2
0
mirror of https://github.com/checkpoint-restore/criu synced 2025-08-31 06:15:24 +00:00
Files
criu/cr-restore.c
Cyrill Gorcunov 48f624ee17 restore: Drop real_pid member from shmem_info structure
It's not needed anymore, it was handing cases
where no fork-with-pid functionality were in
kernel, but now it's simply unneeded.

Also drop redundant getpid() calls.

Passes all tests (except fork test which known to fail).

Signed-off-by: Cyrill Gorcunov <gorcunov@openvz.org>
Acked-by: Pavel Emelyanov <xemul@parllels.com>
2012-01-20 13:08:06 +04:00

1670 lines
34 KiB
C

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>
#include <limits.h>
#include <unistd.h>
#include <errno.h>
#include <dirent.h>
#include <string.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/mman.h>
#include <sys/vfs.h>
#include <sys/ptrace.h>
#include <sys/user.h>
#include <sys/wait.h>
#include <sys/file.h>
#include <sched.h>
#include <sys/sendfile.h>
#include "compiler.h"
#include "types.h"
#include "image.h"
#include "util.h"
#include "log.h"
#include "syscall.h"
#include "restorer.h"
#include "sockets.h"
#include "lock.h"
#include "files.h"
#include "proc_parse.h"
#include "restorer-blob.h"
#include "crtools.h"
/*
* real_pid member formerly served cases when
* no fork-with-pid functionality were in kernel,
* so now it is being kept here just in case if
* we need it again.
*/
#define PIPE_NONE (0 << 0)
#define PIPE_RDONLY (1 << 1)
#define PIPE_WRONLY (1 << 2)
#define PIPE_RDWR (PIPE_RDONLY | PIPE_WRONLY)
#define PIPE_MODE_MASK (0x7)
#define PIPE_CREATED (1 << 3)
#define pipe_is_rw(p) (((p)->status & PIPE_MODE_MASK) == PIPE_RDWR)
struct pipe_info {
unsigned int pipeid;
int pid;
u32 real_pid; /* futex */
int read_fd;
int write_fd;
int status;
u32 users; /* futex */
};
struct shmem_id {
struct shmem_id *next;
unsigned long addr;
unsigned long end;
unsigned long shmid;
};
struct pipe_list_entry {
struct list_head list;
struct pipe_entry e;
off_t offset;
};
static struct task_entries *task_entries;
static void task_add_entry(int pid)
{
int *nr = &task_entries->nr;
struct task_entry *e = &task_entries->entries[*nr];
(*nr)++;
BUG_ON((*nr) * sizeof(struct task_entry) +
sizeof(struct task_entries) > TASK_ENTRIES_SIZE);
e->pid = pid;
e->done = 0;
}
static struct shmem_id *shmem_ids;
static struct shmems *shmems;
static struct pipe_info *pipes;
static int nr_pipes;
static pid_t pstree_pid;
static int restore_task_with_children(int pid);
static void sigreturn_restore(pid_t pstree_pid, pid_t pid);
static void show_saved_shmems(void)
{
int i;
pr_info("\tSaved shmems:\n");
for (i = 0; i < shmems->nr_shmems; i++)
pr_info("\t\tstart: %016lx shmid: %lx pid: %d\n",
shmems->entries[i].start,
shmems->entries[i].shmid,
shmems->entries[i].pid);
}
static void show_saved_pipes(void)
{
int i;
pr_info("\tSaved pipes:\n");
for (i = 0; i < nr_pipes; i++)
pr_info("\t\tpipeid %x pid %d users %d status %d\n",
pipes[i].pipeid, pipes[i].pid,
pipes[i].users, pipes[i].status);
}
static struct pipe_info *find_pipe(unsigned int pipeid)
{
struct pipe_info *pi;
int i;
for (i = 0; i < nr_pipes; i++) {
pi = pipes + i;
if (pi->pipeid == pipeid)
return pi;
}
return NULL;
}
static int shmem_wait_and_open(int pid, struct shmem_info *si)
{
unsigned long time = 1;
char path[128];
int ret;
sprintf(path, "/proc/%d/map_files/%lx-%lx",
si->pid, si->start, si->end);
pr_info("%d: Waiting for [%s] to appear\n", pid, path);
cr_wait_until(&si->lock, 1);
pr_info("%d: Opening shmem [%s] \n", pid, path);
ret = open(path, O_RDWR);
if (ret >= 0)
return ret;
else if (ret < 0)
pr_perror(" %d: Can't stat shmem at %s\n",
si->pid, path);
return ret;
}
static int collect_shmem(int pid, struct shmem_entry *e)
{
int i;
struct shmem_info *entries = shmems->entries;
int nr_shmems = shmems->nr_shmems;
for (i = 0; i < nr_shmems; i++) {
if (entries[i].start != e->start ||
entries[i].shmid != e->shmid)
continue;
if (entries[i].end != e->end) {
pr_err("Bogus shmem\n");
return -1;
}
/*
* Only the shared mapping with a lowest
* pid will be created in real, other processes
* will wait until the kernel propagate this mapping
* into /proc
*/
if (entries[i].pid > pid)
entries[i].pid = pid;
return 0;
}
if ((nr_shmems + 1) * sizeof(struct shmem_info) +
sizeof (struct shmems) >= SHMEMS_SIZE) {
pr_panic("OOM storing shmems\n");
return -1;
}
memset(&shmems->entries[nr_shmems], 0, sizeof(shmems->entries[0]));
entries[nr_shmems].start = e->start;
entries[nr_shmems].end = e->end;
entries[nr_shmems].shmid = e->shmid;
entries[nr_shmems].pid = pid;
cr_wait_init(&entries[nr_shmems].lock);
shmems->nr_shmems++;
return 0;
}
static int collect_pipe(int pid, struct pipe_entry *e, int p_fd)
{
int i;
/*
* All pipes get collected into the one array,
* note the highest PID is the sign of which
* process pipe should be really created, all other
* processes (if they have pipes with pipeid matched)
* will be attached.
