolink = true;
|
|
}
|
|
}
|
|
if (!matched_iolink) {
|
|
pr_debug("[0x%04X -> 0x%04X] Mismatch between iolink to CPU\n", src_node->gpu_id,
|
|
dest_node->gpu_id);
|
|
|
|
return false;
|
|
}
|
|
} else {
|
|
/* If GPUs have P2P-PCIe iolinks to this GPU, then at least one CPU will
|
|
* also have a P2P-PCIe iolink to this GPU, so it seems that we do not need
|
|
* to consider P2P-PCIe iolinks from GPU to GPU for now. Once P2P-PCIe
|
|
* iolinks are exposed via p2p_links we may have to add additional code here
|
|
* to validate P2P-PCIe links between GPUs.
|
|
*/
|
|
}
|
|
}
|
|
pr_debug("[0x%04X -> 0x%04X] Map is possible\n", src_node->gpu_id, dest_node->gpu_id);
|
|
|
|
if (!maps_add_gpu_entry(new_maps, src_node->gpu_id, dest_node->gpu_id)) {
|
|
/* This is a critical error because we are out of memory */
|
|
return false;
|
|
}
|
|
maps_print(new_maps);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* @brief Determines whether list of GPUs in src_nodes are mappable to dest_nodes
|
|
*
|
|
* This function will pick the first node from src_nodes and iterate through all the nodes in
|
|
* dest_nodes and call map_device to determine whether the node is mappable.
|
|
* If a node from dest_nodes is mappable to the first node from src_nodes:
|
|
* 1. This function will remove the first node from src_nodes and the node from dest_nodes
|
|
* 2. Push sub-mappings (new_maps) generated by map_device into existing mappings (maps)
|
|
* 3. Recursively check whether remaining nodes in src_nodes and dest_nodes are mappable.
|
|
*
|
|
* Once src_nodes is empty then we have successfully mapped all the nodes and maps contains a full
|
|
* list of GPU mappings.
|
|
*
|
|
* If there are no nodes in dest_nodes that can be mapped to the first node in src_nodes, then this
|
|
* means we cannot build a full mapping list with the current list of mappings. We backtrack by
|
|
* popping the newly generated sub-mappings(new_maps) from existing mappings (maps) and add the two
|
|
* nodes back to src_nodes and dest_nodes and return false. When this function returns false, the
|
|
* caller function will try a different path by trying to map the first node from src_nodes to the
|
|
* next node in dest_nodes.
|
|
*
|
|
* @param src_sys system topology information on source system
|
|
* @param dest_sys system topology information on destination system
|
|
* @param src_node list of source GPUs that need to be mapped
|
|
* @param dest_node list of destination GPUs that need to be mapped
|
|
* @param maps list of device maps based on current map path
|
|
* @return true if all nodes from src_nodes and dest_nodes are mappable
|
|
*/
|
|
static bool map_devices(struct tp_system *src_sys, struct tp_system *dest_sys, struct list_head *src_nodes,
|
|
struct list_head *dest_nodes, struct device_maps *maps)
|
|
{
|
|
struct tp_node *src_node, *dest_node, *dest_node_tmp;
|
|
struct device_maps new_maps;
|
|
|
|
/* Pick the first src node from the list of nodes and look for a dest node that is mappable.
|
|
* If we find a mappable destination node, then we add src node and dest node mapping to
|
|
* device_maps and recursively try to map the remaining nodes in the list.
|
|
* If there are no more src nodes in the list, then we have found a successful combination
|
|
* of src to dest nodes that are mappable.
