2
0
mirror of https://gitlab.isc.org/isc-projects/dhcp synced 2025-08-22 01:49:35 +00:00
isc-dhcp/server/dhcpv6.c
Thomas Markwalder 0cd94b5ef4 [#64,!35] Restored work
Restored cummulative work.
2019-11-22 13:39:45 -05:00

8618 lines
240 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*
* Copyright (C) 2006-2017 by Internet Systems Consortium, Inc. ("ISC")
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
* PERFORMANCE OF THIS SOFTWARE.
*/
/*! \file server/dhcpv6.c */
#include "dhcpd.h"
#ifdef DHCPv6
#ifdef DHCP4o6
static void forw_dhcpv4_query(struct packet *packet);
static void send_dhcpv4_response(struct data_string *raw);
static void recv_dhcpv4_query(struct data_string *raw);
static void dhcp4o6_dhcpv4_query(struct data_string *reply_ret,
struct packet *packet);
struct udp_data4o6 {
u_int16_t src_port;
u_int8_t rsp_opt_exist;
u_int8_t reserved;
};
static int offset_data4o6 = 36; /* 16+16+4 */
#endif
/*
* We use print_hex_1() to output DUID values. We could actually output
* the DUID with more information... MAC address if using type 1 or 3,
* and so on. However, RFC 3315 contains Grave Warnings against actually
* attempting to understand a DUID.
*/
/*
* TODO: gettext() or other method of localization for the messages
* for status codes (and probably for log formats eventually)
* TODO: refactoring (simplify, simplify, simplify)
* TODO: support multiple shared_networks on each interface (this
* will allow the server to issue multiple IPv6 addresses to
* a single interface)
*/
/*
* DHCPv6 Reply workflow assist. A Reply packet is built by various
* different functions; this gives us one location where we keep state
* regarding a reply.
*/
struct reply_state {
/* root level persistent state */
struct shared_network *shared;
struct host_decl *host;
struct subnet *subnet; /* Used to match fixed-addrs to subnet scopes. */
struct option_state *opt_state;
struct packet *packet;
struct data_string client_id;
/* IA level persistent state */
unsigned ia_count;
unsigned pd_count;
unsigned client_resources;
isc_boolean_t resources_included;
isc_boolean_t static_lease;
unsigned static_prefixes;
struct ia_xx *ia;
struct ia_xx *old_ia;
struct option_state *reply_ia;
struct data_string fixed;
struct iaddrcidrnet fixed_pref; /* static prefix for logging */
/* IAADDR/PREFIX level persistent state */
struct iasubopt *lease;
/*
* "t1", "t2", preferred, and valid lifetimes records for calculating
* t1 and t2 (min/max).
*/
u_int32_t renew, rebind, min_prefer, min_valid;
/* Client-requested valid and preferred lifetimes. */
u_int32_t client_valid, client_prefer;
/* Chosen values to transmit for valid and preferred lifetimes. */
u_int32_t send_valid, send_prefer;
/* Preferred prefix length (-1 is any). */
int preflen;
/* Index into the data field that has been consumed. */
unsigned cursor;
/* Space for the on commit statements for a fixed host */
struct on_star on_star;
union reply_buffer {
unsigned char data[65536];
struct dhcpv6_packet reply;
} buf;
};
/*
* Prototypes local to this file.
*/
static int get_encapsulated_IA_state(struct option_state **enc_opt_state,
struct data_string *enc_opt_data,
struct packet *packet,
struct option_cache *oc,
int offset);
static void build_dhcpv6_reply(struct data_string *, struct packet *);
static isc_result_t shared_network_from_packet6(struct shared_network **shared,
struct packet *packet);
static void seek_shared_host(struct host_decl **hp,
struct shared_network *shared);
static isc_boolean_t fixed_matches_shared(struct host_decl *host,
struct shared_network *shared);
static isc_result_t reply_process_ia_na(struct reply_state *reply,
struct option_cache *ia);
static isc_result_t reply_process_ia_ta(struct reply_state *reply,
struct option_cache *ia);
static isc_result_t reply_process_addr(struct reply_state *reply,
struct option_cache *addr);
static isc_boolean_t address_is_owned(struct reply_state *reply,
struct iaddr *addr);
static isc_boolean_t temporary_is_available(struct reply_state *reply,
struct iaddr *addr);
static isc_result_t find_client_temporaries(struct reply_state *reply);
static isc_result_t reply_process_try_addr(struct reply_state *reply,
struct iaddr *addr);
static isc_result_t find_client_address(struct reply_state *reply);
static isc_result_t reply_process_is_addressed(struct reply_state *reply,
struct binding_scope **scope,
struct group *group);
static isc_result_t reply_process_send_addr(struct reply_state *reply,
struct iaddr *addr);
static struct iasubopt *lease_compare(struct iasubopt *alpha,
struct iasubopt *beta);
static isc_result_t reply_process_ia_pd(struct reply_state *reply,
struct option_cache *ia_pd);
static struct group *find_group_by_prefix(struct reply_state *reply);
static isc_result_t reply_process_prefix(struct reply_state *reply,
struct option_cache *pref);
static isc_boolean_t prefix_is_owned(struct reply_state *reply,
struct iaddrcidrnet *pref);
static isc_result_t find_client_prefix(struct reply_state *reply);
static isc_result_t reply_process_try_prefix(struct reply_state *reply,
struct iaddrcidrnet *pref);
static isc_result_t reply_process_is_prefixed(struct reply_state *reply,
struct binding_scope **scope,
struct group *group);
static isc_result_t reply_process_send_prefix(struct reply_state *reply,
struct iaddrcidrnet *pref);
static struct iasubopt *prefix_compare(struct reply_state *reply,
struct iasubopt *alpha,
struct iasubopt *beta);
static void schedule_lease_timeout_reply(struct reply_state *reply);
static int eval_prefix_mode(int thislen, int preflen, int prefix_mode);
static isc_result_t pick_v6_prefix_helper(struct reply_state *reply,
int prefix_mode);
static void unicast_reject(struct data_string *reply_ret, struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id);
static isc_boolean_t is_unicast_option_defined(struct packet *packet);
static isc_result_t shared_network_from_requested_addr (struct shared_network
**shared,
struct packet* packet);
static isc_result_t get_first_ia_addr_val (struct packet* packet, int addr_type,
struct iaddr* iaddr);
static void
set_reply_tee_times(struct reply_state* reply, unsigned ia_cursor);
static const char *iasubopt_plen_str(struct iasubopt *lease);
static int release_on_roam(struct reply_state *reply);
static int reuse_lease6(struct reply_state *reply, struct iasubopt *lease);
static void shorten_lifetimes(struct reply_state *reply, struct iasubopt *lease,
time_t age, int threshold);
static void write_to_packet(struct reply_state *reply, unsigned ia_cursor);
static const char *iasubopt_plen_str(struct iasubopt *lease);
#ifdef NSUPDATE
static void ddns_update_static6(struct reply_state* reply);
#endif
#ifdef DHCP4o6
/*
* \brief Omapi I/O handler
*
* The inter-process communication receive handler.
* Get the message, put it into the raw data_string
* and call \ref send_dhcpv4_response() (DHCPv6 side) or
* \ref recv_dhcpv4_query() (DHCPv4 side)
*
* \param h the OMAPI object
* \return a result for I/O success or error (used by the I/O subsystem)
*/
isc_result_t dhcpv4o6_handler(omapi_object_t *h) {
char buf[65536];
struct data_string raw;
int cc;
if (h->type != dhcp4o6_type)
return DHCP_R_INVALIDARG;
cc = recv(dhcp4o6_fd, buf, sizeof(buf), 0);
if (cc < DHCP_FIXED_NON_UDP + offset_data4o6)
return ISC_R_UNEXPECTED;
memset(&raw, 0, sizeof(raw));
if (!buffer_allocate(&raw.buffer, cc, MDL)) {
log_error("dhcpv4o6_handler: no memory buffer.");
return ISC_R_NOMEMORY;
}
raw.data = raw.buffer->data;
raw.len = cc;
memcpy(raw.buffer->data, buf, cc);
if (local_family == AF_INET6) {
send_dhcpv4_response(&raw);
} else {
recv_dhcpv4_query(&raw);
}
data_string_forget(&raw, MDL);
return ISC_R_SUCCESS;
}
/*
* \brief Send the DHCPv4-response back to the DHCPv6 side
* (DHCPv6 server function)
*
* Format: interface:16 + address:16 + udp:4 + DHCPv6 DHCPv4-response message
*
* \param raw the IPC message content
*/
static void send_dhcpv4_response(struct data_string *raw) {
struct interface_info *ip;
char name[16 + 1];
struct sockaddr_in6 to_addr;
char pbuf[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
struct udp_data4o6 udp_data;
int send_ret;
memset(name, 0, sizeof(name));
memcpy(name, raw->data, 16);
for (ip = interfaces; ip != NULL; ip = ip->next) {
if (!strcmp(name, ip->name))
break;
}
if (ip == NULL) {
log_error("send_dhcpv4_response: can't find interface %s.",
name);
return;
}
memset(&to_addr, 0, sizeof(to_addr));
to_addr.sin6_family = AF_INET6;
memcpy(&to_addr.sin6_addr, raw->data + 16, 16);
memset(&udp_data, 0, sizeof(udp_data));
memcpy(&udp_data, raw->data + 32, 4);
if ((raw->data[36] == DHCPV6_RELAY_FORW) ||
(raw->data[36] == DHCPV6_RELAY_REPL)) {
if (udp_data.rsp_opt_exist) {
to_addr.sin6_port = udp_data.src_port;
} else {
to_addr.sin6_port = local_port;
}
} else {
to_addr.sin6_port = remote_port;
}
log_info("send_dhcpv4_response(): sending %s on %s to %s port %d",
dhcpv6_type_names[raw->data[36]],
name,
inet_ntop(AF_INET6, raw->data + 16, pbuf, sizeof(pbuf)),
ntohs(to_addr.sin6_port));
send_ret = send_packet6(ip, raw->data + 36, raw->len - 36, &to_addr);
if (send_ret < 0) {
log_error("send_dhcpv4_response: send_packet6(): %m");
} else if (send_ret != raw->len - 36) {
log_error("send_dhcpv4_response: send_packet6() "
"sent %d of %d bytes",
send_ret, raw->len - 36);
}
}
#endif /* DHCP4o6 */
/*
* Schedule lease timeouts for all of the iasubopts in the reply.
* This is currently used to schedule timeouts for soft leases.
*/
static void
schedule_lease_timeout_reply(struct reply_state *reply) {
struct iasubopt *tmp;
int i;
/* sanity check the reply */
if ((reply == NULL) || (reply->ia == NULL) || (reply->ia->iasubopt == NULL))
return;
/* walk through the list, scheduling as we go */
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
schedule_lease_timeout(tmp->ipv6_pool);
}
}
/*
* This function returns the time since DUID time start for the
* given time_t value.
*/
static u_int32_t
duid_time(time_t when) {
/*
* This time is modulo 2^32.
*/
while ((when - DUID_TIME_EPOCH) > 4294967295u) {
/* use 2^31 to avoid spurious compiler warnings */
when -= 2147483648u;
when -= 2147483648u;
}
return when - DUID_TIME_EPOCH;
}
/*
* Server DUID.
*
* This must remain the same for the lifetime of this server, because
* clients return the server DUID that we sent them in Request packets.
*
* We pick the server DUID like this:
*
* 1. Check dhcpd.conf - any value the administrator has configured
* overrides any possible values.
* 2. Check the leases.txt - we want to use the previous value if
* possible.
* 3. Check if dhcpd.conf specifies a type of server DUID to use,
* and generate that type.
* 4. Generate a type 1 (time + hardware address) DUID.
*/
static struct data_string server_duid;
/*
* Check if the server_duid has been set.
*/
isc_boolean_t
server_duid_isset(void) {
return (server_duid.data != NULL);
}
/*
* Return the server_duid.
*/
void
copy_server_duid(struct data_string *ds, const char *file, int line) {
data_string_copy(ds, &server_duid, file, line);
}
/*
* Set the server DUID to a specified value. This is used when
* the server DUID is stored in persistent memory (basically the
* leases.txt file).
*/
void
set_server_duid(struct data_string *new_duid) {
/* INSIST(new_duid != NULL); */
/* INSIST(new_duid->data != NULL); */
if (server_duid_isset()) {
data_string_forget(&server_duid, MDL);
}
data_string_copy(&server_duid, new_duid, MDL);
}
/*
* Set the server DUID based on the D6O_SERVERID option. This handles
* the case where the administrator explicitly put it in the dhcpd.conf
* file.
*/
isc_result_t
set_server_duid_from_option(void) {
struct option_state *opt_state;
struct option_cache *oc;
struct data_string option_duid;
isc_result_t ret_val;
opt_state = NULL;
if (!option_state_allocate(&opt_state, MDL)) {
log_fatal("No memory for server DUID.");
}
execute_statements_in_scope(NULL, NULL, NULL, NULL, NULL,
opt_state, &global_scope, root_group,
NULL, NULL);
oc = lookup_option(&dhcpv6_universe, opt_state, D6O_SERVERID);
if (oc == NULL) {
ret_val = ISC_R_NOTFOUND;
} else {
memset(&option_duid, 0, sizeof(option_duid));
if (!evaluate_option_cache(&option_duid, NULL, NULL, NULL,
opt_state, NULL, &global_scope,
oc, MDL)) {
ret_val = ISC_R_UNEXPECTED;
} else {
set_server_duid(&option_duid);
data_string_forget(&option_duid, MDL);
ret_val = ISC_R_SUCCESS;
}
}
option_state_dereference(&opt_state, MDL);
return ret_val;
}
/*
* DUID layout, as defined in RFC 3315, section 9.
*
* We support type 1 (hardware address plus time) and type 3 (hardware
* address).
*
* We can support type 2 for specific vendors in the future, if they
* publish the specification. And of course there may be additional
* types later.
*/
static int server_duid_type = DUID_LLT;
/*
* Set the DUID type.
*/
void
set_server_duid_type(int type) {
server_duid_type = type;
}
/*
* Generate a new server DUID. This is done if there was no DUID in
* the leases.txt or in the dhcpd.conf file.
*/
isc_result_t
generate_new_server_duid(void) {
struct interface_info *p;
u_int32_t time_val;
struct data_string generated_duid;
/*
* Verify we have a type that we support.
*/
if ((server_duid_type != DUID_LL) && (server_duid_type != DUID_LLT)) {
log_error("Invalid DUID type %d specified, "
"only LL and LLT types supported", server_duid_type);
return DHCP_R_INVALIDARG;
}
/*
* Find an interface with a hardware address.
* Any will do. :)
*/
for (p = interfaces; p != NULL; p = p->next) {
if (p->hw_address.hlen > 0) {
break;
}
}
if (p == NULL) {
return ISC_R_UNEXPECTED;
}
/*
* Build our DUID.
*/
memset(&generated_duid, 0, sizeof(generated_duid));
if (server_duid_type == DUID_LLT) {
time_val = duid_time(time(NULL));
generated_duid.len = 8 + p->hw_address.hlen - 1;
if (!buffer_allocate(&generated_duid.buffer,
generated_duid.len, MDL)) {
log_fatal("No memory for server DUID.");
}
generated_duid.data = generated_duid.buffer->data;
putUShort(generated_duid.buffer->data, DUID_LLT);
putUShort(generated_duid.buffer->data + 2,
p->hw_address.hbuf[0]);
putULong(generated_duid.buffer->data + 4, time_val);
memcpy(generated_duid.buffer->data + 8,
p->hw_address.hbuf+1, p->hw_address.hlen-1);
} else if (server_duid_type == DUID_LL) {
generated_duid.len = 4 + p->hw_address.hlen - 1;
if (!buffer_allocate(&generated_duid.buffer,
generated_duid.len, MDL)) {
log_fatal("No memory for server DUID.");
}
generated_duid.data = generated_duid.buffer->data;
putUShort(generated_duid.buffer->data, DUID_LL);
putUShort(generated_duid.buffer->data + 2,
p->hw_address.hbuf[0]);
memcpy(generated_duid.buffer->data + 4,
p->hw_address.hbuf+1, p->hw_address.hlen-1);
} else {
log_fatal("Unsupported server DUID type %d.", server_duid_type);
}
set_server_duid(&generated_duid);
data_string_forget(&generated_duid, MDL);
return ISC_R_SUCCESS;
}
/*
* Get the client identifier from the packet.
*/
isc_result_t
get_client_id(struct packet *packet, struct data_string *client_id) {
struct option_cache *oc;
/*
* Verify our client_id structure is empty.
*/
if ((client_id->data != NULL) || (client_id->len != 0)) {
return DHCP_R_INVALIDARG;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_CLIENTID);
if (oc == NULL) {
return ISC_R_NOTFOUND;
}
if (!evaluate_option_cache(client_id, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
return ISC_R_FAILURE;
}
return ISC_R_SUCCESS;
}
/*
* Message validation, defined in RFC 3315, sections 15.2, 15.5, 15.7:
*
* Servers MUST discard any Solicit messages that do not include a
* Client Identifier option or that do include a Server Identifier
* option.
*/
int
valid_client_msg(struct packet *packet, struct data_string *client_id) {
int ret_val;
struct option_cache *oc;
struct data_string data;
ret_val = 0;
memset(client_id, 0, sizeof(*client_id));
memset(&data, 0, sizeof(data));
switch (get_client_id(packet, client_id)) {
case ISC_R_SUCCESS:
break;
case ISC_R_NOTFOUND:
log_debug("Discarding %s from %s; "
"client identifier missing",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
goto exit;
default:
log_error("Error processing %s from %s; "
"unable to evaluate Client Identifier",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
goto exit;
}
/*
* Required by RFC 3315, section 15.
*/
if (packet->unicast) {
log_debug("Discarding %s from %s; packet sent unicast "
"(CLIENTID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(client_id->len, client_id->data, 60));
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_SERVERID);
if (oc != NULL) {
if (evaluate_option_cache(&data, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_debug("Discarding %s from %s; "
"server identifier found "
"(CLIENTID %s, SERVERID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(client_id->len,
client_id->data, 60),
print_hex_2(data.len,
data.data, 60));
} else {
log_debug("Discarding %s from %s; "
"server identifier found "
"(CLIENTID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
print_hex_1(client_id->len,
client_id->data, 60),
piaddr(packet->client_addr));
}
goto exit;
}
/* looks good */
ret_val = 1;
exit:
data_string_forget(&data, MDL);
if (!ret_val) {
data_string_forget(client_id, MDL);
}
return ret_val;
}
/*
* Response validation, defined in RFC 3315, sections 15.4, 15.6, 15.8,
* 15.9 (slightly different wording, but same meaning):
*
* Servers MUST discard any received Request message that meet any of
* the following conditions:
*
* - the message does not include a Server Identifier option.
* - the contents of the Server Identifier option do not match the
* server's DUID.
* - the message does not include a Client Identifier option.
*/
int
valid_client_resp(struct packet *packet,
struct data_string *client_id,
struct data_string *server_id)
{
int ret_val;
struct option_cache *oc;
/* INSIST((duid.data != NULL) && (duid.len > 0)); */
ret_val = 0;
memset(client_id, 0, sizeof(*client_id));
memset(server_id, 0, sizeof(*server_id));
switch (get_client_id(packet, client_id)) {
case ISC_R_SUCCESS:
break;
case ISC_R_NOTFOUND:
log_debug("Discarding %s from %s; "
"client identifier missing",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
goto exit;
default:
log_error("Error processing %s from %s; "
"unable to evaluate Client Identifier",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_SERVERID);
if (oc == NULL) {
log_debug("Discarding %s from %s: "
"server identifier missing (CLIENTID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(client_id->len, client_id->data, 60));
goto exit;
}
if (!evaluate_option_cache(server_id, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("Error processing %s from %s; "
"unable to evaluate Server Identifier (CLIENTID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(client_id->len, client_id->data, 60));
goto exit;
}
if ((server_duid.len != server_id->len) ||
(memcmp(server_duid.data, server_id->data, server_duid.len) != 0)) {
log_debug("Discarding %s from %s; "
"not our server identifier "
"(CLIENTID %s, SERVERID %s, server DUID %s)",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(client_id->len, client_id->data, 60),
print_hex_2(server_id->len, server_id->data, 60),
print_hex_3(server_duid.len, server_duid.data, 60));
goto exit;
}
/* looks good */
ret_val = 1;
exit:
if (!ret_val) {
data_string_forget(server_id, MDL);
data_string_forget(client_id, MDL);
}
return ret_val;
}
/*
* Information request validation, defined in RFC 3315, section 15.12:
*
* Servers MUST discard any received Information-request message that
* meets any of the following conditions:
*
* - The message includes a Server Identifier option and the DUID in
* the option does not match the server's DUID.
*
* - The message includes an IA option.
*/
int
valid_client_info_req(struct packet *packet, struct data_string *server_id) {
int ret_val;
struct option_cache *oc;
struct data_string client_id;
char client_id_str[80]; /* print_hex_1() uses maximum 60 characters,
plus a few more for extra information */
ret_val = 0;
memset(server_id, 0, sizeof(*server_id));
memset(&client_id, 0, sizeof(client_id));
/*
* Make a string that we can print out to give more
* information about the client if we need to.
*
* By RFC 3315, Section 18.1.5 clients SHOULD have a
* client-id on an Information-request packet, but it
* is not strictly necessary.
*/
if (get_client_id(packet, &client_id) == ISC_R_SUCCESS) {
snprintf(client_id_str, sizeof(client_id_str), " (CLIENTID %s)",
print_hex_1(client_id.len, client_id.data, 60));
data_string_forget(&client_id, MDL);
} else {
client_id_str[0] = '\0';
}
/*
* Required by RFC 3315, section 15.
*/
if (packet->unicast) {
log_debug("Discarding %s from %s; packet sent unicast%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr), client_id_str);
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_NA);
if (oc != NULL) {
log_debug("Discarding %s from %s; "
"IA_NA option present%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr), client_id_str);
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_TA);
if (oc != NULL) {
log_debug("Discarding %s from %s; "
"IA_TA option present%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr), client_id_str);
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_PD);
if (oc != NULL) {
log_debug("Discarding %s from %s; "
"IA_PD option present%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr), client_id_str);
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_SERVERID);
if (oc != NULL) {
if (!evaluate_option_cache(server_id, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("Error processing %s from %s; "
"unable to evaluate Server Identifier%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr), client_id_str);
goto exit;
}
if ((server_duid.len != server_id->len) ||
(memcmp(server_duid.data, server_id->data,
server_duid.len) != 0)) {
log_debug("Discarding %s from %s; "
"not our server identifier "
"(SERVERID %s, server DUID %s)%s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
print_hex_1(server_id->len,
server_id->data, 60),
print_hex_2(server_duid.len,
server_duid.data, 60),
client_id_str);
goto exit;
}
}
/* looks good */
ret_val = 1;
exit:
if (!ret_val) {
data_string_forget(server_id, MDL);
}
return ret_val;
}
/*
* Options that we want to send, in addition to what was requested
* via the ORO.
*/
static const int required_opts[] = {
D6O_CLIENTID,
D6O_SERVERID,
D6O_STATUS_CODE,
D6O_PREFERENCE,
0
};
static const int required_opts_solicit[] = {
D6O_CLIENTID,
D6O_SERVERID,
D6O_IA_NA,
D6O_IA_TA,
D6O_IA_PD,
D6O_RAPID_COMMIT,
D6O_STATUS_CODE,
D6O_RECONF_ACCEPT,
D6O_PREFERENCE,
0
};
static const int required_opts_agent[] = {
D6O_INTERFACE_ID,
#if defined(RELAY_PORT)
D6O_RELAY_SOURCE_PORT,
#endif
D6O_RELAY_MSG,
0
};
static const int required_opts_IA[] = {
D6O_IAADDR,
D6O_STATUS_CODE,
0
};
static const int required_opts_IA_PD[] = {
D6O_IAPREFIX,
D6O_STATUS_CODE,
0
};
static const int required_opts_STATUS_CODE[] = {
D6O_STATUS_CODE,
0
};
#ifdef DHCP4o6
static const int required_opts_4o6[] = {
D6O_DHCPV4_MSG,
0
};
#endif
static const int unicast_reject_opts[] = {
D6O_CLIENTID,
D6O_SERVERID,
D6O_STATUS_CODE,
0
};
/*
* Extracts from packet contents an IA_* option, storing the IA structure
* in its entirety in enc_opt_data, and storing any decoded DHCPv6 options
* in enc_opt_state for later lookup and evaluation. The 'offset' indicates
* where in the IA_* the DHCPv6 options commence.
*/
static int
get_encapsulated_IA_state(struct option_state **enc_opt_state,
struct data_string *enc_opt_data,
struct packet *packet,
struct option_cache *oc,
int offset)
{
/*
* Get the raw data for the encapsulated options.
*/
memset(enc_opt_data, 0, sizeof(*enc_opt_data));
if (!evaluate_option_cache(enc_opt_data, packet,
NULL, NULL, packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("get_encapsulated_IA_state: "
"error evaluating raw option.");
return 0;
}
if (enc_opt_data->len < offset) {
log_error("get_encapsulated_IA_state: raw option too small.");
data_string_forget(enc_opt_data, MDL);
return 0;
}
/*
* Now create the option state structure, and pass it to the
* function that parses options.
*/
*enc_opt_state = NULL;
if (!option_state_allocate(enc_opt_state, MDL)) {
log_error("get_encapsulated_IA_state: no memory for options.");
data_string_forget(enc_opt_data, MDL);
return 0;
}
if (!parse_option_buffer(*enc_opt_state,
enc_opt_data->data + offset,
enc_opt_data->len - offset,
&dhcpv6_universe)) {
log_error("get_encapsulated_IA_state: error parsing options.");
option_state_dereference(enc_opt_state, MDL);
data_string_forget(enc_opt_data, MDL);
return 0;
}
return 1;
}
static int
set_status_code(u_int16_t status_code, const char *status_message,
struct option_state *opt_state)
{
struct data_string d;
int ret_val;
memset(&d, 0, sizeof(d));
d.len = sizeof(status_code) + strlen(status_message);
if (!buffer_allocate(&d.buffer, d.len, MDL)) {
log_fatal("set_status_code: no memory for status code.");
}
d.data = d.buffer->data;
putUShort(d.buffer->data, status_code);
memcpy(d.buffer->data + sizeof(status_code),
status_message, d.len - sizeof(status_code));
if (!save_option_buffer(&dhcpv6_universe, opt_state,
d.buffer, (unsigned char *)d.data, d.len,
D6O_STATUS_CODE, 0)) {
log_error("set_status_code: error saving status code.");
ret_val = 0;
} else {
ret_val = 1;
}
data_string_forget(&d, MDL);
return ret_val;
}
void check_pool6_threshold(struct reply_state *reply,
struct iasubopt *lease)
{
struct ipv6_pond *pond;
isc_uint64_t used, count, high_threshold;
int poolhigh = 0, poollow = 0;
char *shared_name = "no name";
char tmp_addr[INET6_ADDRSTRLEN];
if ((lease->ipv6_pool == NULL) || (lease->ipv6_pool->ipv6_pond == NULL))
return;
pond = lease->ipv6_pool->ipv6_pond;
/* If the address range is too large to track, just skip all this. */
if (pond->jumbo_range == 1) {
return;
}
count = pond->num_total;
used = pond->num_active;
/* get network name for logging */
if ((pond->shared_network != NULL) &&
(pond->shared_network->name != NULL)) {
shared_name = pond->shared_network->name;
}
/* The logged flag indicates if we have already crossed the high
* threshold and emitted a log message. If it is set we check to
* see if we have re-crossed the low threshold and need to reset
* things. When we cross the high threshold we determine what
* the low threshold is and save it into the low_threshold value.
* When we cross that threshold we reset the logged flag and
* the low_threshold to 0 which allows the high threshold message
* to be emitted once again.
* if we haven't recrossed the boundry we don't need to do anything.