*/
for (i = 0; i < nr_pipes; i++) {
if (pipes[i].pipeid != e->pipeid)
continue;
if (pipes[i].pid > pid && !pipe_is_rw(&pipes[i])) {
pipes[i].pid = pid;
pipes[i].status = 0;
pipes[i].read_fd = -1;
pipes[i].write_fd = -1;
}
if (pipes[i].pid == pid) {
switch (e->flags & O_ACCMODE) {
case O_RDONLY:
pipes[i].status |= PIPE_RDONLY;
pipes[i].read_fd = e->fd;
break;
case O_WRONLY:
pipes[i].status |= PIPE_WRONLY;
pipes[i].write_fd = e->fd;
break;
}
} else
pipes[i].users++;
return 0;
}
if ((nr_pipes + 1) * sizeof(struct pipe_info) >= 4096) {
pr_panic("OOM storing pipes\n");
return -1;
}
memset(&pipes[nr_pipes], 0, sizeof(pipes[nr_pipes]));
pipes[nr_pipes].pipeid = e->pipeid;
pipes[nr_pipes].pid = pid;
pipes[nr_pipes].users = 0;
pipes[nr_pipes].read_fd = -1;
pipes[nr_pipes].write_fd = -1;
switch (e->flags & O_ACCMODE) {
case O_RDONLY:
pipes[nr_pipes].status = PIPE_RDONLY;
pipes[i].read_fd = e->fd;
break;
case O_WRONLY:
pipes[nr_pipes].status = PIPE_WRONLY;
pipes[i].write_fd = e->fd;
break;
}
nr_pipes++;
return 0;
}
static int prepare_shmem_pid(int pid)
{
int sh_fd;
sh_fd = open_image_ro(CR_FD_SHMEM, pid);
if (sh_fd < 0)
return -1;
while (1) {
struct shmem_entry e;
int ret;
ret = read(sh_fd, &e, sizeof(e));
if (ret == 0)
break;
if (ret != sizeof(e)) {
pr_perror("%d: Can't read shmem entry\n", pid);
return -1;
}
if (collect_shmem(pid, &e))
return -1;
}
close(sh_fd);
return 0;
}
static int prepare_pipes_pid(int pid)
{
int p_fd;
p_fd = open_image_ro(CR_FD_PIPES, pid);
if (p_fd < 0)
return -1;
while (1) {
struct pipe_entry e;
int ret;
ret = read(p_fd, &e, sizeof(e));
if (ret == 0)
break;
if (ret != sizeof(e)) {
pr_perror("%d: Read pipes failed %d (expected %li)\n",
pid, ret, sizeof(e));
return -1;
}
if (collect_pipe(pid, &e, p_fd))
return -1;
if (e.bytes)
lseek(p_fd, e.bytes, SEEK_CUR);
}
close(p_fd);
return 0;
}
static int shmem_remap(void *old_addr, void *new_addr, unsigned long size)
{
char path[PATH_MAX];
int fd;
void *ret;
sprintf(path, "/proc/self/map_files/%p-%p",
old_addr, (void *)old_addr + size);
fd = open(path, O_RDWR);
if (fd < 0) {
pr_perror("open(%s) failed\n", path);
return -1;
}
ret = mmap(new_addr, size, PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);
if (ret != new_addr) {
pr_perror("mmap failed\n");
return -1;
}
close(fd);
return 0;
}
static int prepare_shared(int ps_fd)
{
pr_info("Preparing info about shared resources\n");
shmems = mmap(NULL, SHMEMS_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, 0, 0);
if (shmems == MAP_FAILED) {
pr_perror("Can't map shmem\n");
return -1;
}
shmems->nr_shmems = 0;
task_entries = mmap(NULL, TASK_ENTRIES_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, 0, 0);
if (task_entries == MAP_FAILED) {
pr_perror("Can't map shmem\n");
return -1;
}
task_entries->nr = 0;
task_entries->start = CR_STATE_RESTORE;
pipes = mmap(NULL, 4096, PROT_READ | PROT_WRITE, MAP_SHARED | MAP_ANON, 0, 0);
if (pipes == MAP_FAILED) {
pr_perror("Can't map pipes\n");
return -1;
}
if (prepare_fdinfo_global())
return -1;
while (1) {
struct pstree_entry e;
int ret;
ret = read(ps_fd, &e, sizeof(e));
if (ret == 0)
break;
if (ret != sizeof(e)) {
pr_perror("Can't read pstree_entry\n");
return -1;
}
if (prepare_shmem_pid(e.pid))
return -1;
if (prepare_pipes_pid(e.pid))
return -1;
if (prepare_fd_pid(e.pid))
return -1;
task_add_entry(e.pid);
lseek(ps_fd, e.nr_children * sizeof(u32) + e.nr_threads * sizeof(u32), SEEK_CUR);
}
task_entries->nr_in_progress = task_entries->nr;
lseek(ps_fd, sizeof(u32), SEEK_SET);
show_saved_shmems();
show_saved_pipes();
return 0;
}
static unsigned long find_shmem_id(unsigned long addr)
{
struct shmem_id *si;
for (si = shmem_ids; si; si = si->next)
if (si->addr <= addr && si->end >= addr)
