2
0
mirror of https://gitlab.isc.org/isc-projects/dhcp synced 2025-08-25 11:27:31 +00:00
isc-dhcp/common/tree.c

761 lines
21 KiB
C
Raw Normal View History

1995-11-29 07:40:04 +00:00
/* tree.c
Routines for manipulating parse trees... */
/*
1998-04-09 04:31:59 +00:00
* Copyright (c) 1995, 1996, 1997, 1998 The Internet Software Consortium.
1996-05-20 00:29:43 +00:00
* All rights reserved.
1995-11-29 07:40:04 +00:00
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of The Internet Software Consortium nor the names
* of its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INTERNET SOFTWARE CONSORTIUM AND
* CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE INTERNET SOFTWARE CONSORTIUM OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This software has been written for the Internet Software Consortium
* by Ted Lemon <mellon@fugue.com> in cooperation with Vixie
* Enterprises. To learn more about the Internet Software Consortium,
* see ``http://www.vix.com/isc''. To learn more about Vixie
* Enterprises, see ``http://www.vix.com''.
*/
#ifndef lint
static char copyright[] =
"$Id: tree.c,v 1.12 1998/06/25 03:10:32 mellon Exp $ Copyright (c) 1995, 1996, 1997, 1998 The Internet Software Consortium. All rights reserved.\n";
1995-11-29 07:40:04 +00:00
#endif /* not lint */
#include "dhcpd.h"
static struct data_string do_host_lookup PROTO ((struct dns_host_entry *));
1995-11-29 07:40:04 +00:00
pair cons (car, cdr)
caddr_t car;
pair cdr;
{
pair foo = (pair)dmalloc (sizeof *foo, "cons");
if (!foo)
error ("no memory for cons.");
foo -> car = car;
foo -> cdr = cdr;
return foo;
}
struct expression *make_host_lookup (name)
1995-11-29 07:40:04 +00:00
char *name;
{
struct expression *nt;
nt = new_expression ("make_host_lookup");
1995-11-29 07:40:04 +00:00
if (!nt)
error ("No memory for host lookup tree node.");
nt -> op = expr_host_lookup;
nt -> data.host_lookup = enter_dns_host (name);
1995-11-29 07:40:04 +00:00
return nt;
}
struct dns_host_entry *enter_dns_host (name)
char *name;
{
struct dns_host_entry *dh;
if (!(dh = (struct dns_host_entry *)dmalloc
(sizeof (struct dns_host_entry), "enter_dns_host")))
1995-11-29 07:40:04 +00:00
error ("Can't allocate space for new host.");
memset (dh, 0, sizeof *dh);
dh -> hostname = dmalloc (strlen (name) + 1, "enter_dns_host");
1995-11-29 07:40:04 +00:00
strcpy (dh -> hostname, name);
return dh;
}
struct expression *make_const_data (data, len, terminated, allocate)
1995-11-29 07:40:04 +00:00
unsigned char *data;
int len;
int terminated;
int allocate;
1995-11-29 07:40:04 +00:00
{
struct expression *nt;
if (!(nt = new_expression ("tree_const")))
1995-11-29 07:40:04 +00:00
error ("No memory for constant data tree node.");
memset (nt, 0, sizeof *nt);
1998-04-09 04:31:59 +00:00
if (len) {
if (allocate) {
if (!(nt -> data.const_data.data =
(unsigned char *)dmalloc (len + terminated,
"tree_const")))
error ("No memory for const_data node.");
memcpy (nt -> data.const_data.data,
data, len + terminated);
nt -> data.const_data.buffer =
nt -> data.const_data.data;
} else
nt -> data.const_data.data = data;
nt -> data.const_data.terminated = terminated;
1998-04-09 04:31:59 +00:00
} else
nt -> data.const_data.data = 0;
1998-04-09 04:31:59 +00:00
nt -> op = expr_const_data;
nt -> data.const_data.len = len;
1995-11-29 07:40:04 +00:00
return nt;
}
struct expression *make_concat (left, right)