*/
if (pond->logged !=0) {
if (used <= pond->low_threshold) {
pond->low_threshold = 0;
pond->logged = 0;
log_error("Pool threshold reset - shared subnet: %s; "
"address: %s; low threshold %llu/%llu.",
shared_name,
inet_ntop(AF_INET6, &lease->addr,
tmp_addr, sizeof(tmp_addr)),
(long long unsigned)(used),
(long long unsigned)(count));
}
return;
}
/* find the high threshold */
if (get_option_int(&poolhigh, &server_universe, reply->packet, NULL,
NULL, reply->packet->options, reply->opt_state,
reply->opt_state, &lease->scope,
SV_LOG_THRESHOLD_HIGH, MDL) == 0) {
/* no threshold bail out */
return;
}
/* We do have a threshold for this pool, see if its valid */
if ((poolhigh <= 0) || (poolhigh > 100)) {
/* not valid */
return;
}
/* we have a valid value, have we exceeded it */
high_threshold = FIND_POND6_PERCENT(count, poolhigh);
if (used < high_threshold) {
/* nope, no more to do */
return;
}
/* we've exceeded it, output a message */
log_error("Pool threshold exceeded - shared subnet: %s; "
"address: %s; high threshold %d%% %llu/%llu.",
shared_name,
inet_ntop(AF_INET6, &lease->addr, tmp_addr, sizeof(tmp_addr)),
poolhigh, (long long unsigned)(used),
(long long unsigned)(count));
/* handle the low threshold now, if we don't
* have one we default to 0. */
if ((get_option_int(&poollow, &server_universe, reply->packet, NULL,
NULL, reply->packet->options, reply->opt_state,
reply->opt_state, &lease->scope,
SV_LOG_THRESHOLD_LOW, MDL) == 0) ||
(poollow > 100)) {
poollow = 0;
}
/*
* If the low theshold is higher than the high threshold we continue to log
* If it isn't then we set the flag saying we already logged and determine
* what the reset threshold is.
*/
if (poollow < poolhigh) {
pond->logged = 1;
pond->low_threshold = FIND_POND6_PERCENT(count, poollow);
}
}
/*
* We have a set of operations we do to set up the reply packet, which
* is the same for many message types.
*/
static int
start_reply(struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id,
struct option_state **opt_state,
struct dhcpv6_packet *reply)
{
struct option_cache *oc;
const unsigned char *server_id_data;
int server_id_len;
/*
* Build our option state for reply.
*/
*opt_state = NULL;
if (!option_state_allocate(opt_state, MDL)) {
log_error("start_reply: no memory for option_state.");
return 0;
}
execute_statements_in_scope(NULL, packet, NULL, NULL,
packet->options, *opt_state,
&global_scope, root_group, NULL, NULL);
/*
* A small bit of special handling for Solicit messages.
*
* We could move the logic into a flag, but for now just check
* explicitly.
*/
if (packet->dhcpv6_msg_type == DHCPV6_SOLICIT) {
reply->msg_type = DHCPV6_ADVERTISE;
/*
* If:
* - this message type supports rapid commit (Solicit), and
* - the server is configured to supply a rapid commit, and
* - the client requests a rapid commit,
* Then we add a rapid commit option, and send Reply (instead
* of an Advertise).
*/
oc = lookup_option(&dhcpv6_universe,
*opt_state, D6O_RAPID_COMMIT);
if (oc != NULL) {
oc = lookup_option(&dhcpv6_universe,
packet->options, D6O_RAPID_COMMIT);
if (oc != NULL) {
/* Rapid-commit in action. */
reply->msg_type = DHCPV6_REPLY;
} else {
/* Don't want a rapid-commit in advertise. */
delete_option(&dhcpv6_universe,
*opt_state, D6O_RAPID_COMMIT);
}
}
} else {
reply->msg_type = DHCPV6_REPLY;
/* Delete the rapid-commit from the sent options. */
oc = lookup_option(&dhcpv6_universe,
*opt_state, D6O_RAPID_COMMIT);
if (oc != NULL) {
delete_option(&dhcpv6_universe,
*opt_state, D6O_RAPID_COMMIT);
}
}
/*
* Use the client's transaction identifier for the reply.
*/
memcpy(reply->transaction_id, packet->dhcpv6_transaction_id,
sizeof(reply->transaction_id));
/*
* RFC 3315, section 18.2 says we need server identifier and
* client identifier.
*
* If the server ID is defined via the configuration file, then
* it will already be present in the option state at this point,
* so we don't need to set it.
*
* If we have a server ID passed in from the caller,
* use that, otherwise use the global DUID.
*/
oc = lookup_option(&dhcpv6_universe, *opt_state, D6O_SERVERID);
if (oc == NULL) {
if (server_id == NULL) {
server_id_data = server_duid.data;
server_id_len = server_duid.len;
} else {
server_id_data = server_id->data;
server_id_len = server_id->len;
}
if (!save_option_buffer(&dhcpv6_universe, *opt_state,
NULL, (unsigned char *)server_id_data,
server_id_len, D6O_SERVERID, 0)) {
log_error("start_reply: "
"error saving server identifier.");
return 0;
}
}
if (client_id->buffer != NULL) {
if (!save_option_buffer(&dhcpv6_universe, *opt_state,
client_id->buffer,
(unsigned char *)client_id->data,
client_id->len,
D6O_CLIENTID, 0)) {
log_error("start_reply: error saving "
"client identifier.");
return 0;
}
}
/*
* If the client accepts reconfiguration, let it know that we
* will send them.
*
* Note: we don't actually do this yet, but DOCSIS requires we
* claim to.
*/
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_RECONF_ACCEPT);
if (oc != NULL) {
if (!save_option_buffer(&dhcpv6_universe, *opt_state,
NULL, (unsigned char *)"", 0,
D6O_RECONF_ACCEPT, 0)) {
log_error("start_reply: "
"error saving RECONF_ACCEPT option.");
option_state_dereference(opt_state, MDL);
return 0;
}
}
return 1;
}
/*
* Try to get the IPv6 address the client asked for from the
* pool.
*
* addr is the result (should be a pointer to NULL on entry)
* pool is the pool to search in
* requested_addr is the address the client wants
*/
static isc_result_t
try_client_v6_address(struct iasubopt **addr,
struct ipv6_pool *pool,
const struct data_string *requested_addr)
{
struct in6_addr tmp_addr;
isc_result_t result;
if (requested_addr->len < sizeof(tmp_addr)) {
return DHCP_R_INVALIDARG;
}
memcpy(&tmp_addr, requested_addr->data, sizeof(tmp_addr));
if (IN6_IS_ADDR_UNSPECIFIED(&tmp_addr)) {
return ISC_R_FAILURE;
}
/*
* The address is not covered by this (or possibly any) dynamic
* range.
*/
if (!ipv6_in_pool(&tmp_addr, pool)) {
return ISC_R_ADDRNOTAVAIL;
}
if (lease6_exists(pool, &tmp_addr)) {
return ISC_R_ADDRINUSE;
}
result = iasubopt_allocate(addr, MDL);
if (result != ISC_R_SUCCESS) {
return result;
}
(*addr)->addr = tmp_addr;
(*addr)->plen = 0;
/* Default is soft binding for 2 minutes. */
result = add_lease6(pool, *addr, cur_time + 120);
if (result != ISC_R_SUCCESS) {
iasubopt_dereference(addr, MDL);
}
return result;
}
/*!
*
* \brief Get an IPv6 address for the client.
*
* Attempt to find a usable address for the client. We walk through
* the ponds checking for permit and deny then through the pools
* seeing if they have an available address.
*
* \param reply = the state structure for the current work on this request
* if we create a lease we return it using reply->lease
*
* \return
* ISC_R_SUCCESS = we were able to find an address and are returning a
* pointer to the lease
* ISC_R_NORESOURCES = there don't appear to be any free addresses. This
* is probabalistic. We don't exhaustively try the
* address range, instead we hash the duid and if
* the address derived from the hash is in use we
* hash the address. After a number of failures we
* conclude the pool is basically full.
*/
static isc_result_t
pick_v6_address(struct reply_state *reply)
{
struct ipv6_pool *p = NULL;
struct ipv6_pond *pond;
int i;
int start_pool;
unsigned int attempts;
char tmp_buf[INET6_ADDRSTRLEN];
struct iasubopt **addr = &reply->lease;
isc_uint64_t total = 0;
isc_uint64_t active = 0;
isc_uint64_t abandoned = 0;
int jumbo_range = 0;
char *shared_name = (reply->shared->name ?
reply->shared->name : "(no name)");
/*
* Do a quick walk through of the ponds and pools
* to see if we have any NA address pools
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (pond->ipv6_pools == NULL)
continue;
for (i = 0; (p = pond->ipv6_pools[i]) != NULL; i++) {
if (p->pool_type == D6O_IA_NA)
break;
}
if (p != NULL)
break;
}
/* If we get here and p is NULL we have no useful pools */
if (p == NULL) {
log_debug("Unable to pick client address: "
"no IPv6 pools on this shared network");
return ISC_R_NORESOURCES;
}
/*
* We have at least one pool that could provide an address
* Now we walk through the ponds and pools again and check
* to see if the client is permitted and if an address is
* available
*
* Within a given pond we start looking at the last pool we
* allocated from, unless it had a collision trying to allocate
* an address. This will tend to move us into less-filled pools.
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
isc_result_t result = ISC_R_FAILURE;
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
#ifdef EUI_64
/* If pond is EUI-64 but client duid isn't a valid EUI-64
* id, then skip this pond */
if (pond->use_eui_64 &&
!valid_eui_64_duid(&reply->ia->iaid_duid, IAID_LEN)) {
continue;
}
#endif
start_pool = pond->last_ipv6_pool;
i = start_pool;
do {
p = pond->ipv6_pools[i];
if (p->pool_type == D6O_IA_NA) {
#ifdef EUI_64
if (pond->use_eui_64) {
result =
create_lease6_eui_64(p, addr,
&reply->ia->iaid_duid,
cur_time + 120);
}
else
#endif
{
result =
create_lease6(p, addr, &attempts,
&reply->ia->iaid_duid,
cur_time + 120);
}
if (result == ISC_R_SUCCESS) {
/*
* Record the pool used (or next one if
* there was a collision).
*/
if (attempts > 1) {
i++;
if (pond->ipv6_pools[i]
== NULL) {
i = 0;
}
}
pond->last_ipv6_pool = i;
log_debug("Picking pool address %s",
inet_ntop(AF_INET6,
&((*addr)->addr),
tmp_buf, sizeof(tmp_buf)));
return (ISC_R_SUCCESS);
}
}
i++;
if (pond->ipv6_pools[i] == NULL) {
i = 0;
}
} while (i != start_pool);
if (result == ISC_R_NORESOURCES) {
jumbo_range += pond->jumbo_range;
total += pond->num_total;
active += pond->num_active;
abandoned += pond->num_abandoned;
}
}
/*
* If we failed to pick an IPv6 address from any of the subnets.
* Presumably that means we have no addresses for the client.
*/
if (jumbo_range != 0) {
log_debug("Unable to pick client address: "
"no addresses available - shared network %s: "
" 2^64-1 < total, %llu active, %llu abandoned",
shared_name, (long long unsigned)(active - abandoned),
(long long unsigned)(abandoned));
} else {
log_debug("Unable to pick client address: "
"no addresses available - shared network %s: "
"%llu total, %llu active, %llu abandoned",
shared_name, (long long unsigned)(total),
(long long unsigned)(active - abandoned),
(long long unsigned)(abandoned));
}
return ISC_R_NORESOURCES;
}
/*
* Try to get the IPv6 prefix the client asked for from the
* prefix pool.
*
* pref is the result (should be a pointer to NULL on entry)
* pool is the prefix pool to search in
* requested_pref is the address the client wants
*/
static isc_result_t
try_client_v6_prefix(struct iasubopt **pref,
struct ipv6_pool *pool,
const struct data_string *requested_pref)
{
u_int8_t tmp_plen;
struct in6_addr tmp_pref;
struct iaddr ia;
isc_result_t result;
if (requested_pref->len < sizeof(tmp_plen) + sizeof(tmp_pref)) {
return DHCP_R_INVALIDARG;
}
tmp_plen = (int) requested_pref->data[0];
if ((tmp_plen < 3) || (tmp_plen > 128)) {
return ISC_R_FAILURE;
}
memcpy(&tmp_pref, requested_pref->data + 1, sizeof(tmp_pref));
if (IN6_IS_ADDR_UNSPECIFIED(&tmp_pref)) {
return ISC_R_FAILURE;
}
ia.len = 16;
memcpy(&ia.iabuf, &tmp_pref, 16);
if (!is_cidr_mask_valid(&ia, (int) tmp_plen)) {
return ISC_R_FAILURE;
}
if (!ipv6_in_pool(&tmp_pref, pool) ||
((int)tmp_plen != pool->units)) {
return ISC_R_ADDRNOTAVAIL;
}
if (prefix6_exists(pool, &tmp_pref, tmp_plen)) {
return ISC_R_ADDRINUSE;
}
result = iasubopt_allocate(pref, MDL);
if (result != ISC_R_SUCCESS) {
return result;
}
(*pref)->addr = tmp_pref;
(*pref)->plen = tmp_plen;
/* Default is soft binding for 2 minutes. */
result = add_lease6(pool, *pref, cur_time + 120);
if (result != ISC_R_SUCCESS) {
iasubopt_dereference(pref, MDL);
}
return result;
}
/*!
*
* \brief Get an IPv6 prefix for the client.
*
* Attempt to find a usable prefix for the client. Based upon the prefix
* length mode and the plen supplied by the client (if one), we make one
* or more calls to pick_v6_prefix_helper() to find a prefix as follows:
*
* PLM_IGNORE or client specifies a plen of zero, use the first available
* prefix regardless of it's length.
*
* PLM_PREFER look for an exact match to client's plen first, if none
* found, use the first available prefix of any length
*
* PLM_EXACT look for an exact match first, if none found then fail. This
* is the default behavior.
*
* PLM_MAXIMUM - look for an exact match first, then the first available whose
* prefix length is less than client's plen, otherwise fail.
*
* PLM_MINIMUM - look for an exact match first, then the first available whose
* prefix length is greater than client's plen, otherwise fail.
*
* Note that the selection mode is configurable at the global scope only via
* prefix-len-mode.
*
* \param reply = the state structure for the current work on this request
* if we create a lease we return it using reply->lease
*
* \return
* ISC_R_SUCCESS = we were able to find an prefix and are returning a
* pointer to the lease
* ISC_R_NORESOURCES = there don't appear to be any free addresses. This
* is probabalistic. We don't exhaustively try the
* address range, instead we hash the duid and if
* the address derived from the hash is in use we
* hash the address. After a number of failures we
* conclude the pool is basically full.
*/
static isc_result_t
pick_v6_prefix(struct reply_state *reply) {
struct ipv6_pool *p = NULL;
struct ipv6_pond *pond;
int i;
isc_result_t result;
/*
* Do a quick walk through of the ponds and pools
* to see if we have any prefix pools
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (pond->ipv6_pools == NULL)
continue;
for (i = 0; (p = pond->ipv6_pools[i]) != NULL; i++) {
if (p->pool_type == D6O_IA_PD)
break;
}
if (p != NULL)
break;
}
/* If we get here and p is NULL we have no useful pools */
if (p == NULL) {
log_debug("Unable to pick client prefix: "
"no IPv6 pools on this shared network");
return ISC_R_NORESOURCES;
}
if (reply->preflen <= 0) {
/* If we didn't get a plen (-1) or client plen is 0, then just
* select first available (same as PLM_INGORE) */
result = pick_v6_prefix_helper(reply, PLM_IGNORE);
} else {
switch (prefix_length_mode) {
case PLM_PREFER:
/* First we look for an exact match, if not found
* then first available */
result = pick_v6_prefix_helper(reply, PLM_EXACT);
if (result != ISC_R_SUCCESS) {
result = pick_v6_prefix_helper(reply,
PLM_IGNORE);
}
break;
case PLM_EXACT:
/* Match exactly or fail */
result = pick_v6_prefix_helper(reply, PLM_EXACT);
break;
case PLM_MINIMUM:
case PLM_MAXIMUM:
/* First we look for an exact match, if not found
* then first available by mode */
result = pick_v6_prefix_helper(reply, PLM_EXACT);
if (result != ISC_R_SUCCESS) {
result = pick_v6_prefix_helper(reply,
prefix_length_mode);
}
break;
default:
/* First available */
result = pick_v6_prefix_helper(reply, PLM_IGNORE);
break;
}
}
if (result == ISC_R_SUCCESS) {
char tmp_buf[INET6_ADDRSTRLEN];
log_debug("Picking pool prefix %s/%u",
inet_ntop(AF_INET6, &(reply->lease->addr),
tmp_buf, sizeof(tmp_buf)),
(unsigned)(reply->lease->plen));
return (ISC_R_SUCCESS);
}
/*
* If we failed to pick an IPv6 prefix
* Presumably that means we have no prefixes for the client.
*/
log_debug("Unable to pick client prefix: no prefixes available");
return ISC_R_NORESOURCES;
}
/*!
*
* \brief Get an IPv6 prefix for the client based upon selection mode.
*
* We walk through the ponds checking for permit and deny. If a pond is
* permissable to use, loop through its PD pools checking prefix lengths
* against the client plen based on the prefix length mode, looking for
* available prefixes.
*
* \param reply = the state structure for the current work on this request
* if we create a lease we return it using reply->lease
* \prefix_mode = selection mode to use
*
* \return
* ISC_R_SUCCESS = we were able to find a prefix and are returning a
* pointer to the lease
* ISC_R_NORESOURCES = there don't appear to be any free addresses. This
* is probabalistic. We don't exhaustively try the
* address range, instead we hash the duid and if
* the address derived from the hash is in use we
* hash the address. After a number of failures we
* conclude the pool is basically full.
*/
isc_result_t
pick_v6_prefix_helper(struct reply_state *reply, int prefix_mode) {
struct ipv6_pool *p = NULL;
struct ipv6_pond *pond;
int i;
unsigned int attempts;
struct iasubopt **pref = &reply->lease;
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
for (i = 0; (p = pond->ipv6_pools[i]) != NULL; i++) {
if ((p->pool_type == D6O_IA_PD) &&
(eval_prefix_mode(p->units, reply->preflen,
prefix_mode) == 1) &&
(create_prefix6(p, pref, &attempts,
&reply->ia->iaid_duid,
cur_time + 120) == ISC_R_SUCCESS)) {
return (ISC_R_SUCCESS);
}
}
}
return ISC_R_NORESOURCES;
}
/*!
*
* \brief Test a prefix length against another based on prefix length mode
*
* \param len - prefix length to test
* \param preflen - preferred prefix length against which to test
* \param prefix_mode - prefix selection mode with which to test
*
* Note that the case of preferred length of 0 is not short-cut here as it
* is assumed to be done at a higher level.
*
* \return 1 if the given length is usable based upon mode and a preferred
* length, 0 if not.
*/
int
eval_prefix_mode(int len, int preflen, int prefix_mode) {
int use_it = 1;
switch (prefix_mode) {
case PLM_EXACT:
use_it = (len == preflen);
break;
case PLM_MINIMUM:
/* they asked for a prefix length no "shorter" than preflen */
use_it = (len >= preflen);
break;
case PLM_MAXIMUM:
/* they asked for a prefix length no "longer" than preflen */
use_it = (len <= preflen);
break;
default:
/* otherwise use it */
break;
}
return (use_it);
}
/*
*! \file server/dhcpv6.c
*
* \brief construct a reply containing information about a client's lease
*
* lease_to_client() is called from several messages to construct a
* reply that contains all that we know about the client's correct lease
* (or projected lease).
*
* Solicit - "Soft" binding, ignore unknown addresses or bindings, just
* send what we "may" give them on a request.
*
* Request - "Hard" binding, but ignore supplied addresses (just provide what
* the client should really use).
*
* Renew - "Hard" binding, but client-supplied addresses are 'real'. Error
* Rebind out any "wrong" addresses the client sends. This means we send
* an empty IA_NA with a status code of NoBinding or NotOnLink or
* possibly send the address with zeroed lifetimes.
*
* Information-Request - No binding.
*
* The basic structure is to traverse the client-supplied data first, and
* validate and echo back any contents that can be. If the client-supplied
* data does not error out (on renew/rebind as above), but we did not send
* any addresses, attempt to allocate one.
*
* At the end of the this function we call commit_leases_timed() to
* fsync and rotate the file as necessary. commit_leases_timed() will
* check that we have written at least one lease to the file and that
* some time has passed before doing any fsync or file rewrite so we
* don't bother tracking if we did a write_ia during this function.
*/
/* TODO: look at client hints for lease times */
static void
lease_to_client(struct data_string *reply_ret,
struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id)
{
static struct reply_state reply;
struct option_cache *oc;
struct data_string packet_oro;
int i;
memset(&packet_oro, 0, sizeof(packet_oro));
/* Locate the client. */
if (shared_network_from_packet6(&reply.shared,
packet) != ISC_R_SUCCESS)
goto exit;
/*
* Initialize the reply.
*/
packet_reference(&reply.packet, packet, MDL);
data_string_copy(&reply.client_id, client_id, MDL);
if (!start_reply(packet, client_id, server_id, &reply.opt_state,
&reply.buf.reply))
goto exit;
/* Set the write cursor to just past the reply header. */
reply.cursor = REPLY_OPTIONS_INDEX;
/*
* Get the ORO from the packet, if any.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_ORO);
if (oc != NULL) {
if (!evaluate_option_cache(&packet_oro, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("lease_to_client: error evaluating ORO.");
goto exit;
}
}
/*
* Find a host record that matches the packet, if any, and is
* valid for the shared network the client is on.
*/
if (find_hosts6(&reply.host, packet, client_id, MDL)) {
packet->known = 1;
seek_shared_host(&reply.host, reply.shared);
}
/* Process the client supplied IA's onto the reply buffer. */
reply.ia_count = 0;
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_NA);
for (; oc != NULL ; oc = oc->next) {
isc_result_t status;
/* Start counting resources (addresses) offered. */
reply.client_resources = 0;
reply.resources_included = ISC_FALSE;
status = reply_process_ia_na(&reply, oc);
/*
* We continue to try other IA's whether we can address
* this one or not. Any other result is an immediate fail.
*/
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_NORESOURCES))
goto exit;
}
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_TA);
for (; oc != NULL ; oc = oc->next) {
isc_result_t status;
/* Start counting resources (addresses) offered. */
reply.client_resources = 0;
reply.resources_included = ISC_FALSE;
status = reply_process_ia_ta(&reply, oc);
/*
* We continue to try other IA's whether we can address
* this one or not. Any other result is an immediate fail.
*/
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_NORESOURCES))
goto exit;
}
/* Same for IA_PD's. */
reply.pd_count = 0;
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_PD);
for (; oc != NULL ; oc = oc->next) {
isc_result_t status;
/* Start counting resources (prefixes) offered. */
reply.client_resources = 0;
reply.resources_included = ISC_FALSE;
status = reply_process_ia_pd(&reply, oc);
/*
* We continue to try other IA_PD's whether we can address
* this one or not. Any other result is an immediate fail.
*/
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_NORESOURCES))
goto exit;
}
/*
* Make no reply if we gave no resources and is not
* for Information-Request.
*/
if ((reply.ia_count == 0) && (reply.pd_count == 0)) {
if (reply.packet->dhcpv6_msg_type !=
DHCPV6_INFORMATION_REQUEST)
goto exit;
/*
* Because we only execute statements on a per-IA basis,
* we need to execute statements in any non-IA reply to
* source configuration.
*/
execute_statements_in_scope(NULL, reply.packet, NULL, NULL,
reply.packet->options,
reply.opt_state, &global_scope,
reply.shared->group, root_group,
NULL);
/* Execute statements from class scopes. */
for (i = reply.packet->class_count; i > 0; i--) {
execute_statements_in_scope(NULL, reply.packet,
NULL, NULL,
reply.packet->options,
reply.opt_state,
&global_scope,
reply.packet->classes[i - 1]->group,
reply.shared->group, NULL);
}
/* Bring in any configuration from a host record. */
if (reply.host != NULL)
execute_statements_in_scope(NULL, reply.packet,
NULL, NULL,
reply.packet->options,
reply.opt_state,
&global_scope,
reply.host->group,
reply.shared->group, NULL);
}
/*
* RFC3315 section 17.2.2 (Solicit):
*
* If the server will not assign any addresses to any IAs in a
* subsequent Request from the client, the server MUST send an
* Advertise message to the client that includes only a Status
* Code option with code NoAddrsAvail and a status message for
* the user, a Server Identifier option with the server's DUID,
* and a Client Identifier option with the client's DUID.
*
* This has been updated by an errata such that the server
* can always send an IA.
*
* Section 18.2.1 (Request):
*
* If the server cannot assign any addresses to an IA in the
* message from the client, the server MUST include the IA in
* the Reply message with no addresses in the IA and a Status
* Code option in the IA containing status code NoAddrsAvail.
*
* Section 18.1.8 (Client Behavior):
*
* Leave unchanged any information about addresses the client has
* recorded in the IA but that were not included in the IA from
* the server.
* Sends a Renew/Rebind if the IA is not in the Reply message.
*/
/*
* Having stored the client's IA's, store any options that
* will fit in the remaining space.
*/
reply.cursor += store_options6((char *)reply.buf.data + reply.cursor,
sizeof(reply.buf) - reply.cursor,
reply.opt_state, reply.packet,
required_opts_solicit,
&packet_oro);
/* Return our reply to the caller. */
reply_ret->len = reply.cursor;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply.cursor, MDL)) {
log_fatal("No memory to store Reply.");
}
memcpy(reply_ret->buffer->data, reply.buf.data, reply.cursor);
reply_ret->data = reply_ret->buffer->data;
/* If appropriate commit and rotate the lease file */
(void) commit_leases_timed();
exit:
/* Cleanup. */
if (reply.shared != NULL)
shared_network_dereference(&reply.shared, MDL);
if (reply.host != NULL)
host_dereference(&reply.host, MDL);
if (reply.opt_state != NULL)
option_state_dereference(&reply.opt_state, MDL);
if (reply.packet != NULL)
packet_dereference(&reply.packet, MDL);
if (reply.client_id.data != NULL)
data_string_forget(&reply.client_id, MDL);
if (packet_oro.buffer != NULL)
data_string_forget(&packet_oro, MDL);
reply.renew = reply.rebind = reply.min_prefer = reply.min_valid = 0;
reply.cursor = 0;
}
/* Process a client-supplied IA_NA. This may append options to the tail of
* the reply packet being built in the reply_state structure.
*/
static isc_result_t
reply_process_ia_na(struct reply_state *reply, struct option_cache *ia) {
isc_result_t status = ISC_R_SUCCESS;
u_int32_t iaid;
unsigned ia_cursor;
struct option_state *packet_ia;
struct option_cache *oc;
struct data_string ia_data, data;
/* Initialize values that will get cleaned up on return. */
packet_ia = NULL;
memset(&ia_data, 0, sizeof(ia_data));
memset(&data, 0, sizeof(data));
/*
* Note that find_client_address() may set reply->lease.
*/
/* Make sure there is at least room for the header. */
if ((reply->cursor + IA_NA_OFFSET + 4) > sizeof(reply->buf)) {
log_error("reply_process_ia_na: Reply too long for IA.");
return ISC_R_NOSPACE;
}
/* Fetch the IA_NA contents. */
if (!get_encapsulated_IA_state(&packet_ia, &ia_data, reply->packet,
ia, IA_NA_OFFSET)) {
log_error("reply_process_ia_na: error evaluating ia");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Extract IA_NA header contents. */
iaid = getULong(ia_data.data);
reply->renew = getULong(ia_data.data + 4);
reply->rebind = getULong(ia_data.data + 8);
/* Create an IA_NA structure. */
if (ia_allocate(&reply->ia, iaid, (char *)reply->client_id.data,
reply->client_id.len, MDL) != ISC_R_SUCCESS) {
log_error("reply_process_ia_na: no memory for ia.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
reply->ia->ia_type = D6O_IA_NA;
/* Cache pre-existing IA, if any. */
ia_hash_lookup(&reply->old_ia, ia_na_active,
(unsigned char *)reply->ia->iaid_duid.data,
reply->ia->iaid_duid.len, MDL);
/*
* Create an option cache to carry the IA_NA option contents, and
* execute any user-supplied values into it.