return si->shmid;
return 0;
}
static int save_shmem_id(struct shmem_entry *e)
{
struct shmem_id *si;
si = xmalloc(sizeof(*si));
if (!si)
return -1;
si->addr = e->start;
si->end = e->end;
si->shmid = e->shmid;
si->next = shmem_ids;
shmem_ids = si;
return 0;
}
static int prepare_shmem(int pid)
{
int sh_fd;
sh_fd = open_image_ro(CR_FD_SHMEM, pid);
if (sh_fd < 0)
return -1;
while (1) {
struct shmem_entry e;
int ret;
ret = read(sh_fd, &e, sizeof(e));
if (ret == 0)
break;
if (ret != sizeof(e)) {
pr_perror("%d: Can't read shmem entry\n", pid);
return -1;
}
if (save_shmem_id(&e))
return -1;
}
close(sh_fd);
return 0;
}
static struct shmem_info *
find_shmem(struct shmems *shms, unsigned long start, unsigned long shmid)
{
struct shmem_info *si;
int i;
for (i = 0; i < shms->nr_shmems; i++) {
si = &shms->entries[i];
if (si->start == start &&
si->end > start &&
si->shmid == shmid)
return si;
}
return NULL;
}
static struct shmem_info *
find_shmem_page(struct shmems *shms, unsigned long addr, unsigned long shmid)
{
struct shmem_info *si;
int i;
for (i = 0; i < shms->nr_shmems; i++) {
si = &shms->entries[i];
if (si->start <= addr &&
si->end > addr &&
si->shmid == shmid)
return si;
}
return NULL;
}
static int try_fixup_shared_map(int pid, struct vma_entry *vi, int fd)
{
struct shmem_info *si;
unsigned long shmid;
shmid = find_shmem_id(vi->start);
if (!shmid)
return 0;
si = find_shmem(shmems, vi->start, shmid);
pr_info("%d: Search for %016lx shmem %p/%d\n", pid, vi->start, si, si ? si->pid : -1);
if (!si) {
pr_err("Can't find my shmem %016lx\n", vi->start);
return -1;
}
if (si->pid != pid) {
int sh_fd;
sh_fd = shmem_wait_and_open(pid, si);
pr_info("%d: Fixing %lx vma to %lx/%d shmem -> %d\n",
pid, vi->start, si->shmid, si->pid, sh_fd);
if (sh_fd < 0) {
pr_perror("%d: Can't open shmem\n", pid);
return -1;
}
lseek(fd, -sizeof(*vi), SEEK_CUR);
vi->fd = sh_fd;
pr_info("%d: Fixed %lx vma %lx/%d shmem -> %d\n",
pid, vi->start, si->shmid, si->pid, sh_fd);
if (write(fd, vi, sizeof(*vi)) != sizeof(*vi)) {
pr_perror("%d: Can't write img\n", pid);
return -1;
}
}
return 0;
}
static int fixup_vma_fds(int pid, int fd)
{
int offset = GET_FILE_OFF_AFTER(struct core_entry);
lseek(fd, offset, SEEK_SET);
while (1) {
struct vma_entry vi;
int ret = 0;
ret = read(fd, &vi, sizeof(vi));
if (ret < 0) {
pr_perror("%d: Can't read vma_entry\n", pid);
} else if (ret != sizeof(vi)) {
pr_err("%d: Incomplete vma_entry (%d != %d)\n",
pid, ret, sizeof(vi));
return -1;
}
if (final_vma_entry(&vi))
return 0;
if (!(vma_entry_is(&vi, VMA_AREA_REGULAR)))
continue;
if (vma_entry_is(&vi, VMA_FILE_PRIVATE) ||
vma_entry_is(&vi, VMA_FILE_SHARED) ||
vma_entry_is(&vi, VMA_ANON_SHARED)) {
pr_info("%d: Fixing %016lx-%016lx %016lx vma\n",
pid, vi.start, vi.end, vi.pgoff);
if (try_fixup_file_map(pid, &vi, fd))
return -1;
if (try_fixup_shared_map(pid, &vi, fd))
return -1;
}
}
}
static inline bool should_restore_page(int pid, unsigned long va)
{
struct shmem_info *si;
unsigned long shmid;
/*
* If this is not a shmem virtual address
* we should restore such page.
*/
shmid = find_shmem_id(va);
if (!shmid)
return true;
si = find_shmem_page(shmems, va, shmid);
return si->pid == pid;
}
static char zpage[PAGE_SIZE];
static int fixup_pages_data(int pid, int fd)
{
int shfd;
u64 va;
pr_info("%d: Reading shmem pages img\n", pid);
shfd = open_image_ro(CR_FD_PAGES_SHMEM, pid);
if (shfd < 0)
return -1;
/*
* Find out the last page, which must be a zero page.
*/
lseek(fd, -sizeof(struct page_entry), SEEK_END);
read(fd, &va, sizeof(va));
if (va) {
pr_panic("Zero-page expected but got %lx\n", (unsigned long)va);
return -1;
}
/*
* Since we're to update pages we suppress old zero-page
* and will write new one at the end.
