mirror of
https://github.com/openai/gpt-2-output-dataset
synced 2025-08-22 09:58:07 +00:00
306 lines
12 KiB
Python
306 lines
12 KiB
Python
"""Training code for the detector model"""
|
|
|
|
import argparse
|
|
import os
|
|
import subprocess
|
|
import sys
|
|
from itertools import count
|
|
from multiprocessing import Process
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import nn
|
|
from torch.nn.parallel import DistributedDataParallel
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader, DistributedSampler, RandomSampler
|
|
from tqdm import tqdm
|
|
from transformers import *
|
|
|
|
from .dataset import Corpus, EncodedDataset
|
|
from .download import download
|
|
from .utils import summary, distributed
|
|
|
|
|
|
def setup_distributed(port=29500):
|
|
if not dist.is_available() or not torch.cuda.is_available() or torch.cuda.device_count() <= 1:
|
|
return 0, 1
|
|
|
|
if 'MPIR_CVAR_CH3_INTERFACE_HOSTNAME' in os.environ:
|
|
from mpi4py import MPI
|
|
mpi_rank = MPI.COMM_WORLD.Get_rank()
|
|
mpi_size = MPI.COMM_WORLD.Get_size()
|
|
|
|
os.environ["MASTER_ADDR"] = '127.0.0.1'
|
|
os.environ["MASTER_PORT"] = str(port)
|
|
|
|
dist.init_process_group(backend="nccl", world_size=mpi_size, rank=mpi_rank)
|
|
return mpi_rank, mpi_size
|
|
|
|
dist.init_process_group(backend="nccl", init_method="env://")
|
|
return dist.get_rank(), dist.get_world_size()
|
|
|
|
|
|
def load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
|
|
max_sequence_length, random_sequence_length, epoch_size=None, token_dropout=None, seed=None):
|
|
if fake_dataset == 'TWO':
|
|
download(real_dataset, 'xl-1542M', 'xl-1542M-nucleus', data_dir=data_dir)
|
|
elif fake_dataset == 'THREE':
|
|
download(real_dataset, 'xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus', data_dir=data_dir)
|
|
else:
|
|
download(real_dataset, fake_dataset, data_dir=data_dir)
|
|
|
|
real_corpus = Corpus(real_dataset, data_dir=data_dir)
|
|
|
|
if fake_dataset == "TWO":
|
|
real_train, real_valid = real_corpus.train * 2, real_corpus.valid * 2
|
|
fake_corpora = [Corpus(name, data_dir=data_dir) for name in ['xl-1542M', 'xl-1542M-nucleus']]
|
|
fake_train = sum([corpus.train for corpus in fake_corpora], [])
|
|
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
|
|
elif fake_dataset == "THREE":
|
|
real_train, real_valid = real_corpus.train * 3, real_corpus.valid * 3
|
|
fake_corpora = [Corpus(name, data_dir=data_dir) for name in
|
|
['xl-1542M', 'xl-1542M-k40', 'xl-1542M-nucleus']]
|
|
fake_train = sum([corpus.train for corpus in fake_corpora], [])
|
|
fake_valid = sum([corpus.valid for corpus in fake_corpora], [])
|
|
else:
|
|
fake_corpus = Corpus(fake_dataset, data_dir=data_dir)
|
|
|
|
real_train, real_valid = real_corpus.train, real_corpus.valid
|
|
fake_train, fake_valid = fake_corpus.train, fake_corpus.valid
|
|
|
|
Sampler = DistributedSampler if distributed() and dist.get_world_size() > 1 else RandomSampler
|
|
|
|
min_sequence_length = 10 if random_sequence_length else None
|
|
train_dataset = EncodedDataset(real_train, fake_train, tokenizer, max_sequence_length, min_sequence_length,
|
|
epoch_size, token_dropout, seed)
|
|
train_loader = DataLoader(train_dataset, batch_size, sampler=Sampler(train_dataset), num_workers=0)
|
|
|
|
validation_dataset = EncodedDataset(real_valid, fake_valid, tokenizer)
|
|
validation_loader = DataLoader(validation_dataset, batch_size=1, sampler=Sampler(validation_dataset))
|
|
|
|
return train_loader, validation_loader
|
|
|
|
|
|
def accuracy_sum(logits, labels):
|
|
if list(logits.shape) == list(labels.shape) + [2]:
|
|
# 2-d outputs
|
|
classification = (logits[..., 0] < logits[..., 1]).long().flatten()
|
|
else:
|
|
classification = (logits > 0).long().flatten()
|
|
assert classification.shape == labels.shape