*/
if (!option_state_allocate(&reply->reply_ia, MDL)) {
status = ISC_R_NOMEMORY;
goto cleanup;
}
/* Check & cache the fixed host record. */
if ((reply->host != NULL) && (reply->host->fixed_addr != NULL)) {
struct iaddr tmp_addr;
if (!evaluate_option_cache(&reply->fixed, NULL, NULL, NULL,
NULL, NULL, &global_scope,
reply->host->fixed_addr, MDL)) {
log_error("reply_process_ia_na: unable to evaluate "
"fixed address.");
status = ISC_R_FAILURE;
goto cleanup;
}
if (reply->fixed.len < 16) {
log_error("reply_process_ia_na: invalid fixed address.");
status = DHCP_R_INVALIDARG;
goto cleanup;
}
/* Find the static lease's subnet. */
tmp_addr.len = 16;
memcpy(tmp_addr.iabuf, reply->fixed.data, 16);
if (find_grouped_subnet(&reply->subnet, reply->shared,
tmp_addr, MDL) == 0)
log_fatal("Impossible condition at %s:%d.", MDL);
reply->static_lease = ISC_TRUE;
} else
reply->static_lease = ISC_FALSE;
/*
* Save the cursor position at the start of the IA, so we can
* set length and adjust t1/t2 values later. We write a temporary
* header out now just in case we decide to adjust the packet
* within sub-process functions.
*/
ia_cursor = reply->cursor;
/* Initialize the IA_NA header. First the code. */
putUShort(reply->buf.data + reply->cursor, (unsigned)D6O_IA_NA);
reply->cursor += 2;
/* Then option length. */
putUShort(reply->buf.data + reply->cursor, 0x0Cu);
reply->cursor += 2;
/* Then IA_NA header contents; IAID. */
putULong(reply->buf.data + reply->cursor, iaid);
reply->cursor += 4;
/* We store the client's t1 for now, and may over-ride it later. */
putULong(reply->buf.data + reply->cursor, reply->renew);
reply->cursor += 4;
/* We store the client's t2 for now, and may over-ride it later. */
putULong(reply->buf.data + reply->cursor, reply->rebind);
reply->cursor += 4;
/*
* For each address in this IA_NA, decide what to do about it.
*
* Guidelines:
*
* The client leaves unchanged any information about addresses
* it has recorded but are not included ("cancel/break" below).
* A not included IA ("cleanup" below) could give a Renew/Rebind.
*/
oc = lookup_option(&dhcpv6_universe, packet_ia, D6O_IAADDR);
reply->min_valid = reply->min_prefer = INFINITE_TIME;
reply->client_valid = reply->client_prefer = 0;
for (; oc != NULL ; oc = oc->next) {
status = reply_process_addr(reply, oc);
/*
* Canceled means we did not allocate addresses to the
* client, but we're "done" with this IA - we set a status
* code. So transmit this reply, e.g., move on to the next
* IA.
*/
if (status == ISC_R_CANCELED)
break;
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_ADDRINUSE) &&
(status != ISC_R_ADDRNOTAVAIL))
goto cleanup;
}
reply->ia_count++;
/*
* If we fell through the above and never gave the client
* an address, give it one now.
*/
if ((status != ISC_R_CANCELED) && (reply->client_resources == 0)) {
status = find_client_address(reply);
if (status == ISC_R_NORESOURCES) {
switch (reply->packet->dhcpv6_msg_type) {
case DHCPV6_SOLICIT:
/*
* No address for any IA is handled
* by the caller.
*/
/* FALL THROUGH */
case DHCPV6_REQUEST:
/* Section 18.2.1 (Request):
*
* If the server cannot assign any addresses to
* an IA in the message from the client, the
* server MUST include the IA in the Reply
* message with no addresses in the IA and a
* Status Code option in the IA containing
* status code NoAddrsAvail.
*/
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia,
MDL))
{
log_error("reply_process_ia_na: No "
"memory for option state "
"wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
if (!set_status_code(STATUS_NoAddrsAvail,
"No addresses available "
"for this interface.",
reply->reply_ia)) {
log_error("reply_process_ia_na: Unable "
"to set NoAddrsAvail status "
"code.");
status = ISC_R_FAILURE;
goto cleanup;
}
status = ISC_R_SUCCESS;
break;
default:
/*
* RFC 3315 does not tell us to emit a status
* code in this condition, or anything else.
*
* If we included non-allocated addresses
* (zeroed lifetimes) in an IA, then the client
* will deconfigure them.
*
* So we want to include the IA even if we
* can't give it a new address if it includes
* zeroed lifetime addresses.
*
* We don't want to include the IA if we
* provide zero addresses including zeroed
* lifetimes.
*/
if (reply->resources_included)
status = ISC_R_SUCCESS;
else
goto cleanup;
break;
}
}
if (status != ISC_R_SUCCESS)
goto cleanup;
}
/*
* yes, goto's aren't the best but we also want to avoid extra
* indents
*/
if (status == ISC_R_CANCELED) {
/* We're replying with a status code so we still need to
* write it out in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
goto cleanup;
}
/*
* Handle static leases, we always log stuff and if it's
* a hard binding we run any commit statements that we have
*/
if (reply->static_lease) {
char tmp_addr[INET6_ADDRSTRLEN];
log_info("%s NA: address %s to client with duid %s iaid = %d "
"static",
dhcpv6_type_names[reply->buf.reply.msg_type],
inet_ntop(AF_INET6, reply->fixed.data, tmp_addr,
sizeof(tmp_addr)),
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
iaid);
/* Write the lease out in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
#ifdef NSUPDATE
/* Performs DDNS updates if we're configured to do them */
ddns_update_static6(reply);
#endif
if ((reply->buf.reply.msg_type == DHCPV6_REPLY) &&
(reply->on_star.on_commit != NULL)) {
execute_statements(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, NULL,
reply->on_star.on_commit, NULL);
executable_statement_dereference
(&reply->on_star.on_commit, MDL);
}
goto cleanup;
}
/*
* If we have any addresses log what we are doing.
*/
if (reply->ia->num_iasubopt != 0) {
struct iasubopt *tmp;
int i;
char tmp_addr[INET6_ADDRSTRLEN];
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
log_info("%s NA: address %s to client with duid %s "
"iaid = %d valid for %u seconds",
dhcpv6_type_names[reply->buf.reply.msg_type],
inet_ntop(AF_INET6, &tmp->addr,
tmp_addr, sizeof(tmp_addr)),
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
iaid, tmp->valid);
}
}
/*
* If this is not a 'soft' binding, consume the new changes into
* the database (if any have been attached to the ia_na).
*
* Loop through the assigned dynamic addresses, referencing the
* leases onto this IA_NA rather than any old ones, and updating
* pool timers for each (if any).
*
* Note that we must do ddns_updates() before we test for lease
* reuse (so we'll know if DNS entries are different). To ensure
* we don't break any configs, we run on_commit statements before
* we do ddns_updates() just in case the former affects the later.
* This is symetrical with v4 logic. We always run on_commit and
* ddns_udpates() whether a lease is reused or renewed.
*/
if ((reply->ia->num_iasubopt != 0) &&
(reply->buf.reply.msg_type == DHCPV6_REPLY)) {
int must_commit = 0;
struct iasubopt *tmp;
struct data_string *ia_id;
int i;
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
if (tmp->ia != NULL) {
ia_dereference(&tmp->ia, MDL);
}
ia_reference(&tmp->ia, reply->ia, MDL);
/* If we have anything to do on commit do it now */
if (tmp->on_star.on_commit != NULL) {
execute_statements(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&tmp->scope,
tmp->on_star.on_commit,
&tmp->on_star);
executable_statement_dereference
(&tmp->on_star.on_commit, MDL);
}
#if defined (NSUPDATE)
/* Perform ddns updates */
oc = lookup_option(&server_universe, reply->opt_state,
SV_DDNS_UPDATES);
if ((oc == NULL) ||
evaluate_boolean_option_cache(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&tmp->scope,
oc, MDL)) {
ddns_updates(reply->packet, NULL, NULL,
tmp, NULL, reply->opt_state);
}
#endif
if (!reuse_lease6(reply, tmp)) {
/* Commit 'hard' bindings. */
must_commit = 1;
renew_lease6(tmp->ipv6_pool, tmp);
schedule_lease_timeout(tmp->ipv6_pool);
/* Do our threshold check. */
check_pool6_threshold(reply, tmp);
}
}
/* write the IA_NA in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
/* Remove any old ia from the hash. */
if (reply->old_ia != NULL) {
if (!release_on_roam(reply)) {
ia_id = &reply->old_ia->iaid_duid;
ia_hash_delete(ia_na_active,
(unsigned char *)ia_id->data,
ia_id->len, MDL);
}
ia_dereference(&reply->old_ia, MDL);
}
/* Put new ia into the hash. */
reply->ia->cltt = cur_time;
ia_id = &reply->ia->iaid_duid;
ia_hash_add(ia_na_active, (unsigned char *)ia_id->data,
ia_id->len, reply->ia, MDL);
/* If we couldn't reuse all of the iasubopts, we
* must update udpate the lease db */
if (must_commit) {
write_ia(reply->ia);
}
} else {
/* write the IA_NA in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
schedule_lease_timeout_reply(reply);
}
cleanup:
if (packet_ia != NULL)
option_state_dereference(&packet_ia, MDL);
if (reply->reply_ia != NULL)
option_state_dereference(&reply->reply_ia, MDL);
if (ia_data.data != NULL)
data_string_forget(&ia_data, MDL);
if (data.data != NULL)
data_string_forget(&data, MDL);
if (reply->ia != NULL)
ia_dereference(&reply->ia, MDL);
if (reply->old_ia != NULL)
ia_dereference(&reply->old_ia, MDL);
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
if (reply->fixed.data != NULL)
data_string_forget(&reply->fixed, MDL);
if (reply->subnet != NULL)
subnet_dereference(&reply->subnet, MDL);
if (reply->on_star.on_expiry != NULL)
executable_statement_dereference
(&reply->on_star.on_expiry, MDL);
if (reply->on_star.on_release != NULL)
executable_statement_dereference
(&reply->on_star.on_release, MDL);
/*
* ISC_R_CANCELED is a status code used by the addr processing to
* indicate we're replying with a status code. This is still a
* success at higher layers.
*/
return((status == ISC_R_CANCELED) ? ISC_R_SUCCESS : status);
}
/*
* Writes the populated IA_xx in wire format to the reply buffer
*/
void
write_to_packet(struct reply_state *reply, unsigned ia_cursor) {
reply->cursor += store_options6((char *)reply->buf.data + reply->cursor,
sizeof(reply->buf) - reply->cursor,
reply->reply_ia, reply->packet,
(reply->ia->ia_type != D6O_IA_PD ?
required_opts_IA : required_opts_IA_PD),
NULL);
/* Reset the length of this IA to match what was just written. */
putUShort(reply->buf.data + ia_cursor + 2,
reply->cursor - (ia_cursor + 4));
if (reply->ia->ia_type != D6O_IA_TA) {
/* Calculate T1/T2 and stuff them in the reply */
set_reply_tee_times(reply, ia_cursor);
}
}
/*
* Process an IAADDR within a given IA_xA, storing any IAADDR reply contents
* into the reply's current ia-scoped option cache. Returns ISC_R_CANCELED
* in the event we are replying with a status code and do not wish to process
* more IAADDRs within this IA.
*/
static isc_result_t
reply_process_addr(struct reply_state *reply, struct option_cache *addr) {
u_int32_t pref_life, valid_life;
struct binding_scope **scope;
struct group *group;
struct subnet *subnet;
struct iaddr tmp_addr;
struct option_cache *oc;
struct data_string iaaddr, data;
isc_result_t status = ISC_R_SUCCESS;
#ifdef EUI_64
int invalid_for_eui_64 = 0;
#endif
/* Initializes values that will be cleaned up. */
memset(&iaaddr, 0, sizeof(iaaddr));
memset(&data, 0, sizeof(data));
/* Note that reply->lease may be set by address_is_owned() */
/*
* There is no point trying to process an incoming address if there
* is no room for an outgoing address.
*/
if ((reply->cursor + 28) > sizeof(reply->buf)) {
log_error("reply_process_addr: Out of room for address.");
return ISC_R_NOSPACE;
}
/* Extract this IAADDR option. */
if (!evaluate_option_cache(&iaaddr, reply->packet, NULL, NULL,
reply->packet->options, NULL, &global_scope,
addr, MDL) ||
(iaaddr.len < IAADDR_OFFSET)) {
log_error("reply_process_addr: error evaluating IAADDR.");
status = ISC_R_FAILURE;
goto cleanup;
}
/* The first 16 bytes are the IPv6 address. */
pref_life = getULong(iaaddr.data + 16);
valid_life = getULong(iaaddr.data + 20);
if ((reply->client_valid == 0) ||
(reply->client_valid > valid_life))
reply->client_valid = valid_life;
if ((reply->client_prefer == 0) ||
(reply->client_prefer > pref_life))
reply->client_prefer = pref_life;
/*
* Clients may choose to send :: as an address, with the idea to give
* hints about preferred-lifetime or valid-lifetime.
*/
tmp_addr.len = 16;
memset(tmp_addr.iabuf, 0, 16);
if (!memcmp(iaaddr.data, tmp_addr.iabuf, 16)) {
/* Status remains success; we just ignore this one. */
goto cleanup;
}
/* tmp_addr len remains 16 */
memcpy(tmp_addr.iabuf, iaaddr.data, 16);
/*
* Verify that this address is on the client's network.
*/
for (subnet = reply->shared->subnets ; subnet != NULL ;
subnet = subnet->next_sibling) {
if (addr_eq(subnet_number(tmp_addr, subnet->netmask),
subnet->net))
break;
}
#ifdef EUI_64
if (subnet) {
/* If the requested address falls into an EUI-64 pool, then
* we need to verify if it has EUI-64 duid AND the requested
* address is correct for that duid. If not we treat it just
* like an not-on-link request. */
struct ipv6_pool* pool = NULL;
struct in6_addr* addr = (struct in6_addr*)(iaaddr.data);
if ((find_ipv6_pool(&pool, D6O_IA_NA, addr) == ISC_R_SUCCESS)
&& (pool->ipv6_pond->use_eui_64) &&
(!valid_for_eui_64_pool(pool, &reply->client_id, 0, addr))) {
log_debug ("Requested address: %s,"
" not valid for EUI-64 pool",
pin6_addr(addr));
invalid_for_eui_64 = 1;
}
}
#endif
/* Address not found on shared network. */
#ifdef EUI_64
if ((subnet == NULL) || invalid_for_eui_64) {
#else
if (subnet == NULL) {
#endif
/* Ignore this address on 'soft' bindings. */
if (reply->packet->dhcpv6_msg_type == DHCPV6_SOLICIT) {
/* disable rapid commit */
reply->buf.reply.msg_type = DHCPV6_ADVERTISE;
delete_option(&dhcpv6_universe,
reply->opt_state,
D6O_RAPID_COMMIT);
/* status remains success */
goto cleanup;
}
/*
* RFC3315 section 18.2.1:
*
* If the server finds that the prefix on one or more IP
* addresses in any IA in the message from the client is not
* appropriate for the link to which the client is connected,
* the server MUST return the IA to the client with a Status
* Code option with the value NotOnLink.
*/
if (reply->packet->dhcpv6_msg_type == DHCPV6_REQUEST) {
/* Rewind the IA_NA to empty. */
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia, MDL)) {
log_error("reply_process_addr: No memory for "
"option state wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
/* Append a NotOnLink status code. */
if (!set_status_code(STATUS_NotOnLink,
"Address not for use on this "
"link.", reply->reply_ia)) {
log_error("reply_process_addr: Failure "
"setting status code.");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Fin (no more IAADDRs). */
status = ISC_R_CANCELED;
goto cleanup;
}
/*
* RFC3315 sections 18.2.3 and 18.2.4 have identical language:
*
* If the server finds that any of the addresses are not
* appropriate for the link to which the client is attached,
* the server returns the address to the client with lifetimes
* of 0.
*/
if ((reply->packet->dhcpv6_msg_type != DHCPV6_RENEW) &&
(reply->packet->dhcpv6_msg_type != DHCPV6_REBIND)) {
log_error("It is impossible to lease a client that is "
"not sending a solicit, request, renew, or "
"rebind.");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->send_prefer = reply->send_valid = 0;
goto send_addr;
}
/* Verify the address belongs to the client. */
if (!address_is_owned(reply, &tmp_addr)) {
/*
* For solicit and request, any addresses included are
* 'requested' addresses. For rebind, we actually have
* no direction on what to do from 3315 section 18.2.4!
* So I think the best bet is to try and give it out, and if
* we can't, zero lifetimes.
*/
if ((reply->packet->dhcpv6_msg_type == DHCPV6_SOLICIT) ||
(reply->packet->dhcpv6_msg_type == DHCPV6_REQUEST) ||
(reply->packet->dhcpv6_msg_type == DHCPV6_REBIND)) {
status = reply_process_try_addr(reply, &tmp_addr);
/*
* If the address is in use, or isn't in any dynamic
* range, continue as normal. If any other error was
* found, error out.
*/
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_ADDRINUSE) &&
(status != ISC_R_ADDRNOTAVAIL))
goto cleanup;
/*
* If we didn't honor this lease, for solicit and
* request we simply omit it from our answer. For
* rebind, we send it with zeroed lifetimes.
*/
if (reply->lease == NULL) {
if (reply->packet->dhcpv6_msg_type ==
DHCPV6_REBIND) {
reply->send_prefer = 0;
reply->send_valid = 0;
goto send_addr;
}
/* status remains success - ignore */
goto cleanup;
}
/*
* RFC3315 section 18.2.3:
*
* If the server cannot find a client entry for the IA the
* server returns the IA containing no addresses with a Status
* Code option set to NoBinding in the Reply message.
*
* On mismatch we (ab)use this pretending we have not the IA
* as soon as we have not an address.
*/
} else if (reply->packet->dhcpv6_msg_type == DHCPV6_RENEW) {
/* Rewind the IA_NA to empty. */
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia, MDL)) {
log_error("reply_process_addr: No memory for "
"option state wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
/* Append a NoBinding status code. */
if (!set_status_code(STATUS_NoBinding,
"Address not bound to this "
"interface.", reply->reply_ia)) {
log_error("reply_process_addr: Unable to "
"attach status code.");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Fin (no more IAADDRs). */
status = ISC_R_CANCELED;
goto cleanup;
} else {
log_error("It is impossible to lease a client that is "
"not sending a solicit, request, renew, or "
"rebind message.");
status = ISC_R_FAILURE;
goto cleanup;
}
}
if (reply->static_lease) {
if (reply->host == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
scope = &global_scope;
group = reply->subnet->group;
} else {
if (reply->lease == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
scope = &reply->lease->scope;
group = reply->lease->ipv6_pool->ipv6_pond->group;
}
/*
* If client_resources is nonzero, then the reply_process_is_addressed
* function has executed configuration state into the reply option
* cache. We will use that valid cache to derive configuration for
* whether or not to engage in additional addresses, and similar.
*/
if (reply->client_resources != 0) {
unsigned limit = 1;
/*
* Does this client have "enough" addresses already? Default
* to one. Everybody gets one, and one should be enough for
* anybody.
*/
oc = lookup_option(&server_universe, reply->opt_state,
SV_LIMIT_ADDRS_PER_IA);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_addr: unable to "
"evaluate addrs-per-ia value.");
status = ISC_R_FAILURE;
goto cleanup;
}
limit = getULong(data.data);
data_string_forget(&data, MDL);
}
/*
* If we wish to limit the client to a certain number of
* addresses, then omit the address from the reply.
*/
if (reply->client_resources >= limit)
goto cleanup;
}
status = reply_process_is_addressed(reply, scope, group);
if (status != ISC_R_SUCCESS)
goto cleanup;
send_addr:
status = reply_process_send_addr(reply, &tmp_addr);
cleanup:
if (iaaddr.data != NULL)
data_string_forget(&iaaddr, MDL);
if (data.data != NULL)
data_string_forget(&data, MDL);
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
return status;
}
/*
* Verify the address belongs to the client. If we've got a host
* record with a fixed address, it has to be the assigned address
* (fault out all else). Otherwise it's a dynamic address, so lookup
* that address and make sure it belongs to this DUID:IAID pair.
*/
static isc_boolean_t
address_is_owned(struct reply_state *reply, struct iaddr *addr) {
int i;
struct ipv6_pond *pond;
/*
* This faults out addresses that don't match fixed addresses.
*/
if (reply->static_lease) {
if (reply->fixed.data == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
if (memcmp(addr->iabuf, reply->fixed.data, 16) == 0)
return (ISC_TRUE);
return (ISC_FALSE);
}
if ((reply->old_ia == NULL) || (reply->old_ia->num_iasubopt == 0))
return (ISC_FALSE);
for (i = 0 ; i < reply->old_ia->num_iasubopt ; i++) {
struct iasubopt *tmp;
tmp = reply->old_ia->iasubopt[i];
if (memcmp(addr->iabuf, &tmp->addr, 16) == 0) {
if (lease6_usable(tmp) == ISC_FALSE) {
return (ISC_FALSE);
}
pond = tmp->ipv6_pool->ipv6_pond;
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
return (ISC_FALSE);
iasubopt_reference(&reply->lease, tmp, MDL);
return (ISC_TRUE);
}
}
return (ISC_FALSE);
}
/* Process a client-supplied IA_TA. This may append options to the tail of
* the reply packet being built in the reply_state structure.
*/
static isc_result_t
reply_process_ia_ta(struct reply_state *reply, struct option_cache *ia) {
isc_result_t status = ISC_R_SUCCESS;
u_int32_t iaid;
unsigned ia_cursor;
struct option_state *packet_ia;
struct option_cache *oc;
struct data_string ia_data, data;
struct data_string iaaddr;
u_int32_t pref_life, valid_life;
struct iaddr tmp_addr;
/* Initialize values that will get cleaned up on return. */
packet_ia = NULL;
memset(&ia_data, 0, sizeof(ia_data));
memset(&data, 0, sizeof(data));
memset(&iaaddr, 0, sizeof(iaaddr));
/* Make sure there is at least room for the header. */
if ((reply->cursor + IA_TA_OFFSET + 4) > sizeof(reply->buf)) {
log_error("reply_process_ia_ta: Reply too long for IA.");
return ISC_R_NOSPACE;
}
/* Fetch the IA_TA contents. */
if (!get_encapsulated_IA_state(&packet_ia, &ia_data, reply->packet,
ia, IA_TA_OFFSET)) {
log_error("reply_process_ia_ta: error evaluating ia");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Extract IA_TA header contents. */
iaid = getULong(ia_data.data);
/* Create an IA_TA structure. */
if (ia_allocate(&reply->ia, iaid, (char *)reply->client_id.data,
reply->client_id.len, MDL) != ISC_R_SUCCESS) {
log_error("reply_process_ia_ta: no memory for ia.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
reply->ia->ia_type = D6O_IA_TA;
/* Cache pre-existing IA, if any. */
ia_hash_lookup(&reply->old_ia, ia_ta_active,
(unsigned char *)reply->ia->iaid_duid.data,
reply->ia->iaid_duid.len, MDL);
/*
* Create an option cache to carry the IA_TA option contents, and
* execute any user-supplied values into it.
*/
if (!option_state_allocate(&reply->reply_ia, MDL)) {
status = ISC_R_NOMEMORY;
goto cleanup;
}
/*
* Temporary leases are dynamic by definition.
*/
reply->static_lease = ISC_FALSE;
/*
* Save the cursor position at the start of the IA, so we can
* set length later. We write a temporary
* header out now just in case we decide to adjust the packet
* within sub-process functions.
*/
ia_cursor = reply->cursor;
/* Initialize the IA_TA header. First the code. */
putUShort(reply->buf.data + reply->cursor, (unsigned)D6O_IA_TA);
reply->cursor += 2;
/* Then option length. */
putUShort(reply->buf.data + reply->cursor, 0x04u);
reply->cursor += 2;
/* Then IA_TA header contents; IAID. */
putULong(reply->buf.data + reply->cursor, iaid);
reply->cursor += 4;
/*
* Deal with an IAADDR for lifetimes.
* For all or none, process IAADDRs as hints.
*/
reply->min_valid = reply->min_prefer = INFINITE_TIME;
reply->client_valid = reply->client_prefer = 0;
oc = lookup_option(&dhcpv6_universe, packet_ia, D6O_IAADDR);
for (; oc != NULL; oc = oc->next) {
memset(&iaaddr, 0, sizeof(iaaddr));
if (!evaluate_option_cache(&iaaddr, reply->packet,
NULL, NULL,
reply->packet->options, NULL,
&global_scope, oc, MDL) ||
(iaaddr.len < IAADDR_OFFSET)) {
log_error("reply_process_ia_ta: error "
"evaluating IAADDR.");
status = ISC_R_FAILURE;
goto cleanup;
}
/* The first 16 bytes are the IPv6 address. */
pref_life = getULong(iaaddr.data + 16);
valid_life = getULong(iaaddr.data + 20);
if ((reply->client_valid == 0) ||
(reply->client_valid > valid_life))
reply->client_valid = valid_life;
if ((reply->client_prefer == 0) ||
(reply->client_prefer > pref_life))
reply->client_prefer = pref_life;
/* Nothing more if something has failed. */
if (status == ISC_R_CANCELED)
continue;
tmp_addr.len = 16;
memcpy(tmp_addr.iabuf, iaaddr.data, 16);
if (!temporary_is_available(reply, &tmp_addr))
goto bad_temp;
status = reply_process_is_addressed(reply,
&reply->lease->scope,
reply->lease->ipv6_pool->ipv6_pond->group);
if (status != ISC_R_SUCCESS)
goto bad_temp;
status = reply_process_send_addr(reply, &tmp_addr);
if (status != ISC_R_SUCCESS)
goto bad_temp;
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
continue;
bad_temp:
/* Rewind the IA_TA to empty. */
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia, MDL)) {
status = ISC_R_NOMEMORY;
goto cleanup;
}
status = ISC_R_CANCELED;
reply->client_resources = 0;
reply->resources_included = ISC_FALSE;
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
}
reply->ia_count++;
/*
* Give the client temporary addresses.
*/
if (reply->client_resources != 0)
goto store;
status = find_client_temporaries(reply);
if (status == ISC_R_NORESOURCES) {
switch (reply->packet->dhcpv6_msg_type) {
case DHCPV6_SOLICIT:
/*
* No address for any IA is handled
* by the caller.
*/
/* FALL THROUGH */
case DHCPV6_REQUEST:
/* Section 18.2.1 (Request):
*
* If the server cannot assign any addresses to
* an IA in the message from the client, the
* server MUST include the IA in the Reply
* message with no addresses in the IA and a
* Status Code option in the IA containing
* status code NoAddrsAvail.
*/
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia, MDL)) {
log_error("reply_process_ia_ta: No "
"memory for option state wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
if (!set_status_code(STATUS_NoAddrsAvail,
"No addresses available "
"for this interface.",
reply->reply_ia)) {
log_error("reply_process_ia_ta: Unable "
"to set NoAddrsAvail status code.");
status = ISC_R_FAILURE;
goto cleanup;
}
status = ISC_R_SUCCESS;
break;
default:
/*
* We don't want to include the IA if we
* provide zero addresses including zeroed
* lifetimes.
*/
if (reply->resources_included)
status = ISC_R_SUCCESS;
else
goto cleanup;
break;
}
} else if (status != ISC_R_SUCCESS)
goto cleanup;
store:
/*
* yes, goto's aren't the best but we also want to avoid extra
* indents
*/
if (status == ISC_R_CANCELED) {
/* We're replying with a status code so we still need to
* write it out in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
goto cleanup;
}
/*
* If we have any addresses log what we are doing.