*/
lseek(fd, -sizeof(struct page_entry), SEEK_END);
while (1) {
int ret;
ret = read(shfd, &va, sizeof(va));
if (ret == 0)
break;
if (ret < 0 || ret != sizeof(va)) {
pr_perror("%d: Can't read virtual address\n", pid);
return -1;
}
if (va == 0)
break;
if (!should_restore_page(pid, va)) {
lseek(shfd, PAGE_SIZE, SEEK_CUR);
continue;
}
pr_info("%d: Restoring shared page: %16lx\n",
pid, va);
write(fd, &va, sizeof(va));
sendfile(fd, shfd, NULL, PAGE_SIZE);
}
close(shfd);
va = 0;
write(fd, &va, sizeof(va));
write(fd, zpage, sizeof(zpage));
return 0;
}
static int prepare_image_maps(int fd, int pid)
{
pr_info("%d: Fixing maps\n", pid);
if (fixup_vma_fds(pid, fd))
return -1;
if (fixup_pages_data(pid, fd))
return -1;
return 0;
}
static int prepare_and_sigreturn(int pid)
{
char path[PATH_MAX];
int fd, fd_new;
struct stat buf;
fd = open_image_ro_nocheck(FMT_FNAME_CORE, pid);
if (fd < 0)
return -1;
if (fstat(fd, &buf)) {
pr_perror("%d: Can't stat\n", pid);
return -1;
}
if (get_image_path(path, sizeof(path), FMT_FNAME_CORE_OUT, pid))
return -1;
fd_new = open(path, O_RDWR | O_CREAT | O_TRUNC, CR_FD_PERM);
if (fd_new < 0) {
pr_perror("%d: Can't open new image\n", pid);
return -1;
}
pr_info("%d: Preparing restore image %s (%li bytes)\n", pid, path, buf.st_size);
if (sendfile(fd_new, fd, NULL, buf.st_size) != buf.st_size) {
pr_perror("%d: sendfile failed\n", pid);
return -1;
}
close(fd);
if (fstat(fd_new, &buf)) {
pr_perror("%d: Can't stat\n", pid);
return -1;
}
pr_info("fd_new: %li bytes\n", buf.st_size);
if (prepare_image_maps(fd_new, pid))
return -1;
close(fd_new);
sigreturn_restore(pstree_pid, pid);
return 0;
}
#define SETFL_MASK (O_APPEND | O_NONBLOCK | O_NDELAY | O_DIRECT | O_NOATIME)
static int set_fd_flags(int fd, int flags)
{
int old;
old = fcntl(fd, F_GETFL, 0);
if (old < 0)
return old;
flags = (SETFL_MASK & flags) | (old & ~SETFL_MASK);
return fcntl(fd, F_SETFL, flags);
}
static int reopen_pipe(int src, int *dst, int *other, int *pipes_fd)
{
int tmp;
if (*dst != -1) {
if (move_img_fd(other, *dst))
return -1;
if (move_img_fd(pipes_fd, *dst))
return -1;
return reopen_fd_as(*dst, src);
}
*dst = src;
return 0;
}
static int restore_pipe_data(struct pipe_entry *e, int wfd, int pipes_fd)
{
int ret, size = 0;
pr_info("\t%x: Splicing data to %d\n", e->pipeid, wfd);
while (size != e->bytes) {
ret = splice(pipes_fd, NULL, wfd, NULL, e->bytes, 0);
if (ret < 0) {
pr_perror("\t%x: Error splicing data\n", e->pipeid);
return -1;
}
if (ret == 0) {
pr_err("\t%x: Wanted to restore %d bytes, but got %d\n",
e->pipeid, e->bytes, size);
return -1;
}
size =+ ret;
}
return 0;
}
static int create_pipe(int pid, struct pipe_entry *e, struct pipe_info *pi, int *pipes_fd)
{
unsigned long time = 1000;
int pfd[2], tmp;
pr_info("\t%d: Creating pipe %x%s\n", pid, e->pipeid, pipe_is_rw(pi) ? "(rw)" : "");
if (pipe(pfd) < 0) {
pr_perror("%d: Can't create pipe\n", pid);
return -1;
}
if (restore_pipe_data(e, pfd[1], *pipes_fd))
return -1;
if (reopen_pipe(pfd[0], &pi->read_fd, &pfd[1], pipes_fd))
return -1;
if (reopen_pipe(pfd[1], &pi->write_fd, &pi->read_fd, pipes_fd))
return -1;
cr_wait_set(&pi->real_pid, pid);
pi->status |= PIPE_CREATED;
pr_info("\t%d: Done, waiting for others (users %d) on %d pid with r:%d w:%d\n",
pid, pi->users, pi->real_pid, pi->read_fd, pi->write_fd);
if (!pipe_is_rw(pi)) {
pr_info("\t%d: Waiting for %x pipe to attach (%d users left)\n",
pid, e->pipeid, pi->users);
cr_wait_until(&pi->users, 0);
if ((e->flags & O_ACCMODE) == O_WRONLY)
close_safe(&pi->read_fd);
else
close_safe(&pi->write_fd);
}
tmp = 0;
if (pi->write_fd != e->fd && pi->read_fd != e->fd) {
if (move_img_fd(pipes_fd, e->fd))
return -1;
switch (e->flags & O_ACCMODE) {
case O_WRONLY:
tmp = dup2(pi->write_fd, e->fd);
break;
case O_RDONLY:
tmp = dup2(pi->read_fd, e->fd);
break;
}
}
if (tmp < 0)
return -1;
tmp = set_fd_flags(e->fd, e->flags);
if (tmp < 0)
return -1;
pr_info("\t%d: All is ok - reopening pipe for %d\n", pid, e->fd);
return 0;
}
static int attach_pipe(int pid, struct pipe_entry *e, struct pipe_info *pi, int *pipes_fd)
{
char path[128];
int tmp, fd;
pr_info("\t%d: Wating for pipe %x to appear\n",
pid, e->pipeid);
cr_wait_while(&pi->real_pid, 0);
if (move_img_fd(pipes_fd, e->fd))
return -1;
if ((e->flags & O_ACCMODE) == O_WRONLY)