|
|
*/
|
|
if (list_empty(src_nodes)) {
|
|
pr_debug("All nodes mapped successfully\n");
|
|
return true;
|
|
}
|
|
|
|
pr_debug("Mapping list src nodes [%s]\n", mapping_list_to_str(src_nodes));
|
|
pr_debug("Mapping list dest nodes [%s]\n", mapping_list_to_str(dest_nodes));
|
|
|
|
src_node = list_first_entry(src_nodes, struct tp_node, listm_mapping);
|
|
pr_debug("Looking for match for node 0x%04X\n", src_node->gpu_id);
|
|
|
|
list_del(&src_node->listm_mapping);
|
|
|
|
list_for_each_entry_safe(dest_node, dest_node_tmp, dest_nodes, listm_mapping) {
|
|
maps_init(&new_maps);
|
|
if (map_device(src_sys, dest_sys, src_node, dest_node, maps, &new_maps)) {
|
|
pr_debug("Matched destination node 0x%04X\n", dest_node->gpu_id);
|
|
|
|
/* src node and dest node are mappable, add device_maps generated by
|
|
* map_device to list of current valid device_maps, and recursively try to
|
|
* map remaining nodes in the list.
|
|
*/
|
|
|
|
list_del(&dest_node->listm_mapping);
|
|
if (maps_push(maps, &new_maps))
|
|
return false;
|
|
|
|
if (map_devices(src_sys, dest_sys, src_nodes, dest_nodes, maps)) {
|
|
pr_debug("Matched nodes 0x%04X and after\n", dest_node->gpu_id);
|
|
return true;
|
|
} else {
|
|
/* We could not map remaining nodes in the list. Add dest node back
|
|
* to list and try to map next dest node in list to current src
|
|
* node.
|
|
*/
|
|
pr_debug("Nodes after [0x%04X -> 0x%04X] did not match, "
|
|
"adding list back\n",
|
|
src_node->gpu_id, dest_node->gpu_id);
|
|
|
|
list_add(&dest_node->listm_mapping, dest_nodes);
|
|
maps_pop(maps, &new_maps);
|
|
}
|
|
}
|
|
}
|
|
pr_debug("Failed to map nodes 0x%04X and after\n", src_node->gpu_id);
|
|
|
|
/* Either: We could not find a mappable dest node for current node, or we could not build a
|
|
* combination from the remaining nodes in the lists. Add src node back to the list and
|
|
* caller function will try next possible combination.
|
|
*/
|
|
list_add(&src_node->listm_mapping, src_nodes);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Determines whether list of GPUs in src_xgmi_groups are mappable to list of GPUs in
|
|
* dest_xgmi_groups
|
|
*
|
|
* This function will pick the first XGMI group (hive) from src_xgmi_groups and iterate through the
|
|
* XGMI groups in dest_xgmi_groups. If the group in dest_xgmi_groups is mappable then this function
|
|
* will remove the hives from src_xgmi_groups and dest_xgmi_groups and recursively try to map the
|
|
* remaining hives in src_xgmi_groups and dest_xgmi_groups.
|
|
*
|
|
* If src_xgmi_groups is empty, then this means that we have successfully mapped all the XGMI hives
|
|
* and we have a full list of GPU mappings in maps.
|
|
*
|
|
* If we cannot find a hive inside dest_xgmi_groups that is mappable to the first hive from
|
|
* src_xgmi_groups, then this means that this path is not valid and we need to backtrack. We
|
|
* backtrack by adding the hives back into src_xgmi_groups and dest_xgmi_groups and returning false.
|
|
* The caller function will then try a different path by trying to map the first hive in
|
|
* src_xgmi_groups to the next hive in dest_xgmi_groups.
|
|
*
|
|
* @param src_sys system topology information on source system
|
|
* @param dest_sys system topology information on destination system
|
|
* @param src_xgmi_groups list of source XGMI hives that need to be mapped
|
|
* @param dest_xgmi_groups list of destination XGMI hives that need to be mapped
|
|
* @param maps list of device maps based on current map path
|
|
* @return true if all nodes from src_nodes and dest_nodes are mappable
|
|
*/
|
|
bool match_xgmi_groups(struct tp_system *src_sys, struct tp_system *dest_sys, struct list_head *src_xgmi_groups,
|
|
struct list_head *dest_xgmi_groups, struct device_maps *maps)
|
|
{
|
|
struct tp_p2pgroup *src_group;
|
|
struct tp_p2pgroup *dest_group;
|
|
struct tp_p2pgroup *dest_group_tmp;
|
|
|
|
if (list_empty(src_xgmi_groups)) {
|
|
pr_debug("All groups matched successfully\n");
|
|
return true;
|
|
}
|
|
|
|
/* Pick the first src XGMI group from the list. Then try to match src XGMI group with a
|
|
* dest XGMI group. If we have a dest XGMI group that is mappable, then we try to
|
|
* recursively map the next src XGMI group in the list, with remaining dest XGMI groups.