*/
if (reply->ia->num_iasubopt != 0) {
struct iasubopt *tmp;
int i;
char tmp_addr[INET6_ADDRSTRLEN];
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
log_info("%s TA: address %s to client with duid %s "
"iaid = %d valid for %u seconds",
dhcpv6_type_names[reply->buf.reply.msg_type],
inet_ntop(AF_INET6, &tmp->addr,
tmp_addr, sizeof(tmp_addr)),
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
iaid,
tmp->valid);
}
}
/*
* For hard bindings we consume the new changes into
* the database (if any have been attached to the ia_ta).
*
* Loop through the assigned dynamic addresses, referencing the
* leases onto this IA_TA rather than any old ones, and updating
* pool timers for each (if any).
*/
if ((reply->ia->num_iasubopt != 0) &&
(reply->buf.reply.msg_type == DHCPV6_REPLY)) {
int must_commit = 0;
struct iasubopt *tmp;
struct data_string *ia_id;
int i;
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
if (tmp->ia != NULL)
ia_dereference(&tmp->ia, MDL);
ia_reference(&tmp->ia, reply->ia, MDL);
/* If we have anything to do on commit do it now */
if (tmp->on_star.on_commit != NULL) {
execute_statements(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&tmp->scope,
tmp->on_star.on_commit,
&tmp->on_star);
executable_statement_dereference
(&tmp->on_star.on_commit, MDL);
}
#if defined (NSUPDATE)
/*
* Perform ddns updates.
*/
oc = lookup_option(&server_universe, reply->opt_state,
SV_DDNS_UPDATES);
if ((oc == NULL) ||
evaluate_boolean_option_cache(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&tmp->scope,
oc, MDL)) {
ddns_updates(reply->packet, NULL, NULL,
tmp, NULL, reply->opt_state);
}
#endif
if (!reuse_lease6(reply, tmp)) {
/* Commit 'hard' bindings. */
must_commit = 1;
renew_lease6(tmp->ipv6_pool, tmp);
schedule_lease_timeout(tmp->ipv6_pool);
/* Do our threshold check. */
check_pool6_threshold(reply, tmp);
}
}
/* write the IA_TA in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
/* Remove any old ia from the hash. */
if (reply->old_ia != NULL) {
if (!release_on_roam(reply)) {
ia_id = &reply->old_ia->iaid_duid;
ia_hash_delete(ia_ta_active,
(unsigned char *)ia_id->data,
ia_id->len, MDL);
}
ia_dereference(&reply->old_ia, MDL);
}
/* Put new ia into the hash. */
reply->ia->cltt = cur_time;
ia_id = &reply->ia->iaid_duid;
ia_hash_add(ia_ta_active, (unsigned char *)ia_id->data,
ia_id->len, reply->ia, MDL);
/* If we couldn't reuse all of the iasubopts, we
* must update udpate the lease db */
if (must_commit) {
write_ia(reply->ia);
}
} else {
/* write the IA_TA in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
schedule_lease_timeout_reply(reply);
}
cleanup:
if (packet_ia != NULL)
option_state_dereference(&packet_ia, MDL);
if (iaaddr.data != NULL)
data_string_forget(&iaaddr, MDL);
if (reply->reply_ia != NULL)
option_state_dereference(&reply->reply_ia, MDL);
if (ia_data.data != NULL)
data_string_forget(&ia_data, MDL);
if (data.data != NULL)
data_string_forget(&data, MDL);
if (reply->ia != NULL)
ia_dereference(&reply->ia, MDL);
if (reply->old_ia != NULL)
ia_dereference(&reply->old_ia, MDL);
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
/*
* ISC_R_CANCELED is a status code used by the addr processing to
* indicate we're replying with other addresses. This is still a
* success at higher layers.
*/
return((status == ISC_R_CANCELED) ? ISC_R_SUCCESS : status);
}
/*
* Determines if a lease (iasubopt) can be reused without extending it.
* If dhcp-cache-threshold is greater than zero (i.e enabled) then
* a lease may be reused without going through a full renewal if
* it meets all the requirements. In short it must be active, younger
* than the threshold, and not have DNS changes.
*
* If it is determined that it can be reused, that a call to
* shorten_lifetimes() is made to reduce the valid and preferred lifetimes
* sent to the client by the age of the lease.
*
* Returns 1 if lease can be reused, 0 otherwise
*/
int
reuse_lease6(struct reply_state *reply, struct iasubopt *lease) {
int threshold = DEFAULT_CACHE_THRESHOLD;
struct option_cache* oc = NULL;
struct data_string d1;
time_t age;
time_t limit;
int reuse_it = 0;
/* In order to even qualify for reuse consideration:
* 1. Lease must be active
* 2. It must have been accepted at least once
* 3. DNS info must not have changed */
if ((lease->state != FTS_ACTIVE) ||
(lease->hard_lifetime_end_time == 0) ||
(lease->ddns_cb != NULL)) {
return (0);
}
/* Look up threshold value */
memset(&d1, 0, sizeof(struct data_string));
oc = lookup_option(&server_universe, reply->opt_state,
SV_CACHE_THRESHOLD);
if (oc &&
evaluate_option_cache(&d1, reply->packet, NULL, NULL,
reply->packet->options, reply->opt_state,
&lease->scope, oc, MDL)) {
if (d1.len == 1 && (d1.data[0] < 100)) {
threshold = d1.data[0];
}
data_string_forget(&d1, MDL);
}
if (threshold <= 0) {
return (0);
}
if (lease->valid >= MAX_TIME) {
/* Infinite leases are always reused. We have to make
* a choice because we cannot determine when they actually
* began, so we either always reuse them or we never do. */
log_debug ("reusing infinite lease for: %s%s",
pin6_addr(&lease->addr), iasubopt_plen_str(lease));
return (1);
}
age = cur_tv.tv_sec - (lease->hard_lifetime_end_time - lease->valid);
if (lease->valid <= (INT_MAX / threshold))
limit = lease->valid * threshold / 100;
else
limit = lease->valid / 100 * threshold;
if (age < limit) {
/* Reduce valid/preferred going to the client by age */
shorten_lifetimes(reply, lease, age, threshold);
reuse_it = 1;
}
return (reuse_it);
}
/*
* Reduces the valid and preferred lifetimes for a given lease (iasubopt)
*
* We cannot determine until after a iasubopt has been added to
* the reply if the lease can be reused. Therefore, when we do reuse a
* lease we need a way to alter the lifetimes that will be sent to the client.
* That's where this function comes in handy:
*
* Locate the iasubopt by it's address within the reply the reduce both
* the preferred and valid lifetimes by the given number of seconds.
*
* Note that this function, by necessity, works directly with the
* option_cache data. Sort of a no-no but I don't have any better ideas.
*/
void shorten_lifetimes(struct reply_state *reply, struct iasubopt *lease,
time_t age, int threshold) {
struct option_cache* oc = NULL;
int subopt_type;
int addr_offset;
int pref_offset;
int val_offset;
int exp_length;
if (reply->ia->ia_type != D6O_IA_PD) {
subopt_type = D6O_IAADDR;
addr_offset = IASUBOPT_NA_ADDR_OFFSET;
pref_offset = IASUBOPT_NA_PREF_OFFSET;
val_offset = IASUBOPT_NA_VALID_OFFSET;
exp_length = IASUBOPT_NA_LEN;
}
else {
subopt_type = D6O_IAPREFIX;
addr_offset = IASUBOPT_PD_PREFIX_OFFSET;
pref_offset = IASUBOPT_PD_PREF_OFFSET;
val_offset = IASUBOPT_PD_VALID_OFFSET;
exp_length = IASUBOPT_PD_LEN;
}
// loop through the iasubopts for the one that matches this lease
oc = lookup_option(&dhcpv6_universe, reply->reply_ia, subopt_type);
for (; oc != NULL ; oc = oc->next) {
if (oc->data.data == NULL || oc->data.len != exp_length) {
/* shouldn't happen */
continue;
}
/* If address matches (and for PDs the prefix len matches)
* we assume this is our subopt, so update the lifetimes */
if (!memcmp(oc->data.data + addr_offset, &lease->addr, 16) &&
(subopt_type != D6O_IAPREFIX ||
(oc->data.data[IASUBOPT_PD_PREFLEN_OFFSET] ==
lease->plen))) {
u_int32_t pref_life = getULong(oc->data.data +
pref_offset);
u_int32_t valid_life = getULong(oc->data.data +
val_offset);
if (pref_life < MAX_TIME && pref_life > age) {
pref_life -= age;
putULong((unsigned char*)(oc->data.data) +
pref_offset, pref_life);
if (reply->min_prefer > pref_life) {
reply->min_prefer = pref_life;
}
}
if (valid_life < MAX_TIME && valid_life > age) {
valid_life -= age;
putULong((unsigned char*)(oc->data.data) +
val_offset, valid_life);
if (reply->min_valid > reply->send_valid) {
reply->min_valid = valid_life;
}
}
log_debug ("Reusing lease for: %s%s, "
"age %ld secs < %d%%,"
" sending shortened lifetimes -"
" preferred: %u, valid %u",
pin6_addr(&lease->addr),
iasubopt_plen_str(lease),
(long)age, threshold,
pref_life, valid_life);
break;
}
}
}
/*
* Verify the temporary address is available.
*/
static isc_boolean_t
temporary_is_available(struct reply_state *reply, struct iaddr *addr) {
struct in6_addr tmp_addr;
struct subnet *subnet;
struct ipv6_pool *pool = NULL;
struct ipv6_pond *pond = NULL;
int i;
memcpy(&tmp_addr, addr->iabuf, sizeof(tmp_addr));
/*
* Clients may choose to send :: as an address, with the idea to give
* hints about preferred-lifetime or valid-lifetime.
* So this is not a request for this address.
*/
if (IN6_IS_ADDR_UNSPECIFIED(&tmp_addr))
return ISC_FALSE;
/*
* Verify that this address is on the client's network.
*/
for (subnet = reply->shared->subnets ; subnet != NULL ;
subnet = subnet->next_sibling) {
if (addr_eq(subnet_number(*addr, subnet->netmask),
subnet->net))
break;
}
/* Address not found on shared network. */
if (subnet == NULL)
return ISC_FALSE;
/*
* Check if this address is owned (must be before next step).
*/
if (address_is_owned(reply, addr))
return ISC_TRUE;
/*
* Verify that this address is in a temporary pool and try to get it.
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
for (i = 0 ; (pool = pond->ipv6_pools[i]) != NULL ; i++) {
if (pool->pool_type != D6O_IA_TA)
continue;
if (ipv6_in_pool(&tmp_addr, pool))
break;
}
if (pool != NULL)
break;
}
if (pool == NULL)
return ISC_FALSE;
if (lease6_exists(pool, &tmp_addr))
return ISC_FALSE;
if (iasubopt_allocate(&reply->lease, MDL) != ISC_R_SUCCESS)
return ISC_FALSE;
reply->lease->addr = tmp_addr;
reply->lease->plen = 0;
/* Default is soft binding for 2 minutes. */
if (add_lease6(pool, reply->lease, cur_time + 120) != ISC_R_SUCCESS)
return ISC_FALSE;
return ISC_TRUE;
}
/*
* Get a temporary address per prefix.
*/
static isc_result_t
find_client_temporaries(struct reply_state *reply) {
int i;
struct ipv6_pool *p = NULL;
struct ipv6_pond *pond;
isc_result_t status = ISC_R_NORESOURCES;;
unsigned int attempts;
struct iaddr send_addr;
/*
* Do a quick walk through of the ponds and pools
* to see if we have any prefix pools
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (pond->ipv6_pools == NULL)
continue;
for (i = 0; (p = pond->ipv6_pools[i]) != NULL; i++) {
if (p->pool_type == D6O_IA_TA)
break;
}
if (p != NULL)
break;
}
/* If we get here and p is NULL we have no useful pools */
if (p == NULL) {
log_debug("Unable to get client addresses: "
"no IPv6 pools on this shared network");
return ISC_R_NORESOURCES;
}
/*
* We have at least one pool that could provide an address
* Now we walk through the ponds and pools again and check
* to see if the client is permitted and if an address is
* available
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
for (i = 0; (p = pond->ipv6_pools[i]) != NULL; i++) {
if (p->pool_type != D6O_IA_TA) {
continue;
}
/*
* Get an address in this temporary pool.
*/
status = create_lease6(p, &reply->lease, &attempts,
&reply->client_id,
cur_time + 120);
if (status != ISC_R_SUCCESS) {
log_debug("Unable to get a temporary address.");
goto cleanup;
}
status = reply_process_is_addressed(reply,
&reply->lease->scope,
pond->group);
if (status != ISC_R_SUCCESS) {
goto cleanup;
}
send_addr.len = 16;
memcpy(send_addr.iabuf, &reply->lease->addr, 16);
status = reply_process_send_addr(reply, &send_addr);
if (status != ISC_R_SUCCESS) {
goto cleanup;
}
/*
* reply->lease can't be null as we use it above
* add check if that changes
*/
iasubopt_dereference(&reply->lease, MDL);
}
}
cleanup:
if (reply->lease != NULL) {
iasubopt_dereference(&reply->lease, MDL);
}
return status;
}
/*
* This function only returns failure on 'hard' failures. If it succeeds,
* it will leave a lease structure behind.
*/
static isc_result_t
reply_process_try_addr(struct reply_state *reply, struct iaddr *addr) {
isc_result_t status = ISC_R_ADDRNOTAVAIL;
struct ipv6_pool *pool = NULL;
struct ipv6_pond *pond = NULL;
int i;
struct data_string data_addr;
if ((reply == NULL) || (reply->shared == NULL) ||
(addr == NULL) || (reply->lease != NULL))
return (DHCP_R_INVALIDARG);
/*
* Do a quick walk through of the ponds and pools
* to see if we have any NA address pools
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (pond->ipv6_pools == NULL)
continue;
for (i = 0; ; i++) {
pool = pond->ipv6_pools[i];
if ((pool == NULL) ||
(pool->pool_type == D6O_IA_NA))
break;
}
if (pool != NULL)
break;
}
/* If we get here and p is NULL we have no useful pools */
if (pool == NULL) {
return (ISC_R_ADDRNOTAVAIL);
}
memset(&data_addr, 0, sizeof(data_addr));
data_addr.len = addr->len;
data_addr.data = addr->iabuf;
/*
* We have at least one pool that could provide an address
* Now we walk through the ponds and pools again and check
* to see if the client is permitted and if an address is
* available
*
* Within a given pond we start looking at the last pool we
* allocated from, unless it had a collision trying to allocate
* an address. This will tend to move us into less-filled pools.
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
for (i = 0 ; (pool = pond->ipv6_pools[i]) != NULL ; i++) {
if (pool->pool_type != D6O_IA_NA)
continue;
status = try_client_v6_address(&reply->lease, pool,
&data_addr);
if (status == ISC_R_SUCCESS)
break;
}
if (status == ISC_R_SUCCESS)
break;
}
/* Note that this is just pedantry. There is no allocation to free. */
data_string_forget(&data_addr, MDL);
/* Return just the most recent status... */
return (status);
}
/* Look around for an address to give the client. First, look through the
* old IA for addresses we can extend. Second, try to allocate a new address.
* Finally, actually add that address into the current reply IA.
*/
static isc_result_t
find_client_address(struct reply_state *reply) {
struct iaddr send_addr;
isc_result_t status = ISC_R_NORESOURCES;
struct iasubopt *lease, *best_lease = NULL;
struct binding_scope **scope;
struct group *group;
int i;
if (reply->static_lease) {
if (reply->host == NULL)
return DHCP_R_INVALIDARG;
send_addr.len = 16;
memcpy(send_addr.iabuf, reply->fixed.data, 16);
scope = &global_scope;
group = reply->subnet->group;
goto send_addr;
}
if (reply->old_ia != NULL) {
for (i = 0 ; i < reply->old_ia->num_iasubopt ; i++) {
struct shared_network *candidate_shared;
struct ipv6_pond *pond;
lease = reply->old_ia->iasubopt[i];
candidate_shared = lease->ipv6_pool->shared_network;
pond = lease->ipv6_pool->ipv6_pond;
/*
* Look for the best lease on the client's shared
* network, that is still permitted
*/
if ((candidate_shared != reply->shared) ||
(lease6_usable(lease) != ISC_TRUE))
continue;
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
best_lease = lease_compare(lease, best_lease);
}
}
/* Try to pick a new address if we didn't find one, or if we found an
* abandoned lease.
*/
if ((best_lease == NULL) || (best_lease->state == FTS_ABANDONED)) {
status = pick_v6_address(reply);
} else if (best_lease != NULL) {
iasubopt_reference(&reply->lease, best_lease, MDL);
status = ISC_R_SUCCESS;
}
/* Pick the abandoned lease as a last resort. */
if ((status == ISC_R_NORESOURCES) && (best_lease != NULL)) {
/* I don't see how this is supposed to be done right now. */
log_error("Best match for DUID %s is an abandoned address,"
" This may be a result of multiple clients attempting"
" to use this DUID",
print_hex_1(reply->client_id.len,
reply->client_id.data, 60));
/* iasubopt_reference(&reply->lease, best_lease, MDL); */
}
/* Give up now if we didn't find a lease. */
if (status != ISC_R_SUCCESS)
return status;
if (reply->lease == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
/* Draw binding scopes from the lease's binding scope, and config
* from the lease's containing subnet and higher. Note that it may
* be desirable to place the group attachment directly in the pool.
*/
scope = &reply->lease->scope;
group = reply->lease->ipv6_pool->ipv6_pond->group;
send_addr.len = 16;
memcpy(send_addr.iabuf, &reply->lease->addr, 16);
send_addr:
status = reply_process_is_addressed(reply, scope, group);
if (status != ISC_R_SUCCESS)
return status;
status = reply_process_send_addr(reply, &send_addr);
return status;
}
/* Once an address is found for a client, perform several common functions;
* Calculate and store valid and preferred lease times, draw client options
* into the option state.
*/
static isc_result_t
reply_process_is_addressed(struct reply_state *reply,
struct binding_scope **scope, struct group *group)
{
isc_result_t status = ISC_R_SUCCESS;
struct data_string data;
struct option_cache *oc;
struct option_state *tmp_options = NULL;
struct on_star *on_star;
int i;
/* Initialize values we will cleanup. */
memset(&data, 0, sizeof(data));
/*
* Find the proper on_star block to use. We use the
* one in the lease if we have a lease or the one in
* the reply if we don't have a lease because this is
* a static instance
*/
if (reply->lease) {
on_star = &reply->lease->on_star;
} else {
on_star = &reply->on_star;
}
/*
* Bring in the root configuration. We only do this to bring
* in the on * statements, as we didn't have the lease available
* we did it the first time.
*/
option_state_allocate(&tmp_options, MDL);
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, tmp_options,
&global_scope, root_group, NULL,
on_star);
if (tmp_options != NULL) {
option_state_dereference(&tmp_options, MDL);
}
/*
* Bring configured options into the root packet level cache - start
* with the lease's closest enclosing group (passed in by the caller
* as 'group').
*/
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, reply->opt_state,
scope, group, root_group, on_star);
/* Execute statements from class scopes. */
for (i = reply->packet->class_count; i > 0; i--) {
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, scope,
reply->packet->classes[i - 1]->group,
group, on_star);
}
/*
* If there is a host record, over-ride with values configured there,
* without re-evaluating configuration from the previously executed
* group or its common enclosers.
*/
if (reply->host != NULL)
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, scope,
reply->host->group, group,
on_star);
/* Determine valid lifetime. */
if (reply->client_valid == 0)
reply->send_valid = DEFAULT_DEFAULT_LEASE_TIME;
else
reply->send_valid = reply->client_valid;
oc = lookup_option(&server_universe, reply->opt_state,
SV_DEFAULT_LEASE_TIME);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_is_addressed: unable to "
"evaluate default lease time");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->send_valid = getULong(data.data);
data_string_forget(&data, MDL);
}
/* Check to see if the lease time would cause us to wrap
* in which case we make it infinite.
* The following doesn't work on at least some systems:
* (cur_time + reply->send_valid < cur_time)
*/
if (reply->send_valid != INFINITE_TIME) {
time_t test_time = cur_time + reply->send_valid;
if (test_time < cur_time)
reply->send_valid = INFINITE_TIME;
}
if (reply->client_prefer == 0)
reply->send_prefer = reply->send_valid;
else
reply->send_prefer = reply->client_prefer;
if ((reply->send_prefer >= reply->send_valid) &&
(reply->send_valid != INFINITE_TIME))
reply->send_prefer = (reply->send_valid / 2) +
(reply->send_valid / 8);
oc = lookup_option(&server_universe, reply->opt_state,
SV_PREFER_LIFETIME);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_is_addressed: unable to "
"evaluate preferred lease time");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->send_prefer = getULong(data.data);
data_string_forget(&data, MDL);
}
/* Note lowest values for later calculation of renew/rebind times. */
if (reply->min_prefer > reply->send_prefer)
reply->min_prefer = reply->send_prefer;
if (reply->min_valid > reply->send_valid)
reply->min_valid = reply->send_valid;
#if 0
/*
* XXX: Old 4.0.0 alpha code would change the host {} record
* XXX: uid upon lease assignment. This was intended to cover the
* XXX: case where a client first identifies itself using vendor
* XXX: options in a solicit, or request, but later neglects to include
* XXX: these options in a Renew or Rebind. It is not clear that this
* XXX: is required, and has some startling ramifications (such as
* XXX: how to recover this dynamic host {} state across restarts).
*/
if (reply->host != NULL)
change_host_uid(host, reply->client_id->data,
reply->client_id->len);
#endif /* 0 */
/* Perform dynamic lease related update work. */
if (reply->lease != NULL) {
/* Cached lifetimes */
reply->lease->prefer = reply->send_prefer;
reply->lease->valid = reply->send_valid;
/* Advance (or rewind) the valid lifetime.
* In the protocol 0xFFFFFFFF is infinite
* when connecting to the lease file MAX_TIME is
*/
if (reply->buf.reply.msg_type == DHCPV6_REPLY) {
if (reply->send_valid == INFINITE_TIME) {
reply->lease->soft_lifetime_end_time = MAX_TIME;
} else {
reply->lease->soft_lifetime_end_time =
cur_time + reply->send_valid;
}
/* Wait before renew! */
}
status = ia_add_iasubopt(reply->ia, reply->lease, MDL);
if (status != ISC_R_SUCCESS) {
log_fatal("reply_process_is_addressed: Unable to "
"attach lease to new IA: %s",
isc_result_totext(status));
}
/*
* If this is a new lease, make sure it is attached somewhere.
*/
if (reply->lease->ia == NULL) {
ia_reference(&reply->lease->ia, reply->ia, MDL);
}
}
/* Bring a copy of the relevant options into the IA scope. */
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, reply->reply_ia,
scope, group, root_group, NULL);
/* Execute statements from class scopes. */
for (i = reply->packet->class_count; i > 0; i--) {
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->reply_ia, scope,
reply->packet->classes[i - 1]->group,
group, NULL);
}
/*
* And bring in host record configuration, if any, but not to overlap
* the previous group or its common enclosers.
*/
if (reply->host != NULL)
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->reply_ia, scope,
reply->host->group, group, NULL);
cleanup:
if (data.data != NULL)
data_string_forget(&data, MDL);
if (status == ISC_R_SUCCESS)
reply->client_resources++;
return status;
}
/* Simply send an IAADDR within the IA scope as described. */
static isc_result_t
reply_process_send_addr(struct reply_state *reply, struct iaddr *addr) {
isc_result_t status = ISC_R_SUCCESS;
struct data_string data;
memset(&data, 0, sizeof(data));
/* Now append the lease. */
data.len = IAADDR_OFFSET;
if (!buffer_allocate(&data.buffer, data.len, MDL)) {
log_error("reply_process_send_addr: out of memory"
"allocating new IAADDR buffer.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
data.data = data.buffer->data;
memcpy(data.buffer->data, addr->iabuf, 16);
putULong(data.buffer->data + 16, reply->send_prefer);
putULong(data.buffer->data + 20, reply->send_valid);
if (!append_option_buffer(&dhcpv6_universe, reply->reply_ia,
data.buffer, data.buffer->data,
data.len, D6O_IAADDR, 0)) {
log_error("reply_process_send_addr: unable "
"to save IAADDR option");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->resources_included = ISC_TRUE;
cleanup:
if (data.data != NULL)
data_string_forget(&data, MDL);
return status;
}
/* Choose the better of two leases. */
static struct iasubopt *
lease_compare(struct iasubopt *alpha, struct iasubopt *beta) {
if (alpha == NULL)
return beta;
if (beta == NULL)
return alpha;
switch(alpha->state) {
case FTS_ACTIVE:
switch(beta->state) {
case FTS_ACTIVE:
/* Choose the lease with the longest lifetime (most
* likely the most recently allocated).
*/
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return beta;
else
return alpha;
case FTS_EXPIRED:
case FTS_ABANDONED:
return alpha;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
case FTS_EXPIRED:
switch (beta->state) {
case FTS_ACTIVE:
return beta;
case FTS_EXPIRED:
/* Choose the most recently expired lease. */
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return beta;
else if ((alpha->hard_lifetime_end_time ==
beta->hard_lifetime_end_time) &&
(alpha->soft_lifetime_end_time <
beta->soft_lifetime_end_time))
return beta;
else
return alpha;
case FTS_ABANDONED:
return alpha;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
case FTS_ABANDONED:
switch (beta->state) {
case FTS_ACTIVE:
case FTS_EXPIRED:
return alpha;
case FTS_ABANDONED:
/* Choose the lease that was abandoned longest ago. */
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return alpha;
else
return beta;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
log_fatal("Triple impossible condition at %s:%d.", MDL);
return NULL;
}
/* Process a client-supplied IA_PD. This may append options to the tail of
* the reply packet being built in the reply_state structure.
*/
static isc_result_t
reply_process_ia_pd(struct reply_state *reply, struct option_cache *ia) {
isc_result_t status = ISC_R_SUCCESS;
u_int32_t iaid;
unsigned ia_cursor;
struct option_state *packet_ia;
struct option_cache *oc;
struct data_string ia_data, data;
/* Initialize values that will get cleaned up on return. */
packet_ia = NULL;
memset(&ia_data, 0, sizeof(ia_data));
memset(&data, 0, sizeof(data));
/*
* Note that find_client_prefix() may set reply->lease.
*/
/* Make sure there is at least room for the header. */
if ((reply->cursor + IA_PD_OFFSET + 4) > sizeof(reply->buf)) {
log_error("reply_process_ia_pd: Reply too long for IA.");
return ISC_R_NOSPACE;
}
/* Fetch the IA_PD contents. */
if (!get_encapsulated_IA_state(&packet_ia, &ia_data, reply->packet,
ia, IA_PD_OFFSET)) {
log_error("reply_process_ia_pd: error evaluating ia");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Extract IA_PD header contents. */
iaid = getULong(ia_data.data);
reply->renew = getULong(ia_data.data + 4);
reply->rebind = getULong(ia_data.data + 8);
/* Create an IA_PD structure. */
if (ia_allocate(&reply->ia, iaid, (char *)reply->client_id.data,
reply->client_id.len, MDL) != ISC_R_SUCCESS) {
log_error("reply_process_ia_pd: no memory for ia.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
reply->ia->ia_type = D6O_IA_PD;
/* Cache pre-existing IA_PD, if any. */
ia_hash_lookup(&reply->old_ia, ia_pd_active,
(unsigned char *)reply->ia->iaid_duid.data,
reply->ia->iaid_duid.len, MDL);
/*
* Create an option cache to carry the IA_PD option contents, and
* execute any user-supplied values into it.
*/
if (!option_state_allocate(&reply->reply_ia, MDL)) {
status = ISC_R_NOMEMORY;
goto cleanup;
}
/* Check & count the fixed prefix host records. */
reply->static_prefixes = 0;
if ((reply->host != NULL) && (reply->host->fixed_prefix != NULL)) {
struct iaddrcidrnetlist *fp;
for (fp = reply->host->fixed_prefix; fp != NULL;
fp = fp->next) {
reply->static_prefixes += 1;
}
}
/*
* Save the cursor position at the start of the IA_PD, so we can
* set length and adjust t1/t2 values later. We write a temporary
* header out now just in case we decide to adjust the packet
* within sub-process functions.