|
|
return (classification == labels).float().sum().item()
|
|
|
|
|
|
def train(model: nn.Module, optimizer, device: str, loader: DataLoader, desc='Train'):
|
|
model.train()
|
|
|
|
train_accuracy = 0
|
|
train_epoch_size = 0
|
|
train_loss = 0
|
|
|
|
with tqdm(loader, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop:
|
|
for texts, masks, labels in loop:
|
|
|
|
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
|
|
batch_size = texts.shape[0]
|
|
|
|
optimizer.zero_grad()
|
|
loss, logits = model(texts, attention_mask=masks, labels=labels)
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
batch_accuracy = accuracy_sum(logits, labels)
|
|
train_accuracy += batch_accuracy
|
|
train_epoch_size += batch_size
|
|
train_loss += loss.item() * batch_size
|
|
|
|
loop.set_postfix(loss=loss.item(), acc=train_accuracy / train_epoch_size)
|
|
|
|
return {
|
|
"train/accuracy": train_accuracy,
|
|
"train/epoch_size": train_epoch_size,
|
|
"train/loss": train_loss
|
|
}
|
|
|
|
|
|
def validate(model: nn.Module, device: str, loader: DataLoader, votes=1, desc='Validation'):
|
|
model.eval()
|
|
|
|
validation_accuracy = 0
|
|
validation_epoch_size = 0
|
|
validation_loss = 0
|
|
|
|
records = [record for v in range(votes) for record in tqdm(loader, desc=f'Preloading data ... {v}',
|
|
disable=dist.is_available() and dist.get_rank() > 0)]
|
|
records = [[records[v * len(loader) + i] for v in range(votes)] for i in range(len(loader))]
|
|
|
|
with tqdm(records, desc=desc, disable=distributed() and dist.get_rank() > 0) as loop, torch.no_grad():
|
|
for example in loop:
|
|
losses = []
|
|
logit_votes = []
|
|
|
|
for texts, masks, labels in example:
|
|
texts, masks, labels = texts.to(device), masks.to(device), labels.to(device)
|
|
batch_size = texts.shape[0]
|
|
|
|
loss, logits = model(texts, attention_mask=masks, labels=labels)
|
|
losses.append(loss)
|
|
logit_votes.append(logits)
|
|
|
|
loss = torch.stack(losses).mean(dim=0)
|
|
logits = torch.stack(logit_votes).mean(dim=0)
|
|
|
|
batch_accuracy = accuracy_sum(logits, labels)
|
|
validation_accuracy += batch_accuracy
|
|
validation_epoch_size += batch_size
|
|
validation_loss += loss.item() * batch_size
|
|
|
|
loop.set_postfix(loss=loss.item(), acc=validation_accuracy / validation_epoch_size)
|
|
|
|
return {
|
|
"validation/accuracy": validation_accuracy,
|
|
"validation/epoch_size": validation_epoch_size,
|
|
"validation/loss": validation_loss
|
|
}
|
|
|
|
|
|
def _all_reduce_dict(d, device):
|
|
# wrap in tensor and use reduce to gpu0 tensor
|
|
output_d = {}
|
|
for (key, value) in sorted(d.items()):
|
|
tensor_input = torch.tensor([[value]]).to(device)
|
|
torch.distributed.all_reduce(tensor_input)
|
|
output_d[key] = tensor_input.item()
|
|
return output_d
|
|
|
|
|
|
def run(max_epochs=None,
|
|
device=None,
|
|
batch_size=24,
|
|
max_sequence_length=128,
|
|
random_sequence_length=False,
|
|
epoch_size=None,
|
|
seed=None,
|
|
data_dir='data',
|
|
real_dataset='webtext',
|
|
fake_dataset='xl-1542M-nucleus',
|
|
token_dropout=None,
|
|
large=False,
|
|
learning_rate=2e-5,
|
|
weight_decay=0,
|
|
**kwargs):
|
|
args = locals()
|
|
rank, world_size = setup_distributed()
|
|
|
|
if device is None:
|
|
device = f'cuda:{rank}' if torch.cuda.is_available() else 'cpu'
|
|
|
|
print('rank:', rank, 'world_size:', world_size, 'device:', device)
|
|
|
|
import torch.distributed as dist
|
|
if distributed() and rank > 0:
|
|
dist.barrier()
|
|
|
|
model_name = 'roberta-large' if large else 'roberta-base'
|
|
tokenization_utils.logger.setLevel('ERROR')
|
|
tokenizer = RobertaTokenizer.from_pretrained(model_name)
|
|
model = RobertaForSequenceClassification.from_pretrained(model_name).to(device)
|
|
|
|
if rank == 0:
|
|
summary(model)
|
|
if distributed():
|
|