|
|
* If there are no more src XGMI groups in the list, then this means we have successfully
|
|
* mapped all the groups and we have a valid device_maps
|
|
*/
|
|
src_group = list_first_entry(src_xgmi_groups, struct tp_p2pgroup, listm_system);
|
|
pr_debug("Looking for match for group [%s]\n", p2pgroup_to_str(src_group));
|
|
|
|
list_del(&src_group->listm_system);
|
|
|
|
list_for_each_entry_safe(dest_group, dest_group_tmp, dest_xgmi_groups, listm_system) {
|
|
struct tp_node *node;
|
|
|
|
LIST_HEAD(src_nodes);
|
|
LIST_HEAD(dest_nodes);
|
|
|
|
if (src_group->num_nodes > dest_group->num_nodes)
|
|
continue;
|
|
|
|
pr_debug("Trying destination group [%s]\n", p2pgroup_to_str(dest_group));
|
|
|
|
list_for_each_entry(node, &src_group->nodes, listm_p2pgroup)
|
|
list_add_tail(&node->listm_mapping, &src_nodes);
|
|
|
|
list_for_each_entry(node, &dest_group->nodes, listm_p2pgroup)
|
|
list_add_tail(&node->listm_mapping, &dest_nodes);
|
|
|
|
/* map_devices will populate maps if successful */
|
|
if (map_devices(src_sys, dest_sys, &src_nodes, &dest_nodes, maps)) {
|
|
/* All the nodes in current src XGMI group are mappable with nodes in
|
|
* current dest XGMI group. Remove the current groups from the lists
|
|
* and recursively try to match remaining groups
|
|
*/
|
|
list_del(&dest_group->listm_system);
|
|
pr_debug("Matched destination group [%s]\n", p2pgroup_to_str(dest_group));
|
|
if (match_xgmi_groups(src_sys, dest_sys, src_xgmi_groups, dest_xgmi_groups, maps)) {
|
|
pr_debug("Matched subgroups of [%s]\n", p2pgroup_to_str(dest_group));
|
|
|
|
xfree(src_group);
|
|
xfree(dest_group);
|
|
return true;
|
|
} else {
|
|
/* We were not able to map the remaining XGMI groups so we add the
|
|
* current dest XGMI group back to the list of unmapped groups, and
|
|
* try to map current src XGMI group with the next dest XGMI in the
|
|
* list of XGMI groups
|
|
*/
|
|
list_add(&dest_group->listm_system, dest_xgmi_groups);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We have not found a mappable dest XGMI group. We discard this combination. If this is
|
|
* the first src XGMI group in the list, then it is not possible to match the XGMI groups.
|
|
* If this was a recursive call, then the calling instance of function will try the next
|
|
* combination of XGMI groups
|
|
*/
|
|
|
|
pr_debug("Failed to match groups [%s]\n", p2pgroup_to_str(src_group));
|
|
list_add_tail(&src_group->listm_system, src_xgmi_groups);
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Builds a list of GPU mappings from source topology to destination topology
|
|
*
|
|
* The topology on the destination system may not be identical to the topology on the source
|
|
* system, e.g There can be GPUs with different device ID's and they may be enumerated in a
|
|
* different order. This function builds a list of GPU mappings from the source topology to the
|
|
* destination topology and stores it in maps.
|
|
*
|
|
* The function will first validate all the iolinks and determine XGMI groups (hives) by calling the
|
|
* topology_determine_iolinks(). It will then try to match the GPUs that belong to XGMI hives and
|
|
* after that, match the remaining GPUs.