*/
ia_cursor = reply->cursor;
/* Initialize the IA_PD header. First the code. */
putUShort(reply->buf.data + reply->cursor, (unsigned)D6O_IA_PD);
reply->cursor += 2;
/* Then option length. */
putUShort(reply->buf.data + reply->cursor, 0x0Cu);
reply->cursor += 2;
/* Then IA_PD header contents; IAID. */
putULong(reply->buf.data + reply->cursor, iaid);
reply->cursor += 4;
/* We store the client's t1 for now, and may over-ride it later. */
putULong(reply->buf.data + reply->cursor, reply->renew);
reply->cursor += 4;
/* We store the client's t2 for now, and may over-ride it later. */
putULong(reply->buf.data + reply->cursor, reply->rebind);
reply->cursor += 4;
/*
* For each prefix in this IA_PD, decide what to do about it.
*/
oc = lookup_option(&dhcpv6_universe, packet_ia, D6O_IAPREFIX);
reply->min_valid = reply->min_prefer = INFINITE_TIME;
reply->client_valid = reply->client_prefer = 0;
reply->preflen = -1;
for (; oc != NULL ; oc = oc->next) {
status = reply_process_prefix(reply, oc);
/*
* Canceled means we did not allocate prefixes to the
* client, but we're "done" with this IA - we set a status
* code. So transmit this reply, e.g., move on to the next
* IA.
*/
if (status == ISC_R_CANCELED)
break;
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_ADDRINUSE) &&
(status != ISC_R_ADDRNOTAVAIL))
goto cleanup;
}
reply->pd_count++;
/*
* If we fell through the above and never gave the client
* a prefix, give it one now.
*/
if ((status != ISC_R_CANCELED) && (reply->client_resources == 0)) {
status = find_client_prefix(reply);
if (status == ISC_R_NORESOURCES) {
switch (reply->packet->dhcpv6_msg_type) {
case DHCPV6_SOLICIT:
/*
* No prefix for any IA is handled
* by the caller.
*/
/* FALL THROUGH */
case DHCPV6_REQUEST:
/* Same than for addresses. */
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia,
MDL))
{
log_error("reply_process_ia_pd: No "
"memory for option state "
"wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
if (!set_status_code(STATUS_NoPrefixAvail,
"No prefixes available "
"for this interface.",
reply->reply_ia)) {
log_error("reply_process_ia_pd: "
"Unable to set "
"NoPrefixAvail status "
"code.");
status = ISC_R_FAILURE;
goto cleanup;
}
status = ISC_R_SUCCESS;
break;
default:
if (reply->resources_included)
status = ISC_R_SUCCESS;
else
goto cleanup;
break;
}
}
if (status != ISC_R_SUCCESS)
goto cleanup;
}
/*
* yes, goto's aren't the best but we also want to avoid extra
* indents
*/
if (status == ISC_R_CANCELED) {
/* We're replying with a status code so we still need to
* write it out in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
goto cleanup;
}
/*
* Handle static prefixes, we always log stuff and if it's
* a hard binding we run any commit statements that we have
*/
if (reply->static_prefixes != 0) {
char tmp_addr[INET6_ADDRSTRLEN];
log_info("%s PD: address %s/%d to client with duid %s "
"iaid = %d static",
dhcpv6_type_names[reply->buf.reply.msg_type],
inet_ntop(AF_INET6, reply->fixed_pref.lo_addr.iabuf,
tmp_addr, sizeof(tmp_addr)),
reply->fixed_pref.bits,
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
iaid);
/* Write the lease out in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
if ((reply->buf.reply.msg_type == DHCPV6_REPLY) &&
(reply->on_star.on_commit != NULL)) {
execute_statements(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state,
NULL, reply->on_star.on_commit,
NULL);
executable_statement_dereference
(&reply->on_star.on_commit, MDL);
}
goto cleanup;
}
/*
* If we have any addresses log what we are doing.
*/
if (reply->ia->num_iasubopt != 0) {
struct iasubopt *tmp;
int i;
char tmp_addr[INET6_ADDRSTRLEN];
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
log_info("%s PD: address %s/%d to client with duid %s"
" iaid = %d valid for %u seconds",
dhcpv6_type_names[reply->buf.reply.msg_type],
inet_ntop(AF_INET6, &tmp->addr,
tmp_addr, sizeof(tmp_addr)),
(int)tmp->plen,
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
iaid, tmp->valid);
}
}
/*
* If this is not a 'soft' binding, consume the new changes into
* the database (if any have been attached to the ia_pd).
*
* Loop through the assigned dynamic prefixes, referencing the
* prefixes onto this IA_PD rather than any old ones, and updating
* prefix pool timers for each (if any).
*
* If a lease can be reused we skip renewing it or checking the
* pool threshold. If it can't we flag that the IA must be commited
* to the db and do the renewal and pool check.
*/
if ((reply->buf.reply.msg_type == DHCPV6_REPLY) &&
(reply->ia->num_iasubopt != 0)) {
int must_commit = 0;
struct iasubopt *tmp;
struct data_string *ia_id;
int i;
for (i = 0 ; i < reply->ia->num_iasubopt ; i++) {
tmp = reply->ia->iasubopt[i];
if (tmp->ia != NULL)
ia_dereference(&tmp->ia, MDL);
ia_reference(&tmp->ia, reply->ia, MDL);
/* If we have anything to do on commit do it now */
if (tmp->on_star.on_commit != NULL) {
execute_statements(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&tmp->scope,
tmp->on_star.on_commit,
&tmp->on_star);
executable_statement_dereference
(&tmp->on_star.on_commit, MDL);
}
if (!reuse_lease6(reply, tmp)) {
/* Commit 'hard' bindings. */
must_commit = 1;
renew_lease6(tmp->ipv6_pool, tmp);
schedule_lease_timeout(tmp->ipv6_pool);
/* Do our threshold check. */
check_pool6_threshold(reply, tmp);
}
}
/* write the IA_PD in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
/* Remove any old ia from the hash. */
if (reply->old_ia != NULL) {
if (!release_on_roam(reply)) {
ia_id = &reply->old_ia->iaid_duid;
ia_hash_delete(ia_pd_active,
(unsigned char *)ia_id->data,
ia_id->len, MDL);
}
ia_dereference(&reply->old_ia, MDL);
}
/* Put new ia into the hash. */
reply->ia->cltt = cur_time;
ia_id = &reply->ia->iaid_duid;
ia_hash_add(ia_pd_active, (unsigned char *)ia_id->data,
ia_id->len, reply->ia, MDL);
/* If we couldn't reuse all of the iasubopts, we
* must udpate the lease db */
if (must_commit) {
write_ia(reply->ia);
}
} else {
/* write the IA_PD in wire-format to the outbound buffer */
write_to_packet(reply, ia_cursor);
schedule_lease_timeout_reply(reply);
}
cleanup:
if (packet_ia != NULL)
option_state_dereference(&packet_ia, MDL);
if (reply->reply_ia != NULL)
option_state_dereference(&reply->reply_ia, MDL);
if (ia_data.data != NULL)
data_string_forget(&ia_data, MDL);
if (data.data != NULL)
data_string_forget(&data, MDL);
if (reply->ia != NULL)
ia_dereference(&reply->ia, MDL);
if (reply->old_ia != NULL)
ia_dereference(&reply->old_ia, MDL);
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
if (reply->on_star.on_expiry != NULL)
executable_statement_dereference
(&reply->on_star.on_expiry, MDL);
if (reply->on_star.on_release != NULL)
executable_statement_dereference
(&reply->on_star.on_release, MDL);
/*
* ISC_R_CANCELED is a status code used by the prefix processing to
* indicate we're replying with a status code. This is still a
* success at higher layers.
*/
return((status == ISC_R_CANCELED) ? ISC_R_SUCCESS : status);
}
/*!
*
* \brief Find the proper scoping group for use with a v6 static prefix.
*
* We start by trying to find a subnet based on the given prefix and
* the shared network. If we don't find one then the prefix has been
* declared outside of any subnets. If there is a static address
* associated with the host we use it to try and find a subnet (this
* should succeed). If there isn't a static address we fall back
* to the shared subnet itself.
* Once we have a subnet we extract the group from it and return it.
*
* \param reply - the reply structure we use to collect information
* we will use the fields shared, fixed_pref and host
* from the structure
*
* \return a pointer to the group structure to use for scoping
*/
static struct group *
find_group_by_prefix(struct reply_state *reply) {
/* default group if we don't find anything better */
struct group *group = reply->shared->group;
struct subnet *subnet = NULL;
struct iaddr tmp_addr;
struct data_string fixed_addr;
/* Try with the prefix first */
if (find_grouped_subnet(&subnet, reply->shared,
reply->fixed_pref.lo_addr, MDL) != 0) {
group = subnet->group;
subnet_dereference(&subnet, MDL);
return (group);
}
/* Didn't find a subnet via prefix, what about fixed address */
/* The caller has already tested reply->host != NULL */
memset(&fixed_addr, 0, sizeof(fixed_addr));
if ((reply->host->fixed_addr != NULL) &&
(evaluate_option_cache(&fixed_addr, NULL, NULL, NULL,
NULL, NULL, &global_scope,
reply->host->fixed_addr, MDL))) {
if (fixed_addr.len >= 16) {
tmp_addr.len = 16;
memcpy(tmp_addr.iabuf, fixed_addr.data, 16);
if (find_grouped_subnet(&subnet, reply->shared,
tmp_addr, MDL) != 0) {
group = subnet->group;
subnet_dereference(&subnet, MDL);
}
}
data_string_forget(&fixed_addr, MDL);
}
/* return whatever we got */
return (group);
}
/*
* Process an IAPREFIX within a given IA_PD, storing any IAPREFIX reply
* contents into the reply's current ia_pd-scoped option cache. Returns
* ISC_R_CANCELED in the event we are replying with a status code and do
* not wish to process more IAPREFIXes within this IA_PD.
*/
static isc_result_t
reply_process_prefix(struct reply_state *reply, struct option_cache *pref) {
u_int32_t pref_life, valid_life;
struct binding_scope **scope;
struct iaddrcidrnet tmp_pref;
struct option_cache *oc;
struct data_string iapref, data;
isc_result_t status = ISC_R_SUCCESS;
struct group *group;
/* Initializes values that will be cleaned up. */
memset(&iapref, 0, sizeof(iapref));
memset(&data, 0, sizeof(data));
/* Note that reply->lease may be set by prefix_is_owned() */
/*
* There is no point trying to process an incoming prefix if there
* is no room for an outgoing prefix.
*/
if ((reply->cursor + 29) > sizeof(reply->buf)) {
log_error("reply_process_prefix: Out of room for prefix.");
return ISC_R_NOSPACE;
}
/* Extract this IAPREFIX option. */
if (!evaluate_option_cache(&iapref, reply->packet, NULL, NULL,
reply->packet->options, NULL, &global_scope,
pref, MDL) ||
(iapref.len < IAPREFIX_OFFSET)) {
log_error("reply_process_prefix: error evaluating IAPREFIX.");
status = ISC_R_FAILURE;
goto cleanup;
}
/*
* Layout: preferred and valid lifetimes followed by the prefix
* length and the IPv6 address.
*/
pref_life = getULong(iapref.data);
valid_life = getULong(iapref.data + 4);
if ((reply->client_valid == 0) ||
(reply->client_valid > valid_life))
reply->client_valid = valid_life;
if ((reply->client_prefer == 0) ||
(reply->client_prefer > pref_life))
reply->client_prefer = pref_life;
/*
* Clients may choose to send ::/0 as a prefix, with the idea to give
* hints about preferred-lifetime or valid-lifetime.
*/
tmp_pref.lo_addr.len = 16;
memset(tmp_pref.lo_addr.iabuf, 0, 16);
if ((iapref.data[8] == 0) &&
(memcmp(iapref.data + 9, tmp_pref.lo_addr.iabuf, 16) == 0)) {
/* Status remains success; we just ignore this one. */
goto cleanup;
}
/*
* Clients may choose to send ::/X as a prefix to specify a
* preferred/requested prefix length. Note X is never zero here.
*/
tmp_pref.bits = (int) iapref.data[8];
if (reply->preflen < 0) {
/* Cache the first preferred prefix length. */
reply->preflen = tmp_pref.bits;
}
if (memcmp(iapref.data + 9, tmp_pref.lo_addr.iabuf, 16) == 0) {
goto cleanup;
}
memcpy(tmp_pref.lo_addr.iabuf, iapref.data + 9, 16);
/* Verify the prefix belongs to the client. */
if (!prefix_is_owned(reply, &tmp_pref)) {
/* Same than for addresses. */
if ((reply->packet->dhcpv6_msg_type == DHCPV6_SOLICIT) ||
(reply->packet->dhcpv6_msg_type == DHCPV6_REQUEST) ||
(reply->packet->dhcpv6_msg_type == DHCPV6_REBIND)) {
status = reply_process_try_prefix(reply, &tmp_pref);
/* Either error out or skip this prefix. */
if ((status != ISC_R_SUCCESS) &&
(status != ISC_R_ADDRINUSE) &&
(status != ISC_R_ADDRNOTAVAIL))
goto cleanup;
if (reply->lease == NULL) {
if (reply->packet->dhcpv6_msg_type ==
DHCPV6_REBIND) {
reply->send_prefer = 0;
reply->send_valid = 0;
goto send_pref;
}
/* status remains success - ignore */
goto cleanup;
}
/*
* RFC3633 section 18.2.3:
*
* If the delegating router cannot find a binding
* for the requesting router's IA_PD the delegating
* router returns the IA_PD containing no prefixes
* with a Status Code option set to NoBinding in the
* Reply message.
*
* On mismatch we (ab)use this pretending we have not the IA
* as soon as we have not a prefix.
*/
} else if (reply->packet->dhcpv6_msg_type == DHCPV6_RENEW) {
/* Rewind the IA_PD to empty. */
option_state_dereference(&reply->reply_ia, MDL);
if (!option_state_allocate(&reply->reply_ia, MDL)) {
log_error("reply_process_prefix: No memory "
"for option state wipe.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
/* Append a NoBinding status code. */
if (!set_status_code(STATUS_NoBinding,
"Prefix not bound to this "
"interface.", reply->reply_ia)) {
log_error("reply_process_prefix: Unable to "
"attach status code.");
status = ISC_R_FAILURE;
goto cleanup;
}
/* Fin (no more IAPREFIXes). */
status = ISC_R_CANCELED;
goto cleanup;
} else {
log_error("It is impossible to lease a client that is "
"not sending a solicit, request, renew, or "
"rebind message.");
status = ISC_R_FAILURE;
goto cleanup;
}
}
if (reply->static_prefixes > 0) {
if (reply->host == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
scope = &global_scope;
/* Copy the static prefix for logging and finding the group */
memcpy(&reply->fixed_pref, &tmp_pref, sizeof(tmp_pref));
/* Try to find a group for the static prefix */
group = find_group_by_prefix(reply);
} else {
if (reply->lease == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
scope = &reply->lease->scope;
group = reply->lease->ipv6_pool->ipv6_pond->group;
}
/*
* If client_resources is nonzero, then the reply_process_is_prefixed
* function has executed configuration state into the reply option
* cache. We will use that valid cache to derive configuration for
* whether or not to engage in additional prefixes, and similar.
*/
if (reply->client_resources != 0) {
unsigned limit = 1;
/*
* Does this client have "enough" prefixes already? Default
* to one. Everybody gets one, and one should be enough for
* anybody.
*/
oc = lookup_option(&server_universe, reply->opt_state,
SV_LIMIT_PREFS_PER_IA);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_prefix: unable to "
"evaluate prefs-per-ia value.");
status = ISC_R_FAILURE;
goto cleanup;
}
limit = getULong(data.data);
data_string_forget(&data, MDL);
}
/*
* If we wish to limit the client to a certain number of
* prefixes, then omit the prefix from the reply.
*/
if (reply->client_resources >= limit)
goto cleanup;
}
status = reply_process_is_prefixed(reply, scope, group);
if (status != ISC_R_SUCCESS)
goto cleanup;
send_pref:
status = reply_process_send_prefix(reply, &tmp_pref);
cleanup:
if (iapref.data != NULL)
data_string_forget(&iapref, MDL);
if (data.data != NULL)
data_string_forget(&data, MDL);
if (reply->lease != NULL)
iasubopt_dereference(&reply->lease, MDL);
return status;
}
/*
* Verify the prefix belongs to the client. If we've got a host
* record with fixed prefixes, it has to be an assigned prefix
* (fault out all else). Otherwise it's a dynamic prefix, so lookup
* that prefix and make sure it belongs to this DUID:IAID pair.
*/
static isc_boolean_t
prefix_is_owned(struct reply_state *reply, struct iaddrcidrnet *pref) {
struct iaddrcidrnetlist *l;
int i;
struct ipv6_pond *pond;
/*
* This faults out prefixes that don't match fixed prefixes.
*/
if (reply->static_prefixes > 0) {
for (l = reply->host->fixed_prefix; l != NULL; l = l->next) {
if ((pref->bits == l->cidrnet.bits) &&
(memcmp(pref->lo_addr.iabuf,
l->cidrnet.lo_addr.iabuf, 16) == 0))
return (ISC_TRUE);
}
return (ISC_FALSE);
}
if ((reply->old_ia == NULL) ||
(reply->old_ia->num_iasubopt == 0))
return (ISC_FALSE);
for (i = 0 ; i < reply->old_ia->num_iasubopt ; i++) {
struct iasubopt *tmp;
tmp = reply->old_ia->iasubopt[i];
if ((pref->bits == (int) tmp->plen) &&
(memcmp(pref->lo_addr.iabuf, &tmp->addr, 16) == 0)) {
if (lease6_usable(tmp) == ISC_FALSE) {
return (ISC_FALSE);
}
pond = tmp->ipv6_pool->ipv6_pond;
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
return (ISC_FALSE);
iasubopt_reference(&reply->lease, tmp, MDL);
return (ISC_TRUE);
}
}
return (ISC_FALSE);
}
/*
* This function only returns failure on 'hard' failures. If it succeeds,
* it will leave a prefix structure behind.
*/
static isc_result_t
reply_process_try_prefix(struct reply_state *reply,
struct iaddrcidrnet *pref) {
isc_result_t status = ISC_R_ADDRNOTAVAIL;
struct ipv6_pool *pool = NULL;
struct ipv6_pond *pond = NULL;
int i;
struct data_string data_pref;
if ((reply == NULL) || (reply->shared == NULL) ||
(pref == NULL) || (reply->lease != NULL))
return (DHCP_R_INVALIDARG);
/*
* Do a quick walk through of the ponds and pools
* to see if we have any prefix pools
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (pond->ipv6_pools == NULL)
continue;
for (i = 0; (pool = pond->ipv6_pools[i]) != NULL; i++) {
if (pool->pool_type == D6O_IA_PD)
break;
}
if (pool != NULL)
break;
}
/* If we get here and p is NULL we have no useful pools */
if (pool == NULL) {
return (ISC_R_ADDRNOTAVAIL);
}
memset(&data_pref, 0, sizeof(data_pref));
data_pref.len = 17;
if (!buffer_allocate(&data_pref.buffer, data_pref.len, MDL)) {
log_error("reply_process_try_prefix: out of memory.");
return (ISC_R_NOMEMORY);
}
data_pref.data = data_pref.buffer->data;
data_pref.buffer->data[0] = (u_int8_t) pref->bits;
memcpy(data_pref.buffer->data + 1, pref->lo_addr.iabuf, 16);
/*
* We have at least one pool that could provide a prefix
* Now we walk through the ponds and pools again and check
* to see if the client is permitted and if an prefix is
* available
*
*/
for (pond = reply->shared->ipv6_pond; pond != NULL; pond = pond->next) {
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
for (i = 0; (pool = pond->ipv6_pools[i]) != NULL; i++) {
if (pool->pool_type != D6O_IA_PD) {
continue;
}
status = try_client_v6_prefix(&reply->lease, pool,
&data_pref);
/* If we found it in this pool (either in use or available),
there is no need to look further. */
if ( (status == ISC_R_SUCCESS) || (status == ISC_R_ADDRINUSE) )
break;
}
if ( (status == ISC_R_SUCCESS) || (status == ISC_R_ADDRINUSE) )
break;
}
data_string_forget(&data_pref, MDL);
/* Return just the most recent status... */
return (status);
}
/* Look around for a prefix to give the client. First, look through the old
* IA_PD for prefixes we can extend. Second, try to allocate a new prefix.
* Finally, actually add that prefix into the current reply IA_PD.
*/
static isc_result_t
find_client_prefix(struct reply_state *reply) {
struct iaddrcidrnet send_pref;
isc_result_t status = ISC_R_NORESOURCES;
struct iasubopt *prefix, *best_prefix = NULL;
struct binding_scope **scope;
int i;
struct group *group;
if (reply->static_prefixes > 0) {
struct iaddrcidrnetlist *l;
if (reply->host == NULL)
return DHCP_R_INVALIDARG;
for (l = reply->host->fixed_prefix; l != NULL; l = l->next) {
if (l->cidrnet.bits == reply->preflen)
break;
}
if (l == NULL) {
/*
* If no fixed prefix has the preferred length,
* get the first one.
*/
l = reply->host->fixed_prefix;
}
memcpy(&send_pref, &l->cidrnet, sizeof(send_pref));
scope = &global_scope;
/* Copy the prefix for logging purposes */
memcpy(&reply->fixed_pref, &l->cidrnet, sizeof(send_pref));
/* Try to find a group for the static prefix */
group = find_group_by_prefix(reply);
goto send_pref;
}
if (reply->old_ia != NULL) {
for (i = 0 ; i < reply->old_ia->num_iasubopt ; i++) {
struct shared_network *candidate_shared;
struct ipv6_pond *pond;
prefix = reply->old_ia->iasubopt[i];
candidate_shared = prefix->ipv6_pool->shared_network;
pond = prefix->ipv6_pool->ipv6_pond;
/*
* Consider this prefix if it is in a global pool or
* if it is scoped in a pool under the client's shared
* network.
*/
if (((candidate_shared != NULL) &&
(candidate_shared != reply->shared)) ||
(lease6_usable(prefix) != ISC_TRUE))
continue;
/*
* And check if the prefix is still permitted
*/
if (((pond->prohibit_list != NULL) &&
(permitted(reply->packet, pond->prohibit_list))) ||
((pond->permit_list != NULL) &&
(!permitted(reply->packet, pond->permit_list))))
continue;
best_prefix = prefix_compare(reply, prefix,
best_prefix);
}
/*
* If we have prefix length hint and we're not igoring them,
* then toss the best match if it doesn't match the hint,
* unless this is in response to a rebind. In the latter
* case we're supposed to return it with zero lifetimes.
* (See rt45780) */
if (best_prefix && (reply->preflen > 0)
&& (prefix_length_mode != PLM_IGNORE)
&& (reply->preflen != best_prefix->plen)
&& (reply->packet->dhcpv6_msg_type != DHCPV6_REBIND)) {
best_prefix = NULL;
}
}
/* Try to pick a new prefix if we didn't find one, or if we found an
* abandoned prefix.
*/
if ((best_prefix == NULL) || (best_prefix->state == FTS_ABANDONED)) {
status = pick_v6_prefix(reply);
} else if (best_prefix != NULL) {
iasubopt_reference(&reply->lease, best_prefix, MDL);
status = ISC_R_SUCCESS;
}
/* Pick the abandoned prefix as a last resort. */
if ((status == ISC_R_NORESOURCES) && (best_prefix != NULL)) {
/* I don't see how this is supposed to be done right now. */
log_error("Reclaiming abandoned prefixes is not yet "
"supported. Treating this as an out of space "
"condition.");
/* iasubopt_reference(&reply->lease, best_prefix, MDL); */
}
/* Give up now if we didn't find a prefix. */
if (status != ISC_R_SUCCESS)
return status;
if (reply->lease == NULL)
log_fatal("Impossible condition at %s:%d.", MDL);
scope = &reply->lease->scope;
group = reply->lease->ipv6_pool->ipv6_pond->group;
send_pref.lo_addr.len = 16;
memcpy(send_pref.lo_addr.iabuf, &reply->lease->addr, 16);
send_pref.bits = (int) reply->lease->plen;
send_pref:
status = reply_process_is_prefixed(reply, scope, group);
if (status != ISC_R_SUCCESS)
return status;
status = reply_process_send_prefix(reply, &send_pref);
return status;
}
/* Once a prefix is found for a client, perform several common functions;
* Calculate and store valid and preferred prefix times, draw client options
* into the option state.
*/
static isc_result_t
reply_process_is_prefixed(struct reply_state *reply,
struct binding_scope **scope, struct group *group)
{
isc_result_t status = ISC_R_SUCCESS;
struct data_string data;
struct option_cache *oc;
struct option_state *tmp_options = NULL;
struct on_star *on_star;
int i;
/* Initialize values we will cleanup. */
memset(&data, 0, sizeof(data));
/*
* Find the proper on_star block to use. We use the
* one in the lease if we have a lease or the one in
* the reply if we don't have a lease because this is
* a static instance
*/
if (reply->lease) {
on_star = &reply->lease->on_star;
} else {
on_star = &reply->on_star;
}
/*
* Bring in the root configuration. We only do this to bring
* in the on * statements, as we didn't have the lease available
* we we did it the first time.
*/
option_state_allocate(&tmp_options, MDL);
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, tmp_options,
&global_scope, root_group, NULL,
on_star);
if (tmp_options != NULL) {
option_state_dereference(&tmp_options, MDL);
}
/*
* Bring configured options into the root packet level cache - start
* with the lease's closest enclosing group (passed in by the caller
* as 'group').
*/
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, reply->opt_state,
scope, group, root_group, on_star);
/* Execute statements from class scopes. */
for (i = reply->packet->class_count; i > 0; i--) {
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, scope,
reply->packet->classes[i - 1]->group,
group, on_star);
}
/*
* If there is a host record, over-ride with values configured there,
* without re-evaluating configuration from the previously executed
* group or its common enclosers.
*/
if (reply->host != NULL)
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, scope,
reply->host->group, group,
on_star);
/* Determine valid lifetime. */
if (reply->client_valid == 0)
reply->send_valid = DEFAULT_DEFAULT_LEASE_TIME;
else
reply->send_valid = reply->client_valid;
oc = lookup_option(&server_universe, reply->opt_state,
SV_DEFAULT_LEASE_TIME);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_is_prefixed: unable to "
"evaluate default prefix time");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->send_valid = getULong(data.data);
data_string_forget(&data, MDL);
}
/* Check to see if the lease time would cause us to wrap
* in which case we make it infinite.
* The following doesn't work on at least some systems:
* (cur_time + reply->send_valid < cur_time)
*/
if (reply->send_valid != INFINITE_TIME) {
time_t test_time = cur_time + reply->send_valid;
if (test_time < cur_time)
reply->send_valid = INFINITE_TIME;
}
if (reply->client_prefer == 0)
reply->send_prefer = reply->send_valid;
else
reply->send_prefer = reply->client_prefer;
if ((reply->send_prefer >= reply->send_valid) &&
(reply->send_valid != INFINITE_TIME))
reply->send_prefer = (reply->send_valid / 2) +
(reply->send_valid / 8);
oc = lookup_option(&server_universe, reply->opt_state,
SV_PREFER_LIFETIME);
if (oc != NULL) {
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state,
scope, oc, MDL) ||
(data.len != 4)) {
log_error("reply_process_is_prefixed: unable to "
"evaluate preferred prefix time");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->send_prefer = getULong(data.data);
data_string_forget(&data, MDL);
}
/* Note lowest values for later calculation of renew/rebind times. */
if (reply->min_prefer > reply->send_prefer)
reply->min_prefer = reply->send_prefer;
if (reply->min_valid > reply->send_valid)
reply->min_valid = reply->send_valid;
/* Perform dynamic prefix related update work. */
if (reply->lease != NULL) {
/* Cached lifetimes */
reply->lease->prefer = reply->send_prefer;
reply->lease->valid = reply->send_valid;
/* Advance (or rewind) the valid lifetime.