tmp = pi->write_fd;
else
tmp = pi->read_fd;
if (pid == pi->pid) {
if (tmp != e->fd)
tmp = dup2(tmp, e->fd);
if (tmp < 0) {
pr_perror("%d: Can't duplicate %d->%d\n",
pid, tmp, e->fd);
return -1;
}
goto out;
}
sprintf(path, "/proc/%d/fd/%d", pi->real_pid, tmp);
pr_info("\t%d: Attaching pipe %s (%d users left)\n",
pid, path, pi->users - 1);
fd = open(path, e->flags);
if (fd < 0) {
pr_perror("%d: Can't attach pipe\n", pid);
return -1;
}
pr_info("\t%d: Done, reopening for %d\n", pid, e->fd);
if (reopen_fd_as(e->fd, fd))
return -1;
cr_wait_dec(&pi->users);
out:
tmp = set_fd_flags(e->fd, e->flags);
if (tmp < 0)
return -1;
return 0;
}
static int open_pipe(int pid, struct pipe_entry *e, int *pipes_fd)
{
struct pipe_info *pi;
pr_info("\t%d: Opening pipe %x on fd %d\n", pid, e->pipeid, e->fd);
pi = find_pipe(e->pipeid);
if (!pi) {
pr_err("BUG: can't find my pipe %x\n", e->pipeid);
return -1;
}
/*
* This is somewhat tricky -- in case if a process uses
* both pipe ends the pipe should be created but only one
* pipe end get connected immediately in create_pipe the
* other pipe end should be connected via pipe attaching.
*/
if (pi->pid == pid && !(pi->status & PIPE_CREATED))
return create_pipe(pid, e, pi, pipes_fd);
else
return attach_pipe(pid, e, pi, pipes_fd);
}
static rt_sigaction_t sigchld_act;
static int prepare_sigactions(int pid)
{
rt_sigaction_t act, oact;
int fd_sigact, ret;
struct sa_entry e;
int sig, i;
fd_sigact = open_image_ro(CR_FD_SIGACT, pid);
if (fd_sigact < 0)
return -1;
for (sig = 1; sig < SIGMAX; sig++) {
if (sig == SIGKILL || sig == SIGSTOP)
continue;
ret = read(fd_sigact, &e, sizeof(e));
if (ret != sizeof(e)) {
pr_err("%d: Bad sigaction entry: %d (%m)\n", pid, ret);
ret = -1;
goto err;
}
ASSIGN_TYPED(act.rt_sa_handler, e.sigaction);
ASSIGN_TYPED(act.rt_sa_flags, e.flags);
ASSIGN_TYPED(act.rt_sa_restorer, e.restorer);
ASSIGN_TYPED(act.rt_sa_mask.sig[0], e.mask);
if (sig == SIGCHLD) {
sigchld_act = act;
continue;
}
/*
* A pure syscall is used, because glibc
* sigaction overwrites se_restorer.
*/
ret = sys_sigaction(sig, &act, &oact);
if (ret == -1) {
pr_err("%d: Can't restore sigaction: %m\n", pid);
goto err;
}
}
err:
close(fd_sigact);
return ret;
}
static int prepare_pipes(int pid)
{
u32 err = -1, ret;
int pipes_fd;
struct pipe_list_entry *le, *buf;
int buf_size = PAGE_SIZE;
int nr = 0;
LIST_HEAD(head);
pr_info("%d: Opening pipes\n", pid);
pipes_fd = open_image_ro(CR_FD_PIPES, pid);
if (pipes_fd < 0)
return -1;
buf = xmalloc(buf_size);
if (!buf) {
close(pipes_fd);
return -1;
}
while (1) {
struct list_head *cur;
struct pipe_list_entry *cur_entry;
le = &buf[nr];
ret = read(pipes_fd, &le->e, sizeof(le->e));
if (ret == 0)
break;
if (ret != sizeof(le->e)) {
pr_perror("%d: Bad pipes entry\n", pid);
goto err_free;
}
list_for_each(cur, &head) {
cur_entry = list_entry(cur, struct pipe_list_entry, list);
if (cur_entry->e.pipeid > le->e.pipeid)
break;
}
list_add_tail(&le->list, cur);
le->offset = lseek(pipes_fd, 0, SEEK_CUR);
lseek(pipes_fd, le->e.bytes, SEEK_CUR);
nr++;
if (nr > buf_size / sizeof(*le)) {
pr_err("OOM storing pipes");
goto err_free;
}
}
list_for_each_entry(le, &head, list) {
lseek(pipes_fd, le->offset, SEEK_SET);
if (open_pipe(pid, &le->e, &pipes_fd))
goto err_free;
}
err = 0;
err_free:
free(buf);
close(pipes_fd);
return err;
}
static int restore_one_task(int pid)
{
pr_info("%d: Restoring resources\n", pid);
if (prepare_pipes(pid))
return -1;
if (prepare_sockets(pid))
return -1;
if (prepare_fds(pid))
return -1;
if (prepare_shmem(pid))
return -1;
if (prepare_sigactions(pid))
return -1;
return prepare_and_sigreturn(pid);
}
static inline int fork_with_pid(int pid)
{
int ret = -1, fd = -1;
char buf[32];
snprintf(buf, sizeof(buf), "%d", pid - 1);
fd = open(LAST_PID_PATH, O_RDWR);
if (fd < 0) {
pr_perror("%d: Can't open %s\n", pid, LAST_PID_PATH);
goto err;
}
if (flock(fd, LOCK_EX)) {
pr_perror("%d: Can't lock %s\n", pid, LAST_PID_PATH);
goto err;
}
write_safe(fd, buf, strlen(buf), err_unlock);
ret = fork();
if (ret < 0) {
pr_perror("Can't fork for %d\n", pid);
goto err_unlock;
} else if (!ret) {
int my_pid = getpid();
close_safe(&fd);
if (my_pid != pid) {
pr_err("%d: Pids do not match got %d but expected %d\n",
my_pid, my_pid, pid);
return -1;
}
/*
* We should never return here.