|
|
*
|
|
* @param src_sys system topology information on source system
|
|
* @param dest_sys system topology information on destination system
|
|
* @param maps list of device maps that was generated by this function
|
|
* @return true if we were able to build a full list of GPU mappings.
|
|
*/
|
|
int set_restore_gpu_maps(struct tp_system *src_sys, struct tp_system *dest_sys, struct device_maps *maps)
|
|
{
|
|
struct tp_node *node;
|
|
int ret = 0;
|
|
int src_num_gpus = 0;
|
|
int dest_num_gpus = 0;
|
|
|
|
maps_init(maps);
|
|
|
|
ret = topology_determine_iolinks(src_sys);
|
|
if (ret) {
|
|
pr_err("Failed to determine iolinks from source (checkpointed) topology\n");
|
|
return ret;
|
|
}
|
|
topology_print(src_sys, "Source ");
|
|
|
|
ret = topology_determine_iolinks(dest_sys);
|
|
if (ret) {
|
|
pr_err("Failed to determine iolinks from destination (local) topology\n");
|
|
return ret;
|
|
}
|
|
topology_print(dest_sys, "Destination");
|
|
|
|
/* Make sure we have same number of GPUs in src and dest */
|
|
list_for_each_entry(node, &src_sys->nodes, listm_system) {
|
|
if (NODE_IS_GPU(node))
|
|
src_num_gpus++;
|
|
}
|
|
list_for_each_entry(node, &dest_sys->nodes, listm_system) {
|
|
if (NODE_IS_GPU(node))
|
|
dest_num_gpus++;
|
|
}
|
|
|
|
if (src_num_gpus != dest_num_gpus) {
|
|
pr_err("Number of devices mismatch (checkpointed:%d local:%d)\n", src_num_gpus, dest_num_gpus);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (src_sys->num_xgmi_groups > dest_sys->num_xgmi_groups) {
|
|
pr_err("Number of xgmi groups mismatch (checkpointed:%d local:%d)\n", src_sys->num_xgmi_groups,
|
|
dest_sys->num_xgmi_groups);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* First try to match the XGMI hives */
|
|
if (src_sys->num_xgmi_groups) {
|
|
if (!match_xgmi_groups(src_sys, dest_sys, &src_sys->xgmi_groups, &dest_sys->xgmi_groups, maps)) {
|
|
pr_err("Failed to match all GPU groups\n");
|
|
return -EINVAL;
|
|
}
|
|
pr_info("Current maps after XGMI groups matched\n");
|
|
maps_print(maps);
|
|
}
|
|
|
|
/* We matched all the XGMI hives, now match remaining GPUs */
|
|
LIST_HEAD(src_nodes);
|
|
LIST_HEAD(dest_nodes);
|
|
|
|
list_for_each_entry(node, &src_sys->nodes, listm_system) {
|
|
if (NODE_IS_GPU(node) && !maps_get_dest_gpu(maps, node->gpu_id))
|
|
list_add(&node->listm_mapping, &src_nodes);
|
|
}
|
|
|
|
list_for_each_entry(node, &dest_sys->nodes, listm_system) {
|
|
if (NODE_IS_GPU(node) && !maps_dest_gpu_mapped(maps, node->gpu_id))
|
|
list_add(&node->listm_mapping, &dest_nodes);
|
|
}
|
|
|
|
if (!map_devices(src_sys, dest_sys, &src_nodes, &dest_nodes, maps)) {
|
|
pr_err("Failed to match remaining nodes\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
pr_info("Maps after all nodes matched\n");
|
|
maps_print(maps);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int topology_gpu_count(struct tp_system *sys)
|
|
{
|
|
struct tp_node *node;
|
|
int count = 0;
|
|
|
|
list_for_each_entry(node, &sys->nodes, listm_system)
|
|
if (NODE_IS_GPU(node))
|
|
count++;
|
|
return count;
|
|
}
|
|
|