* In the protocol 0xFFFFFFFF is infinite
* when connecting to the lease file MAX_TIME is
*/
if (reply->buf.reply.msg_type == DHCPV6_REPLY) {
if (reply->send_valid == INFINITE_TIME) {
reply->lease->soft_lifetime_end_time = MAX_TIME;
} else {
reply->lease->soft_lifetime_end_time =
cur_time + reply->send_valid;
}
/* Wait before renew! */
}
status = ia_add_iasubopt(reply->ia, reply->lease, MDL);
if (status != ISC_R_SUCCESS) {
log_fatal("reply_process_is_prefixed: Unable to "
"attach prefix to new IA_PD: %s",
isc_result_totext(status));
}
/*
* If this is a new prefix, make sure it is attached somewhere.
*/
if (reply->lease->ia == NULL) {
ia_reference(&reply->lease->ia, reply->ia, MDL);
}
}
/* Bring a copy of the relevant options into the IA_PD scope. */
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options, reply->reply_ia,
scope, group, root_group, NULL);
/* Execute statements from class scopes. */
for (i = reply->packet->class_count; i > 0; i--) {
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->reply_ia, scope,
reply->packet->classes[i - 1]->group,
group, NULL);
}
/*
* And bring in host record configuration, if any, but not to overlap
* the previous group or its common enclosers.
*/
if (reply->host != NULL)
execute_statements_in_scope(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->reply_ia, scope,
reply->host->group, group, NULL);
cleanup:
if (data.data != NULL)
data_string_forget(&data, MDL);
if (status == ISC_R_SUCCESS)
reply->client_resources++;
return status;
}
/* Simply send an IAPREFIX within the IA_PD scope as described. */
static isc_result_t
reply_process_send_prefix(struct reply_state *reply,
struct iaddrcidrnet *pref) {
isc_result_t status = ISC_R_SUCCESS;
struct data_string data;
memset(&data, 0, sizeof(data));
/* Now append the prefix. */
data.len = IAPREFIX_OFFSET;
if (!buffer_allocate(&data.buffer, data.len, MDL)) {
log_error("reply_process_send_prefix: out of memory"
"allocating new IAPREFIX buffer.");
status = ISC_R_NOMEMORY;
goto cleanup;
}
data.data = data.buffer->data;
putULong(data.buffer->data, reply->send_prefer);
putULong(data.buffer->data + 4, reply->send_valid);
data.buffer->data[8] = pref->bits;
memcpy(data.buffer->data + 9, pref->lo_addr.iabuf, 16);
if (!append_option_buffer(&dhcpv6_universe, reply->reply_ia,
data.buffer, data.buffer->data,
data.len, D6O_IAPREFIX, 0)) {
log_error("reply_process_send_prefix: unable "
"to save IAPREFIX option");
status = ISC_R_FAILURE;
goto cleanup;
}
reply->resources_included = ISC_TRUE;
cleanup:
if (data.data != NULL)
data_string_forget(&data, MDL);
return status;
}
/* Choose the better of two prefixes. */
static struct iasubopt *
prefix_compare(struct reply_state *reply,
struct iasubopt *alpha, struct iasubopt *beta) {
if (alpha == NULL)
return beta;
if (beta == NULL)
return alpha;
if (reply->preflen >= 0) {
if ((alpha->plen == reply->preflen) &&
(beta->plen != reply->preflen))
return alpha;
if ((beta->plen == reply->preflen) &&
(alpha->plen != reply->preflen))
return beta;
}
switch(alpha->state) {
case FTS_ACTIVE:
switch(beta->state) {
case FTS_ACTIVE:
/* Choose the prefix with the longest lifetime (most
* likely the most recently allocated).
*/
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return beta;
else
return alpha;
case FTS_EXPIRED:
case FTS_ABANDONED:
return alpha;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
case FTS_EXPIRED:
switch (beta->state) {
case FTS_ACTIVE:
return beta;
case FTS_EXPIRED:
/* Choose the most recently expired prefix. */
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return beta;
else if ((alpha->hard_lifetime_end_time ==
beta->hard_lifetime_end_time) &&
(alpha->soft_lifetime_end_time <
beta->soft_lifetime_end_time))
return beta;
else
return alpha;
case FTS_ABANDONED:
return alpha;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
case FTS_ABANDONED:
switch (beta->state) {
case FTS_ACTIVE:
case FTS_EXPIRED:
return alpha;
case FTS_ABANDONED:
/* Choose the prefix that was abandoned longest ago. */
if (alpha->hard_lifetime_end_time <
beta->hard_lifetime_end_time)
return alpha;
else
return beta;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
break;
default:
log_fatal("Impossible condition at %s:%d.", MDL);
}
log_fatal("Triple impossible condition at %s:%d.", MDL);
return NULL;
}
/*
* Solicit is how a client starts requesting addresses.
*
* If the client asks for rapid commit, and we support it, we will
* allocate the addresses and reply.
*
* Otherwise we will send an advertise message.
*/
static void
dhcpv6_solicit(struct data_string *reply_ret, struct packet *packet) {
struct data_string client_id;
/*
* Validate our input.
*/
if (!valid_client_msg(packet, &client_id)) {
return;
}
lease_to_client(reply_ret, packet, &client_id, NULL);
/*
* Clean up.
*/
data_string_forget(&client_id, MDL);
}
/*
* Request is how a client actually requests addresses.
*
* Very similar to Solicit handling, except the server DUID is required.
*/
static void
dhcpv6_request(struct data_string *reply_ret, struct packet *packet) {
struct data_string client_id;
struct data_string server_id;
/*
* Validate our input.
*/
if (!valid_client_resp(packet, &client_id, &server_id)) {
return;
}
/* If the REQUEST arrived via unicast and unicast option isn't set,
* reject it per RFC 3315, Sec 18.2.1 */
if (packet->unicast == ISC_TRUE &&
is_unicast_option_defined(packet) == ISC_FALSE) {
unicast_reject(reply_ret, packet, &client_id, &server_id);
} else {
/*
* Issue our lease.
*/
lease_to_client(reply_ret, packet, &client_id, &server_id);
}
/*
* Cleanup.
*/
data_string_forget(&client_id, MDL);
data_string_forget(&server_id, MDL);
}
/* Find a DHCPv6 packet's shared network from hints in the packet.
*/
static isc_result_t
shared_network_from_packet6(struct shared_network **shared,
struct packet *packet)
{
const struct packet *chk_packet;
const struct in6_addr *link_addr, *first_link_addr;
struct iaddr tmp_addr;
struct subnet *subnet;
isc_result_t status;
if ((shared == NULL) || (*shared != NULL) || (packet == NULL))
return DHCP_R_INVALIDARG;
/*
* First, find the link address where the packet from the client
* first appeared (if this packet was relayed).
*/
first_link_addr = NULL;
chk_packet = packet->dhcpv6_container_packet;
while (chk_packet != NULL) {
link_addr = &chk_packet->dhcpv6_link_address;
if (!IN6_IS_ADDR_UNSPECIFIED(link_addr) &&
!IN6_IS_ADDR_LINKLOCAL(link_addr)) {
first_link_addr = link_addr;
break;
}
chk_packet = chk_packet->dhcpv6_container_packet;
}
/*
* If there is a relayed link address, find the subnet associated
* with that, and use that to get the appropriate
* shared_network.
*/
if (first_link_addr != NULL) {
tmp_addr.len = sizeof(*first_link_addr);
memcpy(tmp_addr.iabuf,
first_link_addr, sizeof(*first_link_addr));
subnet = NULL;
if (!find_subnet(&subnet, tmp_addr, MDL)) {
log_debug("No subnet found for link-address %s.",
piaddr(tmp_addr));
return ISC_R_NOTFOUND;
}
status = shared_network_reference(shared,
subnet->shared_network, MDL);
subnet_dereference(&subnet, MDL);
/*
* If there is no link address, we will use the interface
* that this packet came in on to pick the shared_network.
*/
} else if (packet->interface != NULL) {
status = shared_network_reference(shared,
packet->interface->shared_network,
MDL);
if (packet->dhcpv6_container_packet != NULL) {
log_info("[L2 Relay] No link address in relay packet "
"assuming L2 relay and using receiving "
"interface");
}
} else {
/*
* We shouldn't be able to get here but if there is no link
* address and no interface we don't know where to get the
* pool from log an error and return an error.
*/
log_error("No interface and no link address "
"can't determine pool");
status = DHCP_R_INVALIDARG;
}
return status;
}
/*
* When a client thinks it might be on a new link, it sends a
* Confirm message.
*
* From RFC3315 section 18.2.2:
*
* When the server receives a Confirm message, the server determines
* whether the addresses in the Confirm message are appropriate for the
* link to which the client is attached. If all of the addresses in the
* Confirm message pass this test, the server returns a status of
* Success. If any of the addresses do not pass this test, the server
* returns a status of NotOnLink. If the server is unable to perform
* this test (for example, the server does not have information about
* prefixes on the link to which the client is connected), or there were
* no addresses in any of the IAs sent by the client, the server MUST
* NOT send a reply to the client.
*/
static void
dhcpv6_confirm(struct data_string *reply_ret, struct packet *packet) {
struct shared_network *shared;
struct subnet *subnet;
struct option_cache *ia, *ta, *oc;
struct data_string cli_enc_opt_data, iaaddr, client_id, packet_oro;
struct option_state *cli_enc_opt_state, *opt_state;
struct iaddr cli_addr;
int pass;
isc_boolean_t inappropriate, has_addrs;
char reply_data[65536];
struct dhcpv6_packet *reply = (struct dhcpv6_packet *)reply_data;
int reply_ofs = (int)(offsetof(struct dhcpv6_packet, options));
/*
* Basic client message validation.
*/
memset(&client_id, 0, sizeof(client_id));
if (!valid_client_msg(packet, &client_id)) {
return;
}
/*
* Do not process Confirms that do not have IA's we do not recognize.
*/
ia = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_NA);
ta = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_TA);
if ((ia == NULL) && (ta == NULL))
return;
/*
* IA_PD's are simply ignored.
*/
delete_option(&dhcpv6_universe, packet->options, D6O_IA_PD);
/*
* Bit of variable initialization.
*/
opt_state = cli_enc_opt_state = NULL;
memset(&cli_enc_opt_data, 0, sizeof(cli_enc_opt_data));
memset(&iaaddr, 0, sizeof(iaaddr));
memset(&packet_oro, 0, sizeof(packet_oro));
/* Determine what shared network the client is connected to. We
* must not respond if we don't have any information about the
* network the client is on.
*/
shared = NULL;
if ((shared_network_from_packet6(&shared, packet) != ISC_R_SUCCESS) ||
(shared == NULL))
goto exit;
/* If there are no recorded subnets, then we have no
* information about this subnet - ignore Confirms.
*/
subnet = shared->subnets;
if (subnet == NULL)
goto exit;
/* Are the addresses in all the IA's appropriate for that link? */
has_addrs = inappropriate = ISC_FALSE;
pass = D6O_IA_NA;
while(!inappropriate) {
/* If we've reached the end of the IA_NA pass, move to the
* IA_TA pass.
*/
if ((pass == D6O_IA_NA) && (ia == NULL)) {
pass = D6O_IA_TA;
ia = ta;
}
/* If we've reached the end of all passes, we're done. */
if (ia == NULL)
break;
if (((pass == D6O_IA_NA) &&
!get_encapsulated_IA_state(&cli_enc_opt_state,
&cli_enc_opt_data,
packet, ia, IA_NA_OFFSET)) ||
((pass == D6O_IA_TA) &&
!get_encapsulated_IA_state(&cli_enc_opt_state,
&cli_enc_opt_data,
packet, ia, IA_TA_OFFSET))) {
goto exit;
}
oc = lookup_option(&dhcpv6_universe, cli_enc_opt_state,
D6O_IAADDR);
for ( ; oc != NULL ; oc = oc->next) {
if (!evaluate_option_cache(&iaaddr, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL) ||
(iaaddr.len < IAADDR_OFFSET)) {
log_error("dhcpv6_confirm: "
"error evaluating IAADDR.");
goto exit;
}
/* Copy out the IPv6 address for processing. */
cli_addr.len = 16;
memcpy(cli_addr.iabuf, iaaddr.data, 16);
data_string_forget(&iaaddr, MDL);
/* Record that we've processed at least one address. */
has_addrs = ISC_TRUE;
/* Find out if any subnets cover this address. */
for (subnet = shared->subnets ; subnet != NULL ;
subnet = subnet->next_sibling) {
if (addr_eq(subnet_number(cli_addr,
subnet->netmask),
subnet->net))
break;
}
/* If we reach the end of the subnet list, and no
* subnet matches the client address, then it must
* be inappropriate to the link (so far as our
* configuration says). Once we've found one
* inappropriate address, there is no reason to
* continue searching.
*/
if (subnet == NULL) {
inappropriate = ISC_TRUE;
break;
}
}
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
/* Advance to the next IA_*. */
ia = ia->next;
}
/* If the client supplied no addresses, do not reply. */
if (!has_addrs)
goto exit;
/*
* Set up reply.
*/
if (!start_reply(packet, &client_id, NULL, &opt_state, reply)) {
goto exit;
}
/*
* Set our status.
*/
if (inappropriate) {
if (!set_status_code(STATUS_NotOnLink,
"Some of the addresses are not on link.",
opt_state)) {
goto exit;
}
} else {
if (!set_status_code(STATUS_Success,
"All addresses still on link.",
opt_state)) {
goto exit;
}
}
/*
* Only one option: add it.
*/
reply_ofs += store_options6(reply_data+reply_ofs,
sizeof(reply_data)-reply_ofs,
opt_state, packet,
required_opts, &packet_oro);
/*
* Return our reply to the caller.
*/
reply_ret->len = reply_ofs;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply_ofs, MDL)) {
log_fatal("No memory to store reply.");
}
reply_ret->data = reply_ret->buffer->data;
memcpy(reply_ret->buffer->data, reply, reply_ofs);
exit:
/* Cleanup any stale data strings. */
if (cli_enc_opt_data.buffer != NULL)
data_string_forget(&cli_enc_opt_data, MDL);
if (iaaddr.buffer != NULL)
data_string_forget(&iaaddr, MDL);
if (client_id.buffer != NULL)
data_string_forget(&client_id, MDL);
if (packet_oro.buffer != NULL)
data_string_forget(&packet_oro, MDL);
/* Release any stale option states. */
if (cli_enc_opt_state != NULL)
option_state_dereference(&cli_enc_opt_state, MDL);
if (opt_state != NULL)
option_state_dereference(&opt_state, MDL);
}
/*
* Renew is when a client wants to extend its lease/prefix, at time T1.
*
* We handle this the same as if the client wants a new lease/prefix,
* except for the error code of when addresses don't match.
*/
static void
dhcpv6_renew(struct data_string *reply, struct packet *packet) {
struct data_string client_id;
struct data_string server_id;
/*
* Validate the request.
*/
if (!valid_client_resp(packet, &client_id, &server_id)) {
return;
}
/* If the RENEW arrived via unicast and unicast option isn't set,
* reject it per RFC 3315, Sec 18.2.3 */
if (packet->unicast == ISC_TRUE &&
is_unicast_option_defined(packet) == ISC_FALSE) {
unicast_reject(reply, packet, &client_id, &server_id);
} else {
/*
* Renew our lease.
*/
lease_to_client(reply, packet, &client_id, &server_id);
}
/*
* Cleanup.
*/
data_string_forget(&server_id, MDL);
data_string_forget(&client_id, MDL);
}
/*
* Rebind is when a client wants to extend its lease, at time T2.
*
* We handle this the same as if the client wants a new lease, except
* for the error code of when addresses don't match.
*/
static void
dhcpv6_rebind(struct data_string *reply, struct packet *packet) {
struct data_string client_id;
if (!valid_client_msg(packet, &client_id)) {
return;
}
lease_to_client(reply, packet, &client_id, NULL);
data_string_forget(&client_id, MDL);
}
static void
ia_na_match_decline(const struct data_string *client_id,
const struct data_string *iaaddr,
struct iasubopt *lease)
{
char tmp_addr[INET6_ADDRSTRLEN];
log_error("Client %s reports address %s is "
"already in use by another host!",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iaaddr->data,
tmp_addr, sizeof(tmp_addr)));
if (lease != NULL) {
decline_lease6(lease->ipv6_pool, lease);
lease->ia->cltt = cur_time;
write_ia(lease->ia);
}
}
static void
ia_na_nomatch_decline(const struct data_string *client_id,
const struct data_string *iaaddr,
u_int32_t *ia_na_id,
struct packet *packet,
char *reply_data,
int *reply_ofs,
int reply_len)
{
char tmp_addr[INET6_ADDRSTRLEN];
struct option_state *host_opt_state;
int len;
log_info("Client %s declines address %s, which is not offered to it.",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iaaddr->data, tmp_addr, sizeof(tmp_addr)));
/*
* Create state for this IA_NA.
*/
host_opt_state = NULL;
if (!option_state_allocate(&host_opt_state, MDL)) {
log_error("ia_na_nomatch_decline: out of memory "
"allocating option_state.");
goto exit;
}
if (!set_status_code(STATUS_NoBinding, "Decline for unknown address.",
host_opt_state)) {
goto exit;
}
/*
* Insure we have enough space
*/
if (reply_len < (*reply_ofs + 16)) {
log_error("ia_na_nomatch_decline: "
"out of space for reply packet.");
goto exit;
}
/*
* Put our status code into the reply packet.
*/
len = store_options6(reply_data+(*reply_ofs)+16,
reply_len-(*reply_ofs)-16,
host_opt_state, packet,
required_opts_STATUS_CODE, NULL);
/*
* Store the non-encapsulated option data for this
* IA_NA into our reply packet. Defined in RFC 3315,
* section 22.4.
*/
/* option number */
putUShort((unsigned char *)reply_data+(*reply_ofs), D6O_IA_NA);
/* option length */
putUShort((unsigned char *)reply_data+(*reply_ofs)+2, len + 12);
/* IA_NA, copied from the client */
memcpy(reply_data+(*reply_ofs)+4, ia_na_id, 4);
/* t1 and t2, odd that we need them, but here it is */
putULong((unsigned char *)reply_data+(*reply_ofs)+8, 0);
putULong((unsigned char *)reply_data+(*reply_ofs)+12, 0);
/*
* Get ready for next IA_NA.
*/
*reply_ofs += (len + 16);
exit:
option_state_dereference(&host_opt_state, MDL);
}
static void
iterate_over_ia_na(struct data_string *reply_ret,
struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id,
const char *packet_type,
void (*ia_na_match)(),
void (*ia_na_nomatch)())
{
struct option_state *opt_state;
struct host_decl *packet_host;
struct option_cache *ia;
struct option_cache *oc;
/* cli_enc_... variables come from the IA_NA/IA_TA options */
struct data_string cli_enc_opt_data;
struct option_state *cli_enc_opt_state;
struct host_decl *host;
struct data_string iaaddr;
struct data_string fixed_addr;
char reply_data[65536];
struct dhcpv6_packet *reply = (struct dhcpv6_packet *)reply_data;
int reply_ofs = (int)(offsetof(struct dhcpv6_packet, options));
char status_msg[32];
struct iasubopt *lease;
struct ia_xx *existing_ia_na;
int i;
struct data_string key;
u_int32_t iaid;
/*
* Initialize to empty values, in case we have to exit early.
*/
opt_state = NULL;
memset(&cli_enc_opt_data, 0, sizeof(cli_enc_opt_data));
cli_enc_opt_state = NULL;
memset(&iaaddr, 0, sizeof(iaaddr));
memset(&fixed_addr, 0, sizeof(fixed_addr));
lease = NULL;
/*
* Find the host record that matches from the packet, if any.
*/
packet_host = NULL;
find_hosts6(&packet_host, packet, client_id, MDL);
/*
* Set our reply information.
*/
reply->msg_type = DHCPV6_REPLY;
memcpy(reply->transaction_id, packet->dhcpv6_transaction_id,
sizeof(reply->transaction_id));
/*
* Build our option state for reply.
*/
opt_state = NULL;
if (!option_state_allocate(&opt_state, MDL)) {
log_error("iterate_over_ia_na: no memory for option_state.");
goto exit;
}
execute_statements_in_scope(NULL, packet, NULL, NULL,
packet->options, opt_state,
&global_scope, root_group, NULL, NULL);
/*
* RFC 3315, section 18.2.7 tells us which options to include.
*/
oc = lookup_option(&dhcpv6_universe, opt_state, D6O_SERVERID);
if (oc == NULL) {
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)server_duid.data,
server_duid.len, D6O_SERVERID, 0)) {
log_error("iterate_over_ia_na: "
"error saving server identifier.");
goto exit;
}
}
if (!save_option_buffer(&dhcpv6_universe, opt_state,
client_id->buffer,
(unsigned char *)client_id->data,
client_id->len,
D6O_CLIENTID, 0)) {
log_error("iterate_over_ia_na: "
"error saving client identifier.");
goto exit;
}
snprintf(status_msg, sizeof(status_msg), "%s received.", packet_type);
if (!set_status_code(STATUS_Success, status_msg, opt_state)) {
goto exit;
}
/*
* Add our options that are not associated with any IA_NA or IA_TA.
*/
reply_ofs += store_options6(reply_data+reply_ofs,
sizeof(reply_data)-reply_ofs,
opt_state, packet,
required_opts, NULL);
/*
* Loop through the IA_NA reported by the client, and deal with
* addresses reported as already in use.
*/
for (ia = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_NA);
ia != NULL; ia = ia->next) {
if (!get_encapsulated_IA_state(&cli_enc_opt_state,
&cli_enc_opt_data,
packet, ia, IA_NA_OFFSET)) {
goto exit;
}
iaid = getULong(cli_enc_opt_data.data);
/*
* XXX: It is possible that we can get multiple addresses
* sent by the client. We don't send multiple
* addresses, so this indicates a client error.
* We should check for multiple IAADDR options, log
* if found, and set as an error.
*/
oc = lookup_option(&dhcpv6_universe, cli_enc_opt_state,
D6O_IAADDR);
if (oc == NULL) {
/* no address given for this IA, ignore */
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
continue;
}
memset(&iaaddr, 0, sizeof(iaaddr));
if (!evaluate_option_cache(&iaaddr, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("iterate_over_ia_na: "
"error evaluating IAADDR.");
goto exit;
}
/*
* Now we need to figure out which host record matches
* this IA_NA and IAADDR (encapsulated option contents
* matching a host record by option).
*
* XXX: We don't currently track IA_NA separately, but
* we will need to do this!
*/
host = NULL;
if (!find_hosts_by_option(&host, packet,
cli_enc_opt_state, MDL)) {
if (packet_host != NULL) {
host = packet_host;
} else {
host = NULL;
}
}
while (host != NULL) {
if (host->fixed_addr != NULL) {
if (!evaluate_option_cache(&fixed_addr, NULL,
NULL, NULL, NULL,
NULL, &global_scope,
host->fixed_addr,
MDL)) {
log_error("iterate_over_ia_na: error "
"evaluating host address.");
goto exit;
}
if ((iaaddr.len >= 16) &&
!memcmp(fixed_addr.data, iaaddr.data, 16)) {
data_string_forget(&fixed_addr, MDL);
break;
}
data_string_forget(&fixed_addr, MDL);
}
host = host->n_ipaddr;
}
if ((host == NULL) && (iaaddr.len >= IAADDR_OFFSET)) {
/*
* Find existing IA_NA.
*/
if (ia_make_key(&key, iaid,
(char *)client_id->data,
client_id->len,
MDL) != ISC_R_SUCCESS) {
log_fatal("iterate_over_ia_na: no memory for "
"key.");
}
existing_ia_na = NULL;
if (ia_hash_lookup(&existing_ia_na, ia_na_active,
(unsigned char *)key.data,
key.len, MDL)) {
/*
* Make sure this address is in the IA_NA.
*/
for (i=0; i<existing_ia_na->num_iasubopt; i++) {
struct iasubopt *tmp;
struct in6_addr *in6_addr;
tmp = existing_ia_na->iasubopt[i];
in6_addr = &tmp->addr;
if (memcmp(in6_addr,
iaaddr.data, 16) == 0) {
iasubopt_reference(&lease,
tmp, MDL);
break;
}
}
}
data_string_forget(&key, MDL);
}
if ((host != NULL) || (lease != NULL)) {
ia_na_match(client_id, &iaaddr, lease);
} else {
ia_na_nomatch(client_id, &iaaddr,
(u_int32_t *)cli_enc_opt_data.data,
packet, reply_data, &reply_ofs,
sizeof(reply_data));
}
if (lease != NULL) {
iasubopt_dereference(&lease, MDL);
}
data_string_forget(&iaaddr, MDL);
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
}
/*
* Return our reply to the caller.
*/
reply_ret->len = reply_ofs;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply_ofs, MDL)) {
log_fatal("No memory to store reply.");
}
reply_ret->data = reply_ret->buffer->data;
memcpy(reply_ret->buffer->data, reply, reply_ofs);
exit:
if (lease != NULL) {
iasubopt_dereference(&lease, MDL);
}
if (fixed_addr.buffer != NULL) {
data_string_forget(&fixed_addr, MDL);
}
if (iaaddr.buffer != NULL) {
data_string_forget(&iaaddr, MDL);
}
if (cli_enc_opt_state != NULL) {
option_state_dereference(&cli_enc_opt_state, MDL);
}
if (cli_enc_opt_data.buffer != NULL) {
data_string_forget(&cli_enc_opt_data, MDL);
}
if (opt_state != NULL) {
option_state_dereference(&opt_state, MDL);
}
}
/*
* Decline means a client has detected that something else is using an
* address we gave it.
*
* Since we're only dealing with fixed leases for now, there's not
* much we can do, other that log the occurrence.
*
* When we start issuing addresses from pools, then we will have to
* record our declined addresses and issue another. In general with
* IPv6 there is no worry about DoS by clients exhausting space, but
* we still need to be aware of this possibility.
*/
/* TODO: IA_TA */
static void
dhcpv6_decline(struct data_string *reply, struct packet *packet) {
struct data_string client_id;
struct data_string server_id;
/*
* Validate our input.
*/
if (!valid_client_resp(packet, &client_id, &server_id)) {
return;
}
/* If the DECLINE arrived via unicast and unicast option isn't set,
* reject it per RFC 3315, Sec 18.2.7 */
if (packet->unicast == ISC_TRUE &&
is_unicast_option_defined(packet) == ISC_FALSE) {
unicast_reject(reply, packet, &client_id, &server_id);
} else {
/*
* Undefined for IA_PD.
*/
delete_option(&dhcpv6_universe, packet->options, D6O_IA_PD);
/*
* And operate on each IA_NA in this packet.
*/
iterate_over_ia_na(reply, packet, &client_id, &server_id,
"Decline", ia_na_match_decline,
ia_na_nomatch_decline);
}
data_string_forget(&server_id, MDL);
data_string_forget(&client_id, MDL);
}
static void
ia_na_match_release(const struct data_string *client_id,
const struct data_string *iaaddr,
struct iasubopt *lease)
{
char tmp_addr[INET6_ADDRSTRLEN];
log_info("Client %s releases address %s",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iaaddr->data, tmp_addr, sizeof(tmp_addr)));
if (lease != NULL) {
release_lease6(lease->ipv6_pool, lease);
lease->ia->cltt = cur_time;
write_ia(lease->ia);
}
}
static void
ia_na_nomatch_release(const struct data_string *client_id,
const struct data_string *iaaddr,
u_int32_t *ia_na_id,
struct packet *packet,
char *reply_data,
int *reply_ofs,
int reply_len)
{
char tmp_addr[INET6_ADDRSTRLEN];
struct option_state *host_opt_state;
int len;
log_info("Client %s releases address %s, which is not leased to it.",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iaaddr->data, tmp_addr, sizeof(tmp_addr)));
/*
* Create state for this IA_NA.