struct expression *left, *right;
1995-11-29 07:40:04 +00:00
{
struct expression *nt;
1995-11-29 07:40:04 +00:00
/* If we're concatenating a null tree to a non-null tree, just
return the non-null tree; if both trees are null, return
a null tree. */
if (!left)
return right;
if (!right)
return left;
/* If both expressions are constant, combine them. */
if (left -> op == expr_const_data &&
right -> op == expr_const_data) {
unsigned char *buf =
dmalloc (left -> data.const_data.len
+ right -> data.const_data.len
+ right -> data.const_data.terminated,
"tree_concat");
1995-11-29 07:40:04 +00:00
if (!buf)
error ("No memory to concatenate constants.");
memcpy (buf, left -> data.const_data.data,
left -> data.const_data.len);
memcpy (buf + left -> data.const_data.len,
right -> data.const_data.data,
right -> data.const_data.len);
if (left -> data.const_data.buffer)
dfree (left -> data.const_data.buffer, "make_concat");
if (right -> data.const_data.buffer)
dfree (right -> data.const_data.buffer, "make_concat");
left -> data.const_data.data = buf;
left -> data.const_data.buffer = buf;
left -> data.const_data.len += right -> data.const_data.len;
free_expression (right, "make_concat");
1995-11-29 07:40:04 +00:00
return left;
}
/* Otherwise, allocate a new node to concatenate the two. */
if (!(nt = new_expression ("make_concat")))
error ("No memory for concatenation expression node.");
nt -> op = expr_concat;
nt -> data.concat [0] = left;
nt -> data.concat [1] = right;
1995-11-29 07:40:04 +00:00
return nt;
}
struct expression *make_substring (expr, offset, length)
struct expression *expr;
struct expression *offset;
struct expression *length;
1995-11-29 07:40:04 +00:00
{
struct expression *rv;
/* If the expression we're limiting is constant, limit it now. */
if (expr -> op == expr_const_data &&
offset -> op == expr_const_int &&
length -> op == expr_const_int) {
int off = offset -> data.const_int;
int len = length -> data.const_int;
if (expr -> data.const_data.len > off) {
expr -> data.const_data.data += off;
expr -> data.const_data.len -= off;
if (expr -> data.const_data.len > len) {
expr -> data.const_data.len = len;
expr -> data.const_data.terminated = 0;
}
} else {
expr -> data.const_data.len = 0;
expr -> data.const_data.terminated = 0;
}
1995-11-29 07:40:04 +00:00
free_expression (offset, "make_substring");
free_expression (length, "make_substring");
return expr;
1995-11-29 07:40:04 +00:00
}
/* Otherwise, put in a node which enforces the limit on evaluation. */
rv = new_expression ("make_substring");
1995-11-29 07:40:04 +00:00
if (!rv)
error ("no memory for substring expression.");
memset (rv, 0, sizeof *rv);
rv -> op = expr_substring;
rv -> data.substring.expr = expr;
rv -> data.substring.offset = offset;
rv -> data.substring.len = length;
1995-11-29 07:40:04 +00:00
return rv;
}
struct expression *make_limit (expr, limit)
struct expression *expr;
int limit;
1995-11-29 07:40:04 +00:00
{
struct expression *rv;
/* If the expression we're limiting is constant, limit it now. */
if (expr -> op == expr_const_data) {
if (expr -> data.const_data.len > limit) {
expr -> data.const_data.len = limit;
expr -> data.const_data.terminated = 0;
}
return expr;
1995-11-29 07:40:04 +00:00
}
/* Otherwise, put in a node which enforces the limit on evaluation. */
rv = new_expression ("make_limit 1");
if (!rv)
error ("no memory for limit expression");