*/
ret = restore_task_with_children(pid);
pr_err("%d: Something failed with code %d\n", pid, ret);
exit(1);
}
err_unlock:
if (flock(fd, LOCK_UN))
pr_perror("%d: Can't unlock %s\n", pid, LAST_PID_PATH);
err:
close_safe(&fd);
return ret;
}
static void sigchld_handler(int signal, siginfo_t *siginfo, void *data)
{
int status, pid;
if (siginfo->si_code & CLD_EXITED)
pr_err("%d exited, status=%d\n",
siginfo->si_pid, siginfo->si_status);
else if (siginfo->si_code & CLD_KILLED)
pr_err("%d killed by signal %d\n",
siginfo->si_pid, siginfo->si_status);
cr_wait_set(&task_entries->nr_in_progress, -1);
}
static int restore_task_with_children(int pid)
{
int *pids;
int fd, ret, i;
struct pstree_entry e;
sigset_t blockmask;
/*
* The block mask will be restored in sigresturn.
*
* TODO: This code should be removed, when a freezer will be added.
*/
sigfillset(&blockmask);
sigdelset(&blockmask, SIGCHLD);
ret = sigprocmask(SIG_BLOCK, &blockmask, NULL);
if (ret) {
pr_perror("%d: Can't block signals\n", pid);
exit(1);
}
pr_info("%d: Starting restore\n", pid);
fd = open_image_ro_nocheck(FMT_FNAME_PSTREE, pstree_pid);
if (fd < 0) {
pr_perror("%d: Can't reopen pstree image\n", pid);
exit(1);
}
lseek(fd, sizeof(u32), SEEK_SET);
while (1) {
ret = read(fd, &e, sizeof(e));
if (ret == 0)
break;
if (ret != sizeof(e)) {
pr_err("%d: Read returned %d\n", pid, ret);
if (ret < 0)
pr_perror("%d: Can't read pstree\n", pid);
exit(1);
}
if (e.pid != pid) {
lseek(fd, e.nr_children * sizeof(u32) + e.nr_threads * sizeof(u32), SEEK_CUR);
continue;
}
break;
}
if (e.nr_children > 0) {
i = e.nr_children * sizeof(int);
pids = xmalloc(i);
if (!pids)
exit(1);
ret = read(fd, pids, i);
if (ret != i) {
pr_perror("%d: Can't read children pids\n", pid);
exit(1);
}
close(fd);
pr_info("%d: Restoring %d children:\n", pid, e.nr_children);
for (i = 0; i < e.nr_children; i++) {
pr_info("\tFork %d from %d\n", pids[i], pid);
ret = fork_with_pid(pids[i]);
if (ret < 0)
exit(1);
}
} else
close(fd);
return restore_one_task(pid);
}
static int restore_root_task(int fd, bool detach)
{
struct pstree_entry e;
int ret, i;
struct sigaction act;
ret = read(fd, &e, sizeof(e));
if (ret != sizeof(e)) {
pr_perror("Can't read root pstree entry\n");
return -1;
}
close(fd);
ret = sigaction(SIGCHLD, NULL, &act);
if (ret < 0) {
perror("sigaction() failed\n");
return -1;
}
act.sa_flags |= SA_NOCLDWAIT | SA_NOCLDSTOP | SA_SIGINFO | SA_RESTART;
act.sa_sigaction = sigchld_handler;
ret = sigaction(SIGCHLD, &act, NULL);
if (ret < 0) {
perror("sigaction() failed\n");
return -1;
}
pr_info("Forking root with %d pid\n", e.pid);
ret = fork_with_pid(e.pid);
if (ret < 0)
return -1;
pr_info("Wait until all tasks are restored");
ret = cr_wait_until_greater(&task_entries->nr_in_progress, 0);
if (ret < 0) {
pr_err("Someone can't be restored\n");
for (i = 0; i < task_entries->nr; i++)
kill(task_entries->entries[i].pid, SIGKILL);
return 1;
}
for (i = 0; i < task_entries->nr; i++) {
pr_info("Wait while the task %d restored\n",
task_entries->entries[i].pid);
cr_wait_while(&task_entries->entries[i].done, 0);
}
cr_wait_set(&task_entries->nr_in_progress, task_entries->nr);
cr_wait_set(&task_entries->start, CR_STATE_RESTORE_SIGCHLD);
cr_wait_until(&task_entries->nr_in_progress, 0);
pr_info("Go on!!!\n");
cr_wait_set(&task_entries->start, CR_STATE_COMPLETE);
if (!detach)
wait(NULL);
return 0;
}
static int restore_all_tasks(pid_t pid, bool detach)
{
int pstree_fd;
u32 type = 0;
pstree_fd = open_image_ro(CR_FD_PSTREE, pstree_pid);
if (pstree_fd < 0)
return -1;
if (prepare_shared(pstree_fd))
return -1;
return restore_root_task(pstree_fd, detach);
}
static long restorer_get_vma_hint(pid_t pid, struct list_head *self_vma_list, long vma_len)
{
struct vma_area *vma_area;
long prev_vma_end, hint;
struct vma_entry vma;
int fd = -1, ret;
hint = -1;
/*
* Here we need some heuristics -- the VMA which restorer will
* belong to should not be unmapped, so we need to gueess out
* where to put it in.