*/
host_opt_state = NULL;
if (!option_state_allocate(&host_opt_state, MDL)) {
log_error("ia_na_nomatch_release: out of memory "
"allocating option_state.");
goto exit;
}
if (!set_status_code(STATUS_NoBinding,
"Release for non-leased address.",
host_opt_state)) {
goto exit;
}
/*
* Insure we have enough space
*/
if (reply_len < (*reply_ofs + 16)) {
log_error("ia_na_nomatch_release: "
"out of space for reply packet.");
goto exit;
}
/*
* Put our status code into the reply packet.
*/
len = store_options6(reply_data+(*reply_ofs)+16,
reply_len-(*reply_ofs)-16,
host_opt_state, packet,
required_opts_STATUS_CODE, NULL);
/*
* Store the non-encapsulated option data for this
* IA_NA into our reply packet. Defined in RFC 3315,
* section 22.4.
*/
/* option number */
putUShort((unsigned char *)reply_data+(*reply_ofs), D6O_IA_NA);
/* option length */
putUShort((unsigned char *)reply_data+(*reply_ofs)+2, len + 12);
/* IA_NA, copied from the client */
memcpy(reply_data+(*reply_ofs)+4, ia_na_id, 4);
/* t1 and t2, odd that we need them, but here it is */
putULong((unsigned char *)reply_data+(*reply_ofs)+8, 0);
putULong((unsigned char *)reply_data+(*reply_ofs)+12, 0);
/*
* Get ready for next IA_NA.
*/
*reply_ofs += (len + 16);
exit:
option_state_dereference(&host_opt_state, MDL);
}
static void
ia_pd_match_release(const struct data_string *client_id,
const struct data_string *iapref,
struct iasubopt *prefix)
{
char tmp_addr[INET6_ADDRSTRLEN];
log_info("Client %s releases prefix %s/%u",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iapref->data + 9,
tmp_addr, sizeof(tmp_addr)),
(unsigned) getUChar(iapref->data + 8));
if (prefix != NULL) {
release_lease6(prefix->ipv6_pool, prefix);
prefix->ia->cltt = cur_time;
write_ia(prefix->ia);
}
}
static void
ia_pd_nomatch_release(const struct data_string *client_id,
const struct data_string *iapref,
u_int32_t *ia_pd_id,
struct packet *packet,
char *reply_data,
int *reply_ofs,
int reply_len)
{
char tmp_addr[INET6_ADDRSTRLEN];
struct option_state *host_opt_state;
int len;
log_info("Client %s releases prefix %s/%u, which is not leased to it.",
print_hex_1(client_id->len, client_id->data, 60),
inet_ntop(AF_INET6, iapref->data + 9,
tmp_addr, sizeof(tmp_addr)),
(unsigned) getUChar(iapref->data + 8));
/*
* Create state for this IA_PD.
*/
host_opt_state = NULL;
if (!option_state_allocate(&host_opt_state, MDL)) {
log_error("ia_pd_nomatch_release: out of memory "
"allocating option_state.");
goto exit;
}
if (!set_status_code(STATUS_NoBinding,
"Release for non-leased prefix.",
host_opt_state)) {
goto exit;
}
/*
* Insure we have enough space
*/
if (reply_len < (*reply_ofs + 16)) {
log_error("ia_pd_nomatch_release: "
"out of space for reply packet.");
goto exit;
}
/*
* Put our status code into the reply packet.
*/
len = store_options6(reply_data+(*reply_ofs)+16,
reply_len-(*reply_ofs)-16,
host_opt_state, packet,
required_opts_STATUS_CODE, NULL);
/*
* Store the non-encapsulated option data for this
* IA_PD into our reply packet. Defined in RFC 3315,
* section 22.4.
*/
/* option number */
putUShort((unsigned char *)reply_data+(*reply_ofs), D6O_IA_PD);
/* option length */
putUShort((unsigned char *)reply_data+(*reply_ofs)+2, len + 12);
/* IA_PD, copied from the client */
memcpy(reply_data+(*reply_ofs)+4, ia_pd_id, 4);
/* t1 and t2, odd that we need them, but here it is */
putULong((unsigned char *)reply_data+(*reply_ofs)+8, 0);
putULong((unsigned char *)reply_data+(*reply_ofs)+12, 0);
/*
* Get ready for next IA_PD.
*/
*reply_ofs += (len + 16);
exit:
option_state_dereference(&host_opt_state, MDL);
}
static void
iterate_over_ia_pd(struct data_string *reply_ret,
struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id,
const char *packet_type,
void (*ia_pd_match)(),
void (*ia_pd_nomatch)())
{
struct data_string reply_new;
int reply_len;
struct option_state *opt_state;
struct host_decl *packet_host;
struct option_cache *ia;
struct option_cache *oc;
/* cli_enc_... variables come from the IA_PD options */
struct data_string cli_enc_opt_data;
struct option_state *cli_enc_opt_state;
struct host_decl *host;
struct data_string iaprefix;
char reply_data[65536];
int reply_ofs;
struct iasubopt *prefix;
struct ia_xx *existing_ia_pd;
int i;
struct data_string key;
u_int32_t iaid;
/*
* Initialize to empty values, in case we have to exit early.
*/
memset(&reply_new, 0, sizeof(reply_new));
opt_state = NULL;
memset(&cli_enc_opt_data, 0, sizeof(cli_enc_opt_data));
cli_enc_opt_state = NULL;
memset(&iaprefix, 0, sizeof(iaprefix));
prefix = NULL;
/*
* Compute the available length for the reply.
*/
reply_len = sizeof(reply_data) - reply_ret->len;
reply_ofs = 0;
/*
* Find the host record that matches from the packet, if any.
*/
packet_host = NULL;
find_hosts6(&packet_host, packet, client_id, MDL);
/*
* Build our option state for reply.
*/
opt_state = NULL;
if (!option_state_allocate(&opt_state, MDL)) {
log_error("iterate_over_ia_pd: no memory for option_state.");
goto exit;
}
execute_statements_in_scope(NULL, packet, NULL, NULL,
packet->options, opt_state,
&global_scope, root_group, NULL, NULL);
/*
* Loop through the IA_PD reported by the client, and deal with
* prefixes reported as already in use.
*/
for (ia = lookup_option(&dhcpv6_universe, packet->options, D6O_IA_PD);
ia != NULL; ia = ia->next) {
if (!get_encapsulated_IA_state(&cli_enc_opt_state,
&cli_enc_opt_data,
packet, ia, IA_PD_OFFSET)) {
goto exit;
}
iaid = getULong(cli_enc_opt_data.data);
oc = lookup_option(&dhcpv6_universe, cli_enc_opt_state,
D6O_IAPREFIX);
if (oc == NULL) {
/* no prefix given for this IA_PD, ignore */
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
continue;
}
for (; oc != NULL; oc = oc->next) {
memset(&iaprefix, 0, sizeof(iaprefix));
if (!evaluate_option_cache(&iaprefix, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("iterate_over_ia_pd: "
"error evaluating IAPREFIX.");
goto exit;
}
/*
* Now we need to figure out which host record matches
* this IA_PD and IAPREFIX (encapsulated option contents
* matching a host record by option).
*
* XXX: We don't currently track IA_PD separately, but
* we will need to do this!
*/
host = NULL;
if (!find_hosts_by_option(&host, packet,
cli_enc_opt_state, MDL)) {
if (packet_host != NULL) {
host = packet_host;
} else {
host = NULL;
}
}
while (host != NULL) {
if (host->fixed_prefix != NULL) {
struct iaddrcidrnetlist *l;
int plen = (int) getUChar(iaprefix.data + 8);
for (l = host->fixed_prefix; l != NULL;
l = l->next) {
if (plen != l->cidrnet.bits)
continue;
if (memcmp(iaprefix.data + 9,
l->cidrnet.lo_addr.iabuf,
16) == 0)
break;
}
if ((l != NULL) && (iaprefix.len >= 17))
break;
}
host = host->n_ipaddr;
}
if ((host == NULL) && (iaprefix.len >= IAPREFIX_OFFSET)) {
/*
* Find existing IA_PD.
*/
if (ia_make_key(&key, iaid,
(char *)client_id->data,
client_id->len,
MDL) != ISC_R_SUCCESS) {
log_fatal("iterate_over_ia_pd: no memory for "
"key.");
}
existing_ia_pd = NULL;
if (ia_hash_lookup(&existing_ia_pd, ia_pd_active,
(unsigned char *)key.data,
key.len, MDL)) {
/*
* Make sure this prefix is in the IA_PD.
*/
for (i = 0;
i < existing_ia_pd->num_iasubopt;
i++) {
struct iasubopt *tmp;
u_int8_t plen;
plen = getUChar(iaprefix.data + 8);
tmp = existing_ia_pd->iasubopt[i];
if ((tmp->plen == plen) &&
(memcmp(&tmp->addr,
iaprefix.data + 9,
16) == 0)) {
iasubopt_reference(&prefix,
tmp, MDL);
break;
}
}
}
data_string_forget(&key, MDL);
}
if ((host != NULL) || (prefix != NULL)) {
ia_pd_match(client_id, &iaprefix, prefix);
} else {
ia_pd_nomatch(client_id, &iaprefix,
(u_int32_t *)cli_enc_opt_data.data,
packet, reply_data, &reply_ofs,
reply_len - reply_ofs);
}
if (prefix != NULL) {
iasubopt_dereference(&prefix, MDL);
}
data_string_forget(&iaprefix, MDL);
}
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
}
/*
* Return our reply to the caller.
* The IA_NA routine has already filled at least the header.
*/
reply_new.len = reply_ret->len + reply_ofs;
if (!buffer_allocate(&reply_new.buffer, reply_new.len, MDL)) {
log_fatal("No memory to store reply.");
}
reply_new.data = reply_new.buffer->data;
memcpy(reply_new.buffer->data,
reply_ret->buffer->data, reply_ret->len);
memcpy(reply_new.buffer->data + reply_ret->len,
reply_data, reply_ofs);
data_string_forget(reply_ret, MDL);
data_string_copy(reply_ret, &reply_new, MDL);
data_string_forget(&reply_new, MDL);
exit:
if (prefix != NULL) {
iasubopt_dereference(&prefix, MDL);
}
if (iaprefix.buffer != NULL) {
data_string_forget(&iaprefix, MDL);
}
if (cli_enc_opt_state != NULL) {
option_state_dereference(&cli_enc_opt_state, MDL);
}
if (cli_enc_opt_data.buffer != NULL) {
data_string_forget(&cli_enc_opt_data, MDL);
}
if (opt_state != NULL) {
option_state_dereference(&opt_state, MDL);
}
}
/*
* Release means a client is done with the leases.
*/
static void
dhcpv6_release(struct data_string *reply, struct packet *packet) {
struct data_string client_id;
struct data_string server_id;
/*
* Validate our input.
*/
if (!valid_client_resp(packet, &client_id, &server_id)) {
return;
}
/* If the RELEASE arrived via unicast and unicast option isn't set,
* reject it per RFC 3315, Sec 18.2.6 */
if (packet->unicast == ISC_TRUE &&
is_unicast_option_defined(packet) == ISC_FALSE) {
unicast_reject(reply, packet, &client_id, &server_id);
} else {
/*
* And operate on each IA_NA in this packet.
*/
iterate_over_ia_na(reply, packet, &client_id, &server_id,
"Release", ia_na_match_release,
ia_na_nomatch_release);
/*
* And operate on each IA_PD in this packet.
*/
iterate_over_ia_pd(reply, packet, &client_id, &server_id,
"Release", ia_pd_match_release,
ia_pd_nomatch_release);
}
data_string_forget(&server_id, MDL);
data_string_forget(&client_id, MDL);
}
/*
* Information-Request is used by clients who have obtained an address
* from other means, but want configuration information from the server.
*/
static void
dhcpv6_information_request(struct data_string *reply, struct packet *packet) {
struct data_string client_id;
struct data_string server_id;
/*
* Validate our input.
*/
if (!valid_client_info_req(packet, &server_id)) {
return;
}
/*
* Get our client ID, if there is one.
*/
memset(&client_id, 0, sizeof(client_id));
if (get_client_id(packet, &client_id) != ISC_R_SUCCESS) {
data_string_forget(&client_id, MDL);
}
/*
* Use the lease_to_client() function. This will work fine,
* because the valid_client_info_req() insures that we
* don't have any IA that would cause us to allocate
* resources to the client.
*/
lease_to_client(reply, packet, &client_id,
server_id.data != NULL ? &server_id : NULL);
/*
* Cleanup.
*/
if (client_id.data != NULL) {
data_string_forget(&client_id, MDL);
}
data_string_forget(&server_id, MDL);
}
/*
* The Relay-forw message is sent by relays. It typically contains a
* single option, which encapsulates an entire packet.
*
* We need to build an encapsulated reply.
*/
/* XXX: this is very, very similar to do_packet6(), and should probably
be combined in a clever way */
/* DHCPv6 server side */
static void
dhcpv6_relay_forw(struct data_string *reply_ret, struct packet *packet) {
struct option_cache *oc;
struct data_string enc_opt_data;
struct packet *enc_packet;
unsigned char msg_type;
const struct dhcpv6_packet *msg;
const struct dhcpv6_relay_packet *relay;
struct data_string enc_reply;
char link_addr[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
char peer_addr[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
struct data_string a_opt, packet_ero;
struct option_state *opt_state;
static char reply_data[65536];
struct dhcpv6_relay_packet *reply;
int reply_ofs;
/*
* Initialize variables for early exit.
*/
opt_state = NULL;
memset(&a_opt, 0, sizeof(a_opt));
memset(&packet_ero, 0, sizeof(packet_ero));
memset(&enc_reply, 0, sizeof(enc_reply));
memset(&enc_opt_data, 0, sizeof(enc_opt_data));
enc_packet = NULL;
/*
* Get our encapsulated relay message.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_RELAY_MSG);
if (oc == NULL) {
inet_ntop(AF_INET6, &packet->dhcpv6_link_address,
link_addr, sizeof(link_addr));
inet_ntop(AF_INET6, &packet->dhcpv6_peer_address,
peer_addr, sizeof(peer_addr));
log_info("Relay-forward from %s with link address=%s and "
"peer address=%s missing Relay Message option.",
piaddr(packet->client_addr), link_addr, peer_addr);
goto exit;
}
if (!evaluate_option_cache(&enc_opt_data, NULL, NULL, NULL,
NULL, NULL, &global_scope, oc, MDL)) {
/* should be dhcpv6_relay_forw */
log_error("dhcpv6_forw_relay: error evaluating "
"relayed message.");
goto exit;
}
if (!packet6_len_okay((char *)enc_opt_data.data, enc_opt_data.len)) {
/* should be dhcpv6_relay_forw */
log_error("dhcpv6_forw_relay: encapsulated packet too short.");
goto exit;
}
/*
* Build a packet structure from this encapsulated packet.
*/
enc_packet = NULL;
if (!packet_allocate(&enc_packet, MDL)) {
/* should be dhcpv6_relay_forw */
log_error("dhcpv6_forw_relay: "
"no memory for encapsulated packet.");
goto exit;
}
if (!option_state_allocate(&enc_packet->options, MDL)) {
/* should be dhcpv6_relay_forw */
log_error("dhcpv6_forw_relay: "
"no memory for encapsulated packet's options.");
goto exit;
}
enc_packet->client_port = packet->client_port;
enc_packet->client_addr = packet->client_addr;
interface_reference(&enc_packet->interface, packet->interface, MDL);
enc_packet->dhcpv6_container_packet = packet;
msg_type = enc_opt_data.data[0];
if ((msg_type == DHCPV6_RELAY_FORW) ||
(msg_type == DHCPV6_RELAY_REPL)) {
int relaylen = (int)(offsetof(struct dhcpv6_relay_packet, options));
relay = (struct dhcpv6_relay_packet *)enc_opt_data.data;
enc_packet->dhcpv6_msg_type = relay->msg_type;
/* relay-specific data */
enc_packet->dhcpv6_hop_count = relay->hop_count;
memcpy(&enc_packet->dhcpv6_link_address,
relay->link_address, sizeof(relay->link_address));
memcpy(&enc_packet->dhcpv6_peer_address,
relay->peer_address, sizeof(relay->peer_address));
if (!parse_option_buffer(enc_packet->options,
relay->options,
enc_opt_data.len - relaylen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
goto exit;
}
} else if ((msg_type == DHCPV6_DHCPV4_QUERY) ||
(msg_type == DHCPV6_DHCPV4_RESPONSE)) {
#ifdef DHCP4o6
if (!dhcpv4_over_dhcpv6 ||
(msg_type == DHCPV6_DHCPV4_RESPONSE)) {
log_error("dhcpv6_relay_forw: "
"unsupported %s message type.",
dhcpv6_type_names[msg_type]);
goto exit;
}
forw_dhcpv4_query(packet);
goto exit;
#else /* DHCP4o6 */
log_error("dhcpv6_relay_forw: unsupported %s message type.",
dhcpv6_type_names[msg_type]);
goto exit;
#endif /* DHCP4o6 */
} else {
int msglen = (int)(offsetof(struct dhcpv6_packet, options));
msg = (struct dhcpv6_packet *)enc_opt_data.data;
enc_packet->dhcpv6_msg_type = msg->msg_type;
/* message-specific data */
memcpy(enc_packet->dhcpv6_transaction_id,
msg->transaction_id,
sizeof(enc_packet->dhcpv6_transaction_id));
if (!parse_option_buffer(enc_packet->options,
msg->options,
enc_opt_data.len - msglen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
goto exit;
}
}
/*
* This is recursive. It is possible to exceed maximum packet size.
* XXX: This will cause the packet send to fail.
*/
build_dhcpv6_reply(&enc_reply, enc_packet);
/*
* If we got no encapsulated data, then it is discarded, and
* our reply-forw is also discarded.
*/
if (enc_reply.data == NULL) {
goto exit;
}
/*
* Now we can use the reply_data buffer.
* Packet header stuff all comes from the forward message.
*/
reply = (struct dhcpv6_relay_packet *)reply_data;
reply->msg_type = DHCPV6_RELAY_REPL;
reply->hop_count = packet->dhcpv6_hop_count;
memcpy(reply->link_address, &packet->dhcpv6_link_address,
sizeof(reply->link_address));
memcpy(reply->peer_address, &packet->dhcpv6_peer_address,
sizeof(reply->peer_address));
reply_ofs = (int)(offsetof(struct dhcpv6_relay_packet, options));
/*
* Get the reply option state.
*/
opt_state = NULL;
if (!option_state_allocate(&opt_state, MDL)) {
log_error("dhcpv6_relay_forw: no memory for option state.");
goto exit;
}
/*
* Append the interface-id if present.
*/
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_INTERFACE_ID);
if (oc != NULL) {
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcpv6_relay_forw: error evaluating "
"Interface ID.");
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)a_opt.data,
a_opt.len,
D6O_INTERFACE_ID, 0)) {
log_error("dhcpv6_relay_forw: error saving "
"Interface ID.");
goto exit;
}
data_string_forget(&a_opt, MDL);
}
#if defined(RELAY_PORT)
/*
* Append the relay_source_port option if present.
*/
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_RELAY_SOURCE_PORT);
if (oc != NULL) {
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcpv6_relay_forw: error evaluating "
"Relay Source Port.");
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)a_opt.data,
a_opt.len,
D6O_RELAY_SOURCE_PORT, 0)) {
log_error("dhcpv6_relay_forw: error saving "
"Relay Source Port.");
goto exit;
}
data_string_forget(&a_opt, MDL);
packet->relay_source_port = ISC_TRUE;
}
#endif
/*
* Append our encapsulated stuff for caller.
*/
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)enc_reply.data,
enc_reply.len,
D6O_RELAY_MSG, 0)) {
log_error("dhcpv6_relay_forw: error saving Relay MSG.");
goto exit;
}
/*
* Get the ERO if any.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_ERO);
if (oc != NULL) {
unsigned req;
int i;
if (!evaluate_option_cache(&packet_ero, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL) ||
(packet_ero.len & 1)) {
log_error("dhcpv6_relay_forw: error evaluating ERO.");
goto exit;
}
/* Decode and apply the ERO. */
for (i = 0; i < packet_ero.len; i += 2) {
req = getUShort(packet_ero.data + i);
/* Already in the reply? */
oc = lookup_option(&dhcpv6_universe, opt_state, req);
if (oc != NULL)
continue;
/* Get it from the packet if present. */
oc = lookup_option(&dhcpv6_universe,
packet->options,
req);
if (oc == NULL)
continue;
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcpv6_relay_forw: error "
"evaluating option %u.", req);
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe,
opt_state,
NULL,
(unsigned char *)a_opt.data,
a_opt.len,
req,
0)) {
log_error("dhcpv6_relay_forw: error saving "
"option %u.", req);
goto exit;
}
data_string_forget(&a_opt, MDL);
}
}
reply_ofs += store_options6(reply_data + reply_ofs,
sizeof(reply_data) - reply_ofs,
opt_state, packet,
required_opts_agent, &packet_ero);
/*
* Return our reply to the caller.
*/
reply_ret->len = reply_ofs;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply_ret->len, MDL)) {
log_fatal("No memory to store reply.");
}
reply_ret->data = reply_ret->buffer->data;
memcpy(reply_ret->buffer->data, reply_data, reply_ofs);
exit:
if (opt_state != NULL)
option_state_dereference(&opt_state, MDL);
if (a_opt.data != NULL) {
data_string_forget(&a_opt, MDL);
}
if (packet_ero.data != NULL) {
data_string_forget(&packet_ero, MDL);
}
if (enc_reply.data != NULL) {
data_string_forget(&enc_reply, MDL);
}
if (enc_opt_data.data != NULL) {
data_string_forget(&enc_opt_data, MDL);
}
if (enc_packet != NULL) {
packet_dereference(&enc_packet, MDL);
}
}
#ifdef DHCP4o6
/* \brief Internal processing of a relayed DHCPv4-query
* (DHCPv4 server side)
*
* Code copied from \ref dhcpv6_relay_forw() which itself is
* from \ref do_packet6().
*
* \param reply_ret pointer to the response
* \param packet the query
*/
static void
dhcp4o6_relay_forw(struct data_string *reply_ret, struct packet *packet) {
struct option_cache *oc;
struct data_string enc_opt_data;
struct packet *enc_packet;
unsigned char msg_type;
const struct dhcpv6_relay_packet *relay;
const struct dhcpv4_over_dhcpv6_packet *msg;
struct data_string enc_reply;
char link_addr[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
char peer_addr[sizeof("ffff:ffff:ffff:ffff:ffff:ffff:255.255.255.255")];
struct data_string a_opt, packet_ero;
struct option_state *opt_state;
static char reply_data[65536];
struct dhcpv6_relay_packet *reply;
int reply_ofs;
/*
* Initialize variables for early exit.
*/
opt_state = NULL;
memset(&a_opt, 0, sizeof(a_opt));
memset(&packet_ero, 0, sizeof(packet_ero));
memset(&enc_reply, 0, sizeof(enc_reply));
memset(&enc_opt_data, 0, sizeof(enc_opt_data));
enc_packet = NULL;
/*
* Get our encapsulated relay message.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_RELAY_MSG);
if (oc == NULL) {
inet_ntop(AF_INET6, &packet->dhcpv6_link_address,
link_addr, sizeof(link_addr));
inet_ntop(AF_INET6, &packet->dhcpv6_peer_address,
peer_addr, sizeof(peer_addr));
log_info("Relay-forward from %s with link address=%s and "
"peer address=%s missing Relay Message option.",
piaddr(packet->client_addr), link_addr, peer_addr);
goto exit;
}
if (!evaluate_option_cache(&enc_opt_data, NULL, NULL, NULL,
NULL, NULL, &global_scope, oc, MDL)) {
log_error("dhcp4o6_relay_forw: error evaluating "
"relayed message.");
goto exit;
}
if (!packet6_len_okay((char *)enc_opt_data.data, enc_opt_data.len)) {
log_error("dhcp4o6_relay_forw: "
"encapsulated packet too short.");
goto exit;
}
/*
* Build a packet structure from this encapsulated packet.
*/
if (!packet_allocate(&enc_packet, MDL)) {
log_error("dhcp4o6_relay_forw: "
"no memory for encapsulated packet.");
goto exit;
}
if (!option_state_allocate(&enc_packet->options, MDL)) {
log_error("dhcp4o6_relay_forw: "
"no memory for encapsulated packet's options.");
goto exit;
}
enc_packet->client_port = packet->client_port;
enc_packet->client_addr = packet->client_addr;
interface_reference(&enc_packet->interface, packet->interface, MDL);
enc_packet->dhcpv6_container_packet = packet;
msg_type = enc_opt_data.data[0];
if ((msg_type == DHCPV6_RELAY_FORW) ||
(msg_type == DHCPV6_RELAY_REPL)) {
int relaylen = (int)(offsetof(struct dhcpv6_relay_packet, options));
relay = (struct dhcpv6_relay_packet *)enc_opt_data.data;
enc_packet->dhcpv6_msg_type = relay->msg_type;
/* relay-specific data */
enc_packet->dhcpv6_hop_count = relay->hop_count;
memcpy(&enc_packet->dhcpv6_link_address,
relay->link_address, sizeof(relay->link_address));
memcpy(&enc_packet->dhcpv6_peer_address,
relay->peer_address, sizeof(relay->peer_address));
if (!parse_option_buffer(enc_packet->options,
relay->options,
enc_opt_data.len - relaylen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
goto exit;
}
} else if ((msg_type == DHCPV6_DHCPV4_QUERY) ||
(msg_type == DHCPV6_DHCPV4_RESPONSE)) {
int msglen =
(int)(offsetof(struct dhcpv4_over_dhcpv6_packet, options));
msg = (struct dhcpv4_over_dhcpv6_packet *)enc_opt_data.data;
enc_packet->dhcpv6_msg_type = msg->msg_type;
/* message-specific data */
memcpy(enc_packet->dhcp4o6_flags,
msg->flags,
sizeof(enc_packet->dhcp4o6_flags));
if (!parse_option_buffer(enc_packet->options,
msg->options,
enc_opt_data.len - msglen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
goto exit;
}
} else {
log_error("dhcp4o6_relay_forw: unexpected message of type %d.",
(int)msg_type);
goto exit;
}
/*
* This is recursive. It is possible to exceed maximum packet size.
* XXX: This will cause the packet send to fail.
*/
build_dhcpv6_reply(&enc_reply, enc_packet);
/*
* If we got no encapsulated data, then it is discarded, and
* our reply-forw is also discarded.
*/
if (enc_reply.data == NULL) {
goto exit;
}
/*
* Now we can use the reply_data buffer.
* Packet header stuff all comes from the forward message.
*/
reply = (struct dhcpv6_relay_packet *)reply_data;
reply->msg_type = DHCPV6_RELAY_REPL;
reply->hop_count = packet->dhcpv6_hop_count;
memcpy(reply->link_address, &packet->dhcpv6_link_address,
sizeof(reply->link_address));
memcpy(reply->peer_address, &packet->dhcpv6_peer_address,
sizeof(reply->peer_address));
reply_ofs = (int)(offsetof(struct dhcpv6_relay_packet, options));
/*
* Get the reply option state.
*/
if (!option_state_allocate(&opt_state, MDL)) {
log_error("dhcp4o6_relay_forw: no memory for option state.");
goto exit;
}
/*
* Append the interface-id if present.
*/
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_INTERFACE_ID);
if (oc != NULL) {
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcp4o6_relay_forw: error evaluating "
"Interface ID.");
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)a_opt.data,
a_opt.len,
D6O_INTERFACE_ID, 0)) {
log_error("dhcp4o6_relay_forw: error saving "
"Interface ID.");
goto exit;
}
data_string_forget(&a_opt, MDL);
}
#if defined(RELAY_PORT)
/*
* Append the relay_source_port option if present.