memset (rv, 0, sizeof *rv);
rv -> op = expr_substring;
rv -> data.substring.expr = expr;
/* Offset is a constant 0. */
rv -> data.substring.offset = new_expression ("make_limit 2");
if (!rv -> data.substring.offset)
error ("no memory for limit offset expression");
memset (rv -> data.substring.offset, 0, sizeof *rv);
rv -> data.substring.offset -> op = expr_const_int;
rv -> data.substring.offset -> data.const_int = 0;
/* Length is a constant: the specified limit. */
rv -> data.substring.len = new_expression ("make_limit 2");
if (!rv -> data.substring.len)
error ("no memory for limit length expression");
memset (rv -> data.substring.len, 0, sizeof *rv);
rv -> data.substring.offset -> op = expr_const_int;
rv -> data.substring.offset -> data.const_int = limit;
1995-11-29 07:40:04 +00:00
return rv;
1995-11-29 07:40:04 +00:00
}
struct option_cache *option_cache (expr, option)
struct expression *expr;
struct option *option;
1995-11-29 07:40:04 +00:00
{
struct option_cache *oc = new_option_cache ("option_cache");
if (!oc) {
warn ("no memory for option cache.");
return (struct option_cache *)0;
1995-11-29 07:40:04 +00:00
}
memset (oc, 0, sizeof *oc);
oc -> expression = expr;
oc -> option = option;
return oc;
1995-11-29 07:40:04 +00:00
}
static struct data_string do_host_lookup (dns)
1995-11-29 07:40:04 +00:00
struct dns_host_entry *dns;
{
struct hostent *h;
int i;
int new_len;
struct data_string result;
memset (&result, 0, sizeof result);
1995-11-29 07:40:04 +00:00
#ifdef DEBUG_EVAL
1995-11-29 07:40:04 +00:00
debug ("time: now = %d dns = %d %d diff = %d",
cur_time, dns -> timeout, cur_time - dns -> timeout);
#endif
1995-11-29 07:40:04 +00:00
/* If the record hasn't timed out, just copy the data and return. */
if (cur_time <= dns -> timeout) {
#ifdef DEBUG_EVAL
debug ("easy copy: %x %d %s",
dns -> data, dns -> data.len,
dns -> data.data
? inet_ntoa (*(struct in_addr *)(dns -> data.data))
: 0);
#endif
result.data = dns -> buffer;
result.len = dns -> data_len;
return result;
1995-11-29 07:40:04 +00:00
}
#ifdef DEBUG_EVAL
1995-11-29 07:40:04 +00:00
debug ("Looking up %s", dns -> hostname);
#endif
1995-11-29 07:40:04 +00:00
/* Otherwise, look it up... */
h = gethostbyname (dns -> hostname);
if (!h) {
#ifndef NO_H_ERRNO
1995-11-29 07:40:04 +00:00
switch (h_errno) {
case HOST_NOT_FOUND:
#endif
1995-11-29 07:40:04 +00:00
warn ("%s: host unknown.", dns -> hostname);
#ifndef NO_H_ERRNO
1995-11-29 07:40:04 +00:00
break;
case TRY_AGAIN:
warn ("%s: temporary name server failure",
dns -> hostname);
break;
case NO_RECOVERY:
warn ("%s: name server failed", dns -> hostname);
break;
case NO_DATA:
warn ("%s: no A record associated with address",
dns -> hostname);
}
#endif /* !NO_H_ERRNO */
1995-11-29 07:40:04 +00:00
/* Okay to try again after a minute. */
dns -> timeout = cur_time + 60;
return result;
1995-11-29 07:40:04 +00:00
}
#ifdef DEBUG_EVAL
debug ("Lookup succeeded; first address is %s",
inet_ntoa (h -> h_addr_list [0]));
#endif
1995-11-29 07:40:04 +00:00
/* Count the number of addresses we got... */
for (i = 0; h -> h_addr_list [i]; i++)
;
/* Do we need to allocate more memory? */
new_len = i * h -> h_length;
if (dns -> buf_len < i) {
unsigned char *buf =
(unsigned char *)dmalloc (new_len, "do_host_lookup");
/* If we didn't get more memory, use what we have. */
if (!buf) {
new_len = dns -> buf_len;