dist.barrier()
|
|
|
|
if world_size > 1:
|
|
model = DistributedDataParallel(model, [rank], output_device=rank, find_unused_parameters=True)
|
|
|
|
train_loader, validation_loader = load_datasets(data_dir, real_dataset, fake_dataset, tokenizer, batch_size,
|
|
max_sequence_length, random_sequence_length, epoch_size,
|
|
token_dropout, seed)
|
|
|
|
optimizer = Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)
|
|
epoch_loop = count(1) if max_epochs is None else range(1, max_epochs + 1)
|
|
|
|
logdir = os.environ.get("OPENAI_LOGDIR", "logs")
|
|
os.makedirs(logdir, exist_ok=True)
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
writer = SummaryWriter(logdir) if rank == 0 else None
|
|
best_validation_accuracy = 0
|
|
|
|
for epoch in epoch_loop:
|
|
if world_size > 1:
|
|
train_loader.sampler.set_epoch(epoch)
|
|
validation_loader.sampler.set_epoch(epoch)
|
|
|
|
train_metrics = train(model, optimizer, device, train_loader, f'Epoch {epoch}')
|
|
validation_metrics = validate(model, device, validation_loader)
|
|
|
|
combined_metrics = _all_reduce_dict({**validation_metrics, **train_metrics}, device)
|
|
|
|
combined_metrics["train/accuracy"] /= combined_metrics["train/epoch_size"]
|
|
combined_metrics["train/loss"] /= combined_metrics["train/epoch_size"]
|
|
combined_metrics["validation/accuracy"] /= combined_metrics["validation/epoch_size"]
|
|
combined_metrics["validation/loss"] /= combined_metrics["validation/epoch_size"]
|
|
|
|
if rank == 0:
|
|
for key, value in combined_metrics.items():
|
|
writer.add_scalar(key, value, global_step=epoch)
|
|
|
|
if combined_metrics["validation/accuracy"] > best_validation_accuracy:
|
|
best_validation_accuracy = combined_metrics["validation/accuracy"]
|
|
|
|
model_to_save = model.module if hasattr(model, 'module') else model
|
|
torch.save(dict(
|
|
epoch=epoch,
|
|
model_state_dict=model_to_save.state_dict(),
|
|
optimizer_state_dict=optimizer.state_dict(),
|
|
args=args
|
|
),
|
|
os.path.join(logdir, "best-model.pt")
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument('--max-epochs', type=int, default=None)
|
|
parser.add_argument('--device', type=str, default=None)
|
|
parser.add_argument('--batch-size', type=int, default=24)
|
|
parser.add_argument('--max-sequence-length', type=int, default=128)
|
|
parser.add_argument('--random-sequence-length', action='store_true')
|
|
parser.add_argument('--epoch-size', type=int, default=None)
|
|
parser.add_argument('--seed', type=int, default=None)
|
|
parser.add_argument('--data-dir', type=str, default='data')
|
|
parser.add_argument('--real-dataset', type=str, default='webtext')
|
|
parser.add_argument('--fake-dataset', type=str, default='xl-1542M-k40')
|
|
parser.add_argument('--token-dropout', type=float, default=None)
|
|
|
|
parser.add_argument('--large', action='store_true', help='use the roberta-large model instead of roberta-base')
|
|
parser.add_argument('--learning-rate', type=float, default=2e-5)
|
|
parser.add_argument('--weight-decay', type=float, default=0)
|
|
args = parser.parse_args()
|
|
|
|
nproc = int(subprocess.check_output([sys.executable, '-c', "import torch;"
|
|
"print(torch.cuda.device_count() if torch.cuda.is_available() else 1)"]))
|
|
if nproc > 1:
|
|
print(f'Launching {nproc} processes ...', file=sys.stderr)
|
|
|
|
os.environ["MASTER_ADDR"] = '127.0.0.1'
|
|
os.environ["MASTER_PORT"] = str(29500)
|
|
os.environ['WORLD_SIZE'] = str(nproc)
|
|
os.environ['OMP_NUM_THREAD'] = str(1)
|
|
subprocesses = []
|
|
|
|
for i in range(nproc):
|
|
os.environ['RANK'] = str(i)
|
|
os.environ['LOCAL_RANK'] = str(i)
|
|
process = Process(target=run, kwargs=vars(args))
|
|
process.start()
|
|
subprocesses.append(process)
|
|
|
|
for process in subprocesses:
|
|
process.join()
|
|
else:
|
|
run(**vars(args))
|