*
* Yes, I know it's an O(n^2) algorithm, but usually there are
* not that many VMAs presented so instead of consuming memory
* better to stick with it.
*/
fd = open_image_ro_nocheck(FMT_FNAME_CORE, pid);
if (fd < 0)
goto err_or_found;
prev_vma_end = 0;
lseek(fd, GET_FILE_OFF_AFTER(struct core_entry), SEEK_SET);
while (1) {
ret = read(fd, &vma, sizeof(vma));
if (ret && ret != sizeof(vma)) {
pr_perror("Can't read vma entry from core-%d\n", pid);
goto err_or_found;
}
if (!prev_vma_end) {
prev_vma_end = vma.end;
continue;
}
if ((vma.start - prev_vma_end) > vma_len) {
list_for_each_entry(vma_area, self_vma_list, list) {
if (vma_area->vma.start <= prev_vma_end &&
vma_area->vma.end >= prev_vma_end)
goto err_or_found;
}
hint = prev_vma_end;
goto err_or_found;
} else
prev_vma_end = vma.end;
}
err_or_found:
if (fd >= 0)
close(fd);
return hint;
}
static void sigreturn_restore(pid_t pstree_pid, pid_t pid)
{
long restore_code_len, restore_task_vma_len;
long restore_thread_vma_len;
void *exec_mem = MAP_FAILED;
void *restore_thread_exec_start;
void *restore_task_exec_start;
void *restore_code_start;
void *shmems_ref;
long new_sp, exec_mem_hint;
long ret;
struct task_restore_core_args *task_args;
struct thread_restore_args *thread_args;
char self_vmas_path[PATH_MAX];
LIST_HEAD(self_vma_list);
struct vma_area *vma_area;
int fd_self_vmas = -1;
int fd_core = -1;
int num;
struct pstree_entry pstree_entry;
int *fd_core_threads;
int fd_pstree = -1;
int pid_dir;
pr_info("%d: Restore via sigreturn\n", pid);
restore_code_len = 0;
restore_task_vma_len = 0;
restore_thread_vma_len = 0;
pid_dir = open_pid_proc(pid);
if (pid_dir < 0)
goto err;
ret = parse_maps(pid, pid_dir, &self_vma_list, false);
close(pid_dir);
if (ret)
goto err;
/* pr_info_vma_list(&self_vma_list); */
BUILD_BUG_ON(sizeof(struct task_restore_core_args) & 1);
BUILD_BUG_ON(sizeof(struct thread_restore_args) & 1);
BUILD_BUG_ON(SHMEMS_SIZE % PAGE_SIZE);
BUILD_BUG_ON(TASK_ENTRIES_SIZE % PAGE_SIZE);
fd_pstree = open_image_ro_nocheck(FMT_FNAME_PSTREE, pstree_pid);
if (fd_pstree < 0)
goto err;
fd_core = open_image_ro_nocheck(FMT_FNAME_CORE_OUT, pid);
if (fd_core < 0)
pr_perror("Can't open core-out-%d\n", pid);
if (get_image_path(self_vmas_path, sizeof(self_vmas_path),
FMT_FNAME_VMAS, pid))
goto err;
fd_self_vmas = open(self_vmas_path, O_CREAT | O_RDWR | O_TRUNC, CR_FD_PERM);
/*
* This is a temporary file used to pass vma info to
* restorer code, thus unlink it early to make it disappear
* as soon as we close it
*/
// unlink(self_vmas_path);
if (fd_self_vmas < 0) {
pr_perror("Can't open %s\n", self_vmas_path);
goto err;
}
num = 0;
list_for_each_entry(vma_area, &self_vma_list, list) {
ret = write(fd_self_vmas, &vma_area->vma, sizeof(vma_area->vma));
if (ret != sizeof(vma_area->vma)) {
pr_perror("\nUnable to write vma entry (%li written)\n", num);
goto err;
}
num++;
}
free_mappings(&self_vma_list);
restore_code_len = sizeof(restorer_blob);
restore_code_len = round_up(restore_code_len, 16);
restore_task_vma_len = round_up(restore_code_len + sizeof(*task_args), PAGE_SIZE);
/*
* Thread statistics
*/
lseek(fd_pstree, MAGIC_OFFSET, SEEK_SET);
while (1) {
ret = read_ptr_safe_eof(fd_pstree, &pstree_entry, err);
if (!ret) {
pr_perror("Pid %d not found in process tree\n", pid);
goto err;
}
if (pstree_entry.pid != pid) {
lseek(fd_pstree,
(pstree_entry.nr_children +
pstree_entry.nr_threads) *
sizeof(u32), SEEK_CUR);
continue;
}
if (!pstree_entry.nr_threads)
break;
/*
* Compute how many memory we will need
* to restore all threads, every thread
* requires own stack and heap, it's ~40K
* per thread.