if (!dns -> buf_len) {
dns -> timeout = cur_time + 60;
return result;
1995-11-29 07:40:04 +00:00
}
} else {
if (dns -> buffer)
dfree (dns -> buffer, "do_host_lookup");
dns -> buffer = buf;
1995-11-29 07:40:04 +00:00
dns -> buf_len = new_len;
}
}
/* Addresses are conveniently stored one to the buffer, so we
have to copy them out one at a time... :'( */
1996-02-11 00:01:46 +00:00
for (i = 0; i < new_len / h -> h_length; i++) {
memcpy (dns -> buffer + h -> h_length * i,
1995-11-29 07:40:04 +00:00
h -> h_addr_list [i], h -> h_length);
1996-02-11 00:01:46 +00:00
}
#ifdef DEBUG_EVAL
1995-11-29 07:40:04 +00:00
debug ("dns -> data: %x h -> h_addr_list [0]: %x",
*(int *)(dns -> buffer), h -> h_addr_list [0]);
#endif
1995-11-29 07:40:04 +00:00
dns -> data_len = new_len;
/* Set the timeout for an hour from now.
XXX This should really use the time on the DNS reply. */
dns -> timeout = cur_time + 3600;
#ifdef DEBUG_EVAL
1995-11-29 07:40:04 +00:00
debug ("hard copy: %x %d %x",
dns -> data, dns -> data_len, *(int *)(dns -> data));
#endif
result.data = dns -> buffer;
result.len = dns -> data_len;
return result;
1995-11-29 07:40:04 +00:00
}
int evaluate_boolean_expression (packet, expr)
struct packet *packet;
struct expression *expr;
1995-11-29 07:40:04 +00:00
{
struct data_string left, right;
int result;
switch (expr -> op) {
case expr_check:
return check_collection (packet, expr -> data.check);
case expr_equal:
left = evaluate_data_expression (packet,
expr -> data.equal [0]);
right = evaluate_data_expression (packet,
expr -> data.equal [1]);
if (left.len == right.len && !memcmp (left.data,
right.data, left.len))
result = 1;
else
result = 0;
if (left.buffer)
dfree ("evaluate_boolean_expression", left.buffer);
if (right.buffer)
dfree ("evaluate_boolean_expression", right.buffer);
return result;
case expr_and:
return (evaluate_boolean_expression (packet,
expr -> data.and [0]) &&
evaluate_boolean_expression (packet,
expr -> data.and [1]));
case expr_or:
return (evaluate_boolean_expression (packet,
expr -> data.or [0]) ||
evaluate_boolean_expression (packet,
expr -> data.or [1]));
case expr_not:
return (!evaluate_boolean_expression (packet,
expr -> data.not));
case expr_substring:
case expr_suffix:
case expr_option:
case expr_hardware:
case expr_const_data:
case expr_packet:
case expr_concat:
case expr_host_lookup:
warn ("Data opcode in evaluate_boolean_expression: %d",
expr -> op);
return 0;
1995-11-29 07:40:04 +00:00
case expr_extract_int8:
case expr_extract_int16:
case expr_extract_int32:
case expr_const_int:
warn ("Numeric opcode in evaluate_boolean_expression: %d",
expr -> op);
return 0;
}
1995-11-29 07:40:04 +00:00
warn ("Bogus opcode in evaluate_boolean_expression: %d", expr -> op);
return 0;
1995-11-29 07:40:04 +00:00
}
struct data_string evaluate_data_expression (packet, expr)
struct packet *packet;
struct expression *expr;
{
struct data_string result, data, other;
int offset, len;
switch (expr -> op) {
/* Extract N bytes starting at byte M of a data string. */
case expr_substring:
data = evaluate_data_expression (packet,
expr -> data.substring.expr);
/* Evaluate the offset and length. */
offset = evaluate_numeric_expression
(packet, expr -> data.substring.offset);
len = evaluate_numeric_expression
(packet, expr -> data.substring.len);
/* If the offset is after end of the string, return
an empty string. */
if (data.len <= offset) {
if (data.buffer)
dfree ("expr_substring", data.buffer);
memset (&result, 0, sizeof result);
return result;
}
/* Otherwise, do the adjustments and return what's left. */
data.len -= offset;
if (data.len > len) {
data.len = len;
data.terminated = 0;
}
data.data += offset;
return data;
/* Extract the last N bytes of a data string. */
case expr_suffix:
data = evaluate_data_expression (packet,
expr -> data.suffix.expr);
/* Evaluate the length. */
len = evaluate_numeric_expression
(packet, expr -> data.substring.len);
/* If we are returning the last N bytes of a string whose
length is <= N, just return the string. */
if (data.len <= len)
return data;
data.data += data.len - len;
data.len = len;
return data;
/* Extract an option. */
case expr_option:
return ((*expr -> data.option -> universe -> lookup_func)
(packet, expr -> data.option -> code));
/* Combine the hardware type and address. */
case expr_hardware:
result.len = packet -> raw -> hlen + 1;
result.buffer = dmalloc (result.len,
"expr_hardware");
if (!result.buffer) {
warn ("no memory for expr_hardware");
result.len = 0;
} else {
result.buffer [0] = packet -> raw -> htype;
memcpy (&result.buffer [1], packet -> raw -> chaddr,
packet -> raw -> hlen);
}
result.data = result.buffer;
result.terminated = 0;
return result;
/* Extract part of the raw packet. */
case expr_packet:
len = evaluate_numeric_expression (packet,
expr -> data.packet.len);
offset = evaluate_numeric_expression (packet,
expr -> data.packet.len);
if (offset > packet -> packet_length) {
warn ("expr_packet on %s: length %d + offset %d > %d",
print_hw_addr (packet -> raw -> htype,
packet -> raw -> hlen,
packet -> raw -> chaddr),
len, offset, packet -> packet_length);
memset (&result, 0, sizeof result);
return result;
}
if (offset + len > packet -> packet_length)
result.len = packet -> packet_length - offset;
else
result.len = len;
result.data = ((unsigned char *)(packet -> raw)) + offset;
result.buffer = (unsigned char *)0;
result.terminated = 0;
return result;
/* Some constant data... */
case expr_const_data:
return expr -> data.const_data;
/* Hostname lookup... */
case expr_host_lookup:
return do_host_lookup (expr -> data.host_lookup);
break;
/* Concatenation... */
case expr_concat:
data = evaluate_data_expression (packet,
expr -> data.concat [0]);
other = evaluate_data_expression (packet,
expr -> data.concat [1]);
memset (&result, 0, sizeof result);
result.buffer = dmalloc (data.len + other.len +
other.terminated, "expr_concat");
if (!result.buffer) {
warn ("out of memory doing concatenation.");
return result;
}
result.len = (data.len + other.len);
result.data = result.buffer;
memcpy (result.data, data.data, data.len);
memcpy (&result.data [data.len], other.data,
other.len + other.terminated);
if (data.buffer)
dfree (data.buffer, "expr_concat");
if (other.buffer)
dfree (other.buffer, "expr_concat");
return result;
break;
case expr_check:
case expr_equal:
case expr_and:
case expr_or:
case expr_not:
warn ("Boolean opcode in evaluate_data_expression: %d",
expr -> op);
goto null_return;
case expr_extract_int8:
case expr_extract_int16:
case expr_extract_int32:
case expr_const_int:
warn ("Numeric opcode in evaluate_data_expression: %d",
expr -> op);
goto null_return;
}
warn ("Bogus opcode in evaluate_data_expression: %d", expr -> op);
null_return:
memset (&result, 0, sizeof result);