*/
restore_thread_vma_len = sizeof(*thread_args) * pstree_entry.nr_threads;
restore_thread_vma_len = round_up(restore_thread_vma_len, 16);
pr_info("%d: %d threads require %dK of memory\n",
pid, pstree_entry.nr_threads,
KBYTES(restore_thread_vma_len));
break;
}
restore_thread_vma_len = round_up(restore_thread_vma_len, PAGE_SIZE);
exec_mem_hint = restorer_get_vma_hint(pid, &self_vma_list,
restore_task_vma_len +
restore_thread_vma_len +
SHMEMS_SIZE + TASK_ENTRIES_SIZE);
if (exec_mem_hint == -1) {
pr_err("No suitable area for task_restore bootstrap (%dK)\n",
restore_task_vma_len + restore_thread_vma_len);
goto err;
} else {
pr_info("Found bootstrap VMA hint at: %lx (needs ~%dK)\n",
exec_mem_hint,
KBYTES(restore_task_vma_len + restore_thread_vma_len));
}
/* VMA we need to run task_restore code */
exec_mem = mmap((void *)exec_mem_hint,
restore_task_vma_len + restore_thread_vma_len,
PROT_READ | PROT_WRITE | PROT_EXEC,
MAP_PRIVATE | MAP_ANON, 0, 0);
if (exec_mem == MAP_FAILED) {
pr_err("Can't mmap section for restore code\n");
goto err;
}
/*
* Prepare a memory map for restorer. Note a thread space
* might be completely unused so it's here just for convenience.
*/
restore_code_start = exec_mem;
restore_thread_exec_start = restore_code_start + restorer_blob_offset__restore_thread;
restore_task_exec_start = restore_code_start + restorer_blob_offset__restore_task;
task_args = restore_code_start + restore_code_len;
thread_args = restore_thread_exec_start;
memzero_p(task_args);
memzero_p(thread_args);
/*
* Code at a new place.
*/
memcpy(restore_code_start, &restorer_blob, sizeof(restorer_blob));
/*
* Adjust stack.
*/
new_sp = RESTORE_ALIGN_STACK((long)task_args->mem_zone.stack, sizeof(task_args->mem_zone.stack));
/*
* Get a reference to shared memory area which is
* used to signal if shmem restoration complete
* from low-level restore code.
*
* This shmem area is mapped right after the whole area of
* sigreturn rt code. Note we didn't allocated it before
* but this area is taken into account for 'hint' memory
* address.
*/
shmems_ref = (struct shmems *)(exec_mem_hint +
restore_task_vma_len +
restore_thread_vma_len);
ret = shmem_remap(shmems, shmems_ref, SHMEMS_SIZE);
if (ret < 0)
goto err;
task_args->shmems = shmems_ref;
shmems_ref = (struct shmems *)(exec_mem_hint +
restore_task_vma_len +
restore_thread_vma_len +
SHMEMS_SIZE);
ret = shmem_remap(task_entries, shmems_ref, TASK_ENTRIES_SIZE);
if (ret < 0)
goto err;
task_args->task_entries = shmems_ref;
/*
* Arguments for task restoration.
*/
task_args->pid = pid;
task_args->fd_core = fd_core;
task_args->fd_self_vmas = fd_self_vmas;
task_args->logfd = get_logfd();
task_args->sigchld_act = sigchld_act;
cr_mutex_init(&task_args->rst_lock);
if (pstree_entry.nr_threads) {
int i;
/*
* Now prepare run-time data for threads restore.
*/
task_args->nr_threads = pstree_entry.nr_threads;
task_args->clone_restore_fn = (void *)restore_thread_exec_start;
task_args->thread_args = thread_args;
/*
* Fill up per-thread data.
*/
lseek(fd_pstree, sizeof(u32) * pstree_entry.nr_children, SEEK_CUR);
for (i = 0; i < pstree_entry.nr_threads; i++) {
read_ptr_safe(fd_pstree, &thread_args[i].pid, err);
/* skip self */
if (thread_args[i].pid == pid)
continue;
/* Core files are to be opened */
thread_args[i].fd_core = open_image_ro_nocheck(FMT_FNAME_CORE, thread_args[i].pid);
if (thread_args[i].fd_core < 0)
goto err;
thread_args[i].rst_lock = &task_args->rst_lock;
pr_info("Thread %4d stack %8p heap %8p rt_sigframe %8p\n",
i, (long)thread_args[i].mem_zone.stack,
thread_args[i].mem_zone.heap,
thread_args[i].mem_zone.rt_sigframe);
}
}
pr_info("task_args: %p\n"
"task_args->pid: %d\n"
"task_args->fd_core: %d\n"
"task_args->fd_self_vmas: %d\n"
"task_args->nr_threads: %d\n"
"task_args->clone_restore_fn: %p\n"
"task_args->thread_args: %p\n",
task_args, task_args->pid,
task_args->fd_core, task_args->fd_self_vmas,
task_args->nr_threads, task_args->clone_restore_fn,
task_args->thread_args);
close_safe(&fd_pstree);
/*
* An indirect call to task_restore, note it never resturns
* and restoreing core is extremely destructive.
*/
asm volatile(
"movq %0, %%rbx \n"
"movq %1, %%rax \n"
"movq %2, %%rdi \n"
"movq %%rbx, %%rsp \n"
"callq *%%rax \n"
:
: "g"(new_sp),
"g"(restore_task_exec_start),
"g"(task_args)
: "rsp", "rdi", "rsi", "rbx", "rax", "memory");
err:
free_mappings(&self_vma_list);
close_safe(&fd_pstree);
close_safe(&fd_core);
close_safe(&fd_self_vmas);
if (exec_mem != MAP_FAILED)
munmap(exec_mem, restore_task_vma_len + restore_thread_vma_len);
/* Just to be sure */
exit(1);
}
int cr_restore_tasks(pid_t pid, struct cr_options *opts)
{
pstree_pid = pid;
if (opts->leader_only)
return restore_one_task(pid);
return restore_all_tasks(pid, opts->restore_detach);
}