return result;
}
unsigned long evaluate_numeric_expression (packet, expr)
struct packet *packet;
struct expression *expr;
{
struct data_string data;
unsigned long result;
switch (expr -> op) {
case expr_check:
case expr_equal:
case expr_and:
case expr_or:
case expr_not:
warn ("Boolean opcode in evaluate_numeric_expression: %d",
expr -> op);
return 0;
case expr_substring:
case expr_suffix:
case expr_option:
case expr_hardware:
case expr_const_data:
case expr_packet:
case expr_concat:
case expr_host_lookup:
warn ("Data opcode in evaluate_numeric_expression: %d",
expr -> op);
return 0;
case expr_extract_int8:
data = evaluate_data_expression (packet,
expr ->
data.extract_int.expr);
if (data.len < 1)
return 0;
result = data.data [0];
if (data.buffer)
dfree (data.buffer, "expr_extract_int8");
return result;
case expr_extract_int16:
data = evaluate_data_expression (packet,
expr ->
data.extract_int.expr);
if (data.len < 2)
return 0;
result = getUShort (data.data);
if (data.buffer)
dfree (data.buffer, "expr_extract_int16");
return result;
case expr_extract_int32:
data = evaluate_data_expression (packet,
expr ->
data.extract_int.expr);
if (data.len < 4)
return 0;
result = getULong (data.data);
if (data.buffer)
dfree (data.buffer, "expr_extract_int32");
return result;
case expr_const_int:
return expr -> data.const_int;
}
warn ("Bogus opcode in evaluate_numeric_expression: %d", expr -> op);
return 0;
}
void free_oc_ephemeral_state (oc)
struct option_cache *oc;
{
if (free_ephemeral_outer_tree (expr))
free_option_cache (oc, "free_oc_ephemeral_state");
}
/* Recursively free any ephemeral subexpressions of the passed expression,
and then free that expression. */
int free_ephemeral_outer_tree (expr)
struct expression *expr;
{
/* If this expression isn't ephemeral, notify the caller. */
if (!(expr -> flags & EXPR_EPHEMERAL))
return 0;
/* Free any ephemeral subexpressions... */
switch (expr -> op) {
/* All the binary operators can be handled the same way. */
case expr_equal:
case expr_concat:
case expr_and:
case expr_or:
free_ephemeral_outer_tree (expr -> data.equal [0]);
free_ephemeral_outer_tree (expr -> data.equal [1]);
break;
case expr_substring:
free_ephemeral_outer_tree (expr -> data.substring.expr);
free_ephemeral_outer_tree (expr -> data.substring.offset);
free_ephemeral_outer_tree (expr -> data.substring.len);
break;
case expr_suffix:
free_ephemeral_outer_tree (expr -> data.suffix.expr);
free_ephemeral_outer_tree (expr -> data.suffix.len);
break;
case expr_not:
free_ephemeral_outer_tree (expr -> data.not);
break;
case expr_packet:
free_ephemeral_outer_tree (expr -> data.packet.offset);
free_ephemeral_outer_tree (expr -> data.packet.len);
break;
case expr_extract_int8:
case expr_extract_int16:
case expr_extract_int32:
free_ephemeral_outer_tree (expr -> data.extract_int.expr);
free_ephemeral_outer_tree (expr -> data.extract_int.width);
break;
/* No subexpressions. */
case expr_const_int:
case expr_check:
case expr_host_lookup:
case expr_option:
case expr_const_data:
case expr_hardware:
break;
default:
break;
}
free_expression (expr, "free_expr_outer_tree");
return 1;
}
/* Free all of the state in an option state buffer. The buffer itself is
not freed, since these buffers are always contained in other structures. */
void free_option_state (state)
struct option_state *state;
{
int i;
struct agent_option *ao;