*/
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_RELAY_SOURCE_PORT);
if (oc != NULL) {
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcpv4o6_relay_forw: error evaluating "
"Relay Source Port.");
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)a_opt.data,
a_opt.len,
D6O_RELAY_SOURCE_PORT, 0)) {
log_error("dhcpv4o6_relay_forw: error saving "
"Relay Source Port.");
goto exit;
}
data_string_forget(&a_opt, MDL);
packet->relay_source_port = ISC_TRUE;
}
#endif
/*
* Append our encapsulated stuff for caller.
*/
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)enc_reply.data,
enc_reply.len,
D6O_RELAY_MSG, 0)) {
log_error("dhcp4o6_relay_forw: error saving Relay MSG.");
goto exit;
}
/*
* Get the ERO if any.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_ERO);
if (oc != NULL) {
unsigned req;
int i;
if (!evaluate_option_cache(&packet_ero, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL) ||
(packet_ero.len & 1)) {
log_error("dhcp4o6_relay_forw: error evaluating ERO.");
goto exit;
}
/* Decode and apply the ERO. */
for (i = 0; i < packet_ero.len; i += 2) {
req = getUShort(packet_ero.data + i);
/* Already in the reply? */
oc = lookup_option(&dhcpv6_universe, opt_state, req);
if (oc != NULL)
continue;
/* Get it from the packet if present. */
oc = lookup_option(&dhcpv6_universe,
packet->options,
req);
if (oc == NULL)
continue;
if (!evaluate_option_cache(&a_opt, packet,
NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("dhcp4o6_relay_forw: error "
"evaluating option %u.", req);
goto exit;
}
if (!save_option_buffer(&dhcpv6_universe,
opt_state,
NULL,
(unsigned char *)a_opt.data,
a_opt.len,
req,
0)) {
log_error("dhcp4o6_relay_forw: error saving "
"option %u.", req);
goto exit;
}
data_string_forget(&a_opt, MDL);
}
}
reply_ofs += store_options6(reply_data + reply_ofs,
sizeof(reply_data) - reply_ofs,
opt_state, packet,
required_opts_agent, &packet_ero);
/*
* Return our reply to the caller.
*/
reply_ret->len = reply_ofs;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply_ret->len, MDL)) {
log_fatal("No memory to store reply.");
}
reply_ret->data = reply_ret->buffer->data;
memcpy(reply_ret->buffer->data, reply_data, reply_ofs);
exit:
if (opt_state != NULL)
option_state_dereference(&opt_state, MDL);
if (a_opt.data != NULL) {
data_string_forget(&a_opt, MDL);
}
if (packet_ero.data != NULL) {
data_string_forget(&packet_ero, MDL);
}
if (enc_reply.data != NULL) {
data_string_forget(&enc_reply, MDL);
}
if (enc_opt_data.data != NULL) {
data_string_forget(&enc_opt_data, MDL);
}
if (enc_packet != NULL) {
packet_dereference(&enc_packet, MDL);
}
}
/*
* \brief Internal processing of a DHCPv4-query
* (DHCPv4 server function)
*
* Code copied from \ref do_packet().
*
* \param reply_ret pointer to the response
* \param packet the query
*/
static void
dhcp4o6_dhcpv4_query(struct data_string *reply_ret, struct packet *packet) {
struct option_cache *oc;
struct data_string enc_opt_data;
struct packet *enc_packet;
struct data_string enc_response;
struct option_state *opt_state;
static char response_data[65536];
struct dhcpv4_over_dhcpv6_packet *response;
int response_ofs;
/*
* Initialize variables for early exit.
*/
opt_state = NULL;
memset(&enc_response, 0, sizeof(enc_response));
memset(&enc_opt_data, 0, sizeof(enc_opt_data));
enc_packet = NULL;
/*
* Get our encapsulated relay message.
*/
oc = lookup_option(&dhcpv6_universe, packet->options, D6O_DHCPV4_MSG);
if (oc == NULL) {
log_info("DHCPv4-query from %s missing DHCPv4 Message option.",
piaddr(packet->client_addr));
goto exit;
}
if (!evaluate_option_cache(&enc_opt_data, NULL, NULL, NULL,
NULL, NULL, &global_scope, oc, MDL)) {
log_error("dhcp4o6_dhcpv4_query: error evaluating "
"DHCPv4 message.");
goto exit;
}
if (enc_opt_data.len < DHCP_FIXED_NON_UDP) {
log_error("dhcp4o6_dhcpv4_query: DHCPv4 packet too short.");
goto exit;
}
/*
* Build a packet structure from this encapsulated packet.
*/
if (!packet_allocate(&enc_packet, MDL)) {
log_error("dhcp4o6_dhcpv4_query: "
"no memory for encapsulated packet.");
goto exit;
}
enc_packet->raw = (struct dhcp_packet *)enc_opt_data.data;
enc_packet->packet_length = enc_opt_data.len;
enc_packet->dhcp4o6_response = &enc_response;
enc_packet->client_port = packet->client_port;
enc_packet->client_addr = packet->client_addr;
interface_reference(&enc_packet->interface, packet->interface, MDL);
enc_packet->dhcpv6_container_packet = packet;
if (packet->dhcp4o6_flags[0] & DHCP4O6_QUERY_UNICAST)
enc_packet->unicast = 1;
if (enc_packet->raw->hlen > sizeof(enc_packet->raw->chaddr)) {
log_info("dhcp4o6_dhcpv4_query: "
"discarding packet with bogus hlen.");
goto exit;
}
/* Allocate packet->options now so it is non-null for all packets */
if (!option_state_allocate (&enc_packet->options, MDL)) {
log_error("dhcp4o6_dhcpv4_query: no memory for options.");
goto exit;
}
/* If there's an option buffer, try to parse it. */
if (enc_packet->packet_length >= DHCP_FIXED_NON_UDP + 4) {
struct option_cache *op;
if (!parse_options(enc_packet)) {
if (enc_packet->options)
option_state_dereference
(&enc_packet->options, MDL);
packet_dereference (&enc_packet, MDL);
goto exit;
}
if (enc_packet->options_valid &&
(op = lookup_option(&dhcp_universe,
enc_packet->options,
DHO_DHCP_MESSAGE_TYPE))) {
struct data_string dp;
memset(&dp, 0, sizeof dp);
evaluate_option_cache(&dp, enc_packet, NULL, NULL,
enc_packet->options, NULL,
NULL, op, MDL);
if (dp.len > 0)
enc_packet->packet_type = dp.data[0];
else
enc_packet->packet_type = 0;
data_string_forget(&dp, MDL);
}
}
if (validate_packet(enc_packet) != 0) {
if (enc_packet->packet_type)
dhcp(enc_packet);
else
bootp(enc_packet);
}
/* If the caller kept the packet, they'll have upped the refcnt. */
packet_dereference(&enc_packet, MDL);
/*
* If we got no response data, then it is discarded, and
* our DHCPv4-response is also discarded.
*/
if (enc_response.data == NULL) {
goto exit;
}
/*
* Now we can use the response_data buffer.
*/
response = (struct dhcpv4_over_dhcpv6_packet *)response_data;
response->msg_type = DHCPV6_DHCPV4_RESPONSE;
response->flags[0] = response->flags[1] = response->flags[2] = 0;
response_ofs =
(int)(offsetof(struct dhcpv4_over_dhcpv6_packet, options));
/*
* Get the response option state.
*/
if (!option_state_allocate(&opt_state, MDL)) {
log_error("dhcp4o6_dhcpv4_query: no memory for option state.");
goto exit;
}
/*
* Append our encapsulated stuff for caller.
*/
if (!save_option_buffer(&dhcpv6_universe, opt_state, NULL,
(unsigned char *)enc_response.data,
enc_response.len,
D6O_DHCPV4_MSG, 0)) {
log_error("dhcp4o6_dhcpv4_query: error saving DHCPv4 MSG.");
goto exit;
}
response_ofs += store_options6(response_data + response_ofs,
sizeof(response_data) - response_ofs,
opt_state, packet,
required_opts_4o6, NULL);
/*
* Return our response to the caller.
*/
reply_ret->len = response_ofs;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer, reply_ret->len, MDL)) {
log_fatal("dhcp4o6_dhcpv4_query: no memory to store reply.");
}
reply_ret->data = reply_ret->buffer->data;
memcpy(reply_ret->buffer->data, response_data, response_ofs);
exit:
if (opt_state != NULL)
option_state_dereference(&opt_state, MDL);
if (enc_response.data != NULL) {
data_string_forget(&enc_response, MDL);
}
if (enc_opt_data.data != NULL) {
data_string_forget(&enc_opt_data, MDL);
}
if (enc_packet != NULL) {
packet_dereference(&enc_packet, MDL);
}
}
/*
* \brief Forward a DHCPv4-query message to the DHCPv4 side
* (DHCPv6 server function)
*
* Format: interface:16 + address:16 + udp:4 + DHCPv6 DHCPv4-query message
*
* \brief packet the DHCPv6 DHCPv4-query message
*/
static void forw_dhcpv4_query(struct packet *packet) {
struct data_string ds;
struct udp_data4o6 udp_data;
unsigned len;
int cc;
/* Get the initial message. */
while (packet->dhcpv6_container_packet != NULL)
packet = packet->dhcpv6_container_packet;
/* Check the initial message. */
if ((packet->raw == NULL) ||
(packet->client_addr.len != 16) ||
(packet->interface == NULL)) {
log_error("forw_dhcpv4_query: can't find initial message.");
return;
}
/* Get a buffer. */
len = packet->packet_length + 36;
memset(&ds, 0, sizeof(ds));
if (!buffer_allocate(&ds.buffer, len, MDL)) {
log_error("forw_dhcpv4_query: "
"no memory for encapsulating packet.");
return;
}
ds.data = ds.buffer->data;
ds.len = len;
/* Fill the buffer. */
strncpy((char *)ds.buffer->data, packet->interface->name, 16);
memcpy(ds.buffer->data + 16,
packet->client_addr.iabuf, 16);
memset(&udp_data, 0, sizeof(udp_data));
udp_data.src_port = packet->client_port;
memcpy(ds.buffer->data + 32, &udp_data, 4);
memcpy(ds.buffer->data + 36,
(unsigned char *)packet->raw,
packet->packet_length);
/* Forward to the DHCPv4 server. */
cc = send(dhcp4o6_fd, ds.data, ds.len, 0);
if (cc < 0)
log_error("forw_dhcpv4_query: send(): %m");
data_string_forget(&ds, MDL);
}
#endif
static void
dhcpv6_discard(struct packet *packet) {
/* INSIST(packet->msg_type > 0); */
/* INSIST(packet->msg_type < dhcpv6_type_name_max); */
log_debug("Discarding %s from %s; message type not handled by server",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
}
static void
build_dhcpv6_reply(struct data_string *reply, struct packet *packet) {
memset(reply, 0, sizeof(*reply));
/* I would like to classify the client once here, but
* as I don't want to classify all of the incoming packets
* I need to do it before handling specific types.
* We don't need to classify if we are tossing the packet
* or if it is a relay - the classification step will get
* done when we process the inner client packet.
*/
switch (packet->dhcpv6_msg_type) {
case DHCPV6_SOLICIT:
classify_client(packet);
dhcpv6_solicit(reply, packet);
break;
case DHCPV6_ADVERTISE:
dhcpv6_discard(packet);
break;
case DHCPV6_REQUEST:
classify_client(packet);
dhcpv6_request(reply, packet);
break;
case DHCPV6_CONFIRM:
classify_client(packet);
dhcpv6_confirm(reply, packet);
break;
case DHCPV6_RENEW:
classify_client(packet);
dhcpv6_renew(reply, packet);
break;
case DHCPV6_REBIND:
classify_client(packet);
dhcpv6_rebind(reply, packet);
break;
case DHCPV6_REPLY:
dhcpv6_discard(packet);
break;
case DHCPV6_RELEASE:
classify_client(packet);
dhcpv6_release(reply, packet);
break;
case DHCPV6_DECLINE:
classify_client(packet);
dhcpv6_decline(reply, packet);
break;
case DHCPV6_RECONFIGURE:
dhcpv6_discard(packet);
break;
case DHCPV6_INFORMATION_REQUEST:
classify_client(packet);
dhcpv6_information_request(reply, packet);
break;
case DHCPV6_RELAY_FORW:
#ifdef DHCP4o6
if (dhcpv4_over_dhcpv6 && (local_family == AF_INET))
dhcp4o6_relay_forw(reply, packet);
else
#endif /* DHCP4o6 */
dhcpv6_relay_forw(reply, packet);
break;
case DHCPV6_RELAY_REPL:
dhcpv6_discard(packet);
break;
case DHCPV6_LEASEQUERY:
classify_client(packet);
dhcpv6_leasequery(reply, packet);
break;
case DHCPV6_LEASEQUERY_REPLY:
dhcpv6_discard(packet);
break;
case DHCPV6_DHCPV4_QUERY:
#ifdef DHCP4o6
if (dhcpv4_over_dhcpv6) {
if (local_family == AF_INET6) {
forw_dhcpv4_query(packet);
} else {
dhcp4o6_dhcpv4_query(reply, packet);
}
} else
#endif /* DHCP4o6 */
dhcpv6_discard(packet);
break;
case DHCPV6_DHCPV4_RESPONSE:
dhcpv6_discard(packet);
break;
default:
/* XXX: would be nice if we had "notice" level,
as syslog, for this */
log_info("Discarding unknown DHCPv6 message type %d "
"from %s", packet->dhcpv6_msg_type,
piaddr(packet->client_addr));
}
}
static void
log_packet_in(const struct packet *packet) {
struct data_string s;
u_int32_t tid;
char tmp_addr[INET6_ADDRSTRLEN];
const void *addr;
memset(&s, 0, sizeof(s));
if (packet->dhcpv6_msg_type < dhcpv6_type_name_max) {
data_string_sprintfa(&s, "%s message from %s port %d",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr),
ntohs(packet->client_port));
} else {
data_string_sprintfa(&s,
"Unknown message type %d from %s port %d",
packet->dhcpv6_msg_type,
piaddr(packet->client_addr),
ntohs(packet->client_port));
}
if ((packet->dhcpv6_msg_type == DHCPV6_RELAY_FORW) ||
(packet->dhcpv6_msg_type == DHCPV6_RELAY_REPL)) {
addr = &packet->dhcpv6_link_address;
data_string_sprintfa(&s, ", link address %s",
inet_ntop(AF_INET6, addr,
tmp_addr, sizeof(tmp_addr)));
addr = &packet->dhcpv6_peer_address;
data_string_sprintfa(&s, ", peer address %s",
inet_ntop(AF_INET6, addr,
tmp_addr, sizeof(tmp_addr)));
} else if ((packet->dhcpv6_msg_type != DHCPV6_DHCPV4_QUERY) &&
(packet->dhcpv6_msg_type != DHCPV6_DHCPV4_RESPONSE)) {
tid = 0;
memcpy(((char *)&tid)+1, packet->dhcpv6_transaction_id, 3);
data_string_sprintfa(&s, ", transaction ID 0x%06X", tid);
/*
oc = lookup_option(&dhcpv6_universe, packet->options,
D6O_CLIENTID);
if (oc != NULL) {
memset(&tmp_ds, 0, sizeof(tmp_ds_));
if (!evaluate_option_cache(&tmp_ds, packet, NULL, NULL,
packet->options, NULL,
&global_scope, oc, MDL)) {
log_error("Error evaluating Client Identifier");
} else {
data_strint_sprintf(&s, ", client ID %s",
data_string_forget(&tmp_ds, MDL);
}
}
*/
}
log_info("%s", s.data);
data_string_forget(&s, MDL);
}
void
dhcpv6(struct packet *packet) {
struct data_string reply;
struct sockaddr_in6 to_addr;
int send_ret;
/*
* Log a message that we received this packet.
*/
log_packet_in(packet);
/*
* Build our reply packet.
*/
build_dhcpv6_reply(&reply, packet);
if (reply.data != NULL) {
/*
* Send our reply, if we have one.
*/
memset(&to_addr, 0, sizeof(to_addr));
to_addr.sin6_family = AF_INET6;
if ((packet->dhcpv6_msg_type == DHCPV6_RELAY_FORW) ||
(packet->dhcpv6_msg_type == DHCPV6_RELAY_REPL)) {
to_addr.sin6_port = local_port;
} else {
to_addr.sin6_port = remote_port;
}
#if defined (REPLY_TO_SOURCE_PORT)
/*
* This appears to have been included for testing so we would
* not need a root client, but was accidently left in the
* final code. We continue to include it in case
* some users have come to rely upon it, but leave
* it off by default as it's a bad idea.
*/
to_addr.sin6_port = packet->client_port;
#endif
#if defined(RELAY_PORT)
/*
* Check relay source port.
*/
if (packet->relay_source_port) {
to_addr.sin6_port = packet->client_port;
}
#endif
memcpy(&to_addr.sin6_addr, packet->client_addr.iabuf,
sizeof(to_addr.sin6_addr));
log_info("Sending %s to %s port %d",
dhcpv6_type_names[reply.data[0]],
piaddr(packet->client_addr),
ntohs(to_addr.sin6_port));
send_ret = send_packet6(packet->interface,
reply.data, reply.len, &to_addr);
if (send_ret != reply.len) {
log_error("dhcpv6: send_packet6() sent %d of %d bytes",
send_ret, reply.len);
}
data_string_forget(&reply, MDL);
}
}
#ifdef DHCP4o6
/*
* \brief Receive a DHCPv4-query message from the DHCPv6 side
* (DHCPv4 server function)
*
* Receive a message with a DHCPv4-query inside from the DHCPv6 server.
* (code copied from \ref do_packet6() \ref and dhcpv6())
*
* Format: interface:16 + address:16 + udp:4 + DHCPv6 DHCPv4-query message
*
* \param raw the DHCPv6 DHCPv4-query message raw content
*/
static void recv_dhcpv4_query(struct data_string *raw) {
struct interface_info *ip;
char name[16 + 1];
struct iaddr iaddr;
struct packet *packet;
unsigned char msg_type;
const struct dhcpv6_relay_packet *relay;
const struct dhcpv4_over_dhcpv6_packet *msg;
struct data_string reply;
struct data_string ds;
struct udp_data4o6 udp_data;
unsigned len;
int cc;
memset(name, 0, sizeof(name));
memcpy(name, raw->data, 16);
for (ip = interfaces; ip != NULL; ip = ip->next) {
if (!strcmp(name, ip->name))
break;
}
if (ip == NULL) {
log_error("recv_dhcpv4_query: can't find interface %s.",
name);
return;
}
iaddr.len = 16;
memcpy(iaddr.iabuf, raw->data + 16, 16);
memset(&udp_data, 0, sizeof(udp_data));
memcpy(&udp_data, raw->data + 32, 4);
/*
* From do_packet6().
*/
if (!packet6_len_okay((char *)raw->data + 36, raw->len - 36)) {
log_error("recv_dhcpv4_query: "
"short packet from %s, len %d, dropped",
piaddr(iaddr), raw->len - 36);
return;
}
/*
* Build a packet structure.
*/
packet = NULL;
if (!packet_allocate(&packet, MDL)) {
log_error("recv_dhcpv4_query: no memory for packet.");
return;
}
if (!option_state_allocate(&packet->options, MDL)) {
log_error("recv_dhcpv4_query: no memory for options.");
packet_dereference(&packet, MDL);
return;
}
packet->raw = (struct dhcp_packet *)(raw->data + 36);
packet->packet_length = raw->len - 36;
packet->client_port = udp_data.src_port;
packet->client_addr = iaddr;
interface_reference(&packet->interface, ip, MDL);
msg_type = raw->data[36];
if ((msg_type == DHCPV6_RELAY_FORW) ||
(msg_type == DHCPV6_RELAY_REPL)) {
int relaylen =
(int)(offsetof(struct dhcpv6_relay_packet, options));
relay = (const struct dhcpv6_relay_packet *)(raw->data + 36);
packet->dhcpv6_msg_type = relay->msg_type;
/* relay-specific data */
packet->dhcpv6_hop_count = relay->hop_count;
memcpy(&packet->dhcpv6_link_address,
relay->link_address, sizeof(relay->link_address));
memcpy(&packet->dhcpv6_peer_address,
relay->peer_address, sizeof(relay->peer_address));
if (!parse_option_buffer(packet->options,
relay->options,
raw->len - 36 - relaylen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
packet_dereference(&packet, MDL);
return;
}
} else if ((msg_type == DHCPV6_DHCPV4_QUERY) ||
(msg_type == DHCPV6_DHCPV4_RESPONSE)) {
int msglen =
(int)(offsetof(struct dhcpv4_over_dhcpv6_packet, options));
msg = (struct dhcpv4_over_dhcpv6_packet *)(raw->data + 36);
packet->dhcpv6_msg_type = msg->msg_type;
/* message-specific data */
memcpy(packet->dhcp4o6_flags, msg->flags,
sizeof(packet->dhcp4o6_flags));
if (!parse_option_buffer(packet->options,
msg->options,
raw->len - 36 - msglen,
&dhcpv6_universe)) {
/* no logging here, as parse_option_buffer() logs all
cases where it fails */
packet_dereference(&packet, MDL);
return;
}
} else {
log_error("recv_dhcpv4_query: unexpected message of type %d.",
(int)msg_type);
packet_dereference(&packet, MDL);
return;
}
/*
* From dhcpv6().
*/
/*
* Log a message that we received this packet.
*/
/* log_packet_in(packet); */
memset(&ds, 0, sizeof(ds));
if (packet->dhcpv6_msg_type < dhcpv6_type_name_max) {
data_string_sprintfa(&ds, "%s message from %s",
dhcpv6_type_names[packet->dhcpv6_msg_type],
piaddr(packet->client_addr));
} else {
data_string_sprintfa(&ds,
"Unknown message type %d from %s",
packet->dhcpv6_msg_type,
piaddr(packet->client_addr));
}
if ((packet->dhcpv6_msg_type == DHCPV6_RELAY_FORW) ||
(packet->dhcpv6_msg_type == DHCPV6_RELAY_REPL)) {
char tmp_addr[INET6_ADDRSTRLEN];
const void *addr;
addr = &packet->dhcpv6_link_address;
data_string_sprintfa(&ds, ", link address %s",
inet_ntop(AF_INET6, addr,
tmp_addr, sizeof(tmp_addr)));
addr = &packet->dhcpv6_peer_address;
data_string_sprintfa(&ds, ", peer address %s",
inet_ntop(AF_INET6, addr,
tmp_addr, sizeof(tmp_addr)));
} else if ((packet->dhcpv6_msg_type != DHCPV6_DHCPV4_QUERY) &&
(packet->dhcpv6_msg_type != DHCPV6_DHCPV4_RESPONSE)) {
u_int32_t tid = 0;
memcpy(((char *)&tid)+1, packet->dhcpv6_transaction_id, 3);
data_string_sprintfa(&ds, ", transaction ID 0x%06X", tid);
}
log_info("%s", ds.data);
data_string_forget(&ds, MDL);
/*
* Build our reply packet.
*/
build_dhcpv6_reply(&reply, packet);
if (reply.data == NULL) {
packet_dereference(&packet, MDL);
return;
}
/*
* Forward the response.
*/
len = reply.len + 36;
memset(&ds, 0, sizeof(ds));
if (!buffer_allocate(&ds.buffer, len, MDL)) {
log_error("recv_dhcpv4_query: no memory.");
packet_dereference(&packet, MDL);
return;
}
ds.data = ds.buffer->data;
ds.len = len;
memcpy(ds.buffer->data, name, 16);
memcpy(ds.buffer->data + 16, iaddr.iabuf, 16);
udp_data.rsp_opt_exist = packet->relay_source_port ? 1 : 0;
memcpy(ds.buffer->data + 32, &udp_data, 4);
memcpy(ds.buffer->data + 36, reply.data, reply.len);
/*
* Now we can release the packet.
*/
packet_dereference(&packet, MDL);
cc = send(dhcp4o6_fd, ds.data, ds.len, 0);
if (cc < 0)
log_error("recv_dhcpv4_query: send(): %m");
data_string_forget(&ds, MDL);
}
#endif /* DHCP4o6 */
static void
seek_shared_host(struct host_decl **hp, struct shared_network *shared) {
struct host_decl *nofixed = NULL;
struct host_decl *seek, *hold = NULL;
/*
* Seek forward through fixed addresses for the right link.
*
* Note: how to do this for fixed prefixes???
*/
host_reference(&hold, *hp, MDL);
host_dereference(hp, MDL);
seek = hold;
while (seek != NULL) {
if (seek->fixed_addr == NULL)
nofixed = seek;
else if (fixed_matches_shared(seek, shared))
break;
seek = seek->n_ipaddr;
}
if ((seek == NULL) && (nofixed != NULL))
seek = nofixed;
if (seek != NULL)
host_reference(hp, seek, MDL);
}
static isc_boolean_t
fixed_matches_shared(struct host_decl *host, struct shared_network *shared) {
struct subnet *subnet;
struct data_string addr;
isc_boolean_t matched;
struct iaddr fixed;
if (host->fixed_addr == NULL)
return ISC_FALSE;
memset(&addr, 0, sizeof(addr));
if (!evaluate_option_cache(&addr, NULL, NULL, NULL, NULL, NULL,
&global_scope, host->fixed_addr, MDL))
return ISC_FALSE;
if (addr.len < 16) {
data_string_forget(&addr, MDL);
return ISC_FALSE;
}
fixed.len = 16;
memcpy(fixed.iabuf, addr.data, 16);
matched = ISC_FALSE;
for (subnet = shared->subnets ; subnet != NULL ;
subnet = subnet->next_sibling) {
if (addr_eq(subnet_number(fixed, subnet->netmask),
subnet->net)) {
matched = ISC_TRUE;
break;
}
}
data_string_forget(&addr, MDL);
return matched;
}
/*!
*
* \brief Constructs a REPLY with status of UseMulticast to a given packet
*
* Per RFC 3315 Secs 18.2.1,3,6 & 7, when a server rejects a client's
* unicast-sent packet, the response must only contain the client id,
* server id, and a status code option of 5 (UseMulticast). This function
* constructs such a packet and returns it as a data_string.
*
* \param reply_ret = data_string which will receive the newly constructed
* reply
* \param packet = client request which is being rejected
* \param client_id = data_string which contains the client id
* \param server_id = data_string which which contains the server id
*
*/
void
unicast_reject(struct data_string *reply_ret,
struct packet *packet,
const struct data_string *client_id,
const struct data_string *server_id)
{
struct reply_state reply;
memset(&reply, 0x0, sizeof(struct reply_state));
/* Locate the client. */
if (shared_network_from_packet6(&reply.shared, packet)
!= ISC_R_SUCCESS) {
log_error("unicast_reject: could not locate client.");
return;
}
/* Initialize the reply. */
packet_reference(&reply.packet, packet, MDL);
data_string_copy(&reply.client_id, client_id, MDL);
if (start_reply(packet, client_id, server_id, &reply.opt_state,
&reply.buf.reply)) {
/* Set the UseMulticast status code. */
if (!set_status_code(STATUS_UseMulticast,
"Unicast not allowed by server.",
reply.opt_state)) {
log_error("unicast_reject: Unable to set status code.");
} else {
/* Set write cursor to just past the reply header. */
reply.cursor = REPLY_OPTIONS_INDEX;
reply.cursor += store_options6(((char *)reply.buf.data
+ reply.cursor),
(sizeof(reply.buf)
- reply.cursor),
reply.opt_state,
reply.packet,
unicast_reject_opts,
NULL);
/* Return our reply to the caller. */
reply_ret->len = reply.cursor;
reply_ret->buffer = NULL;
if (!buffer_allocate(&reply_ret->buffer,
reply.cursor, MDL)) {
log_fatal("unicast_reject:"
"No memory to store Reply.");
}
memcpy(reply_ret->buffer->data, reply.buf.data,
reply.cursor);
reply_ret->data = reply_ret->buffer->data;
}
}
/* Cleanup. */
if (reply.shared != NULL)
shared_network_dereference(&reply.shared, MDL);
if (reply.opt_state != NULL)
option_state_dereference(&reply.opt_state, MDL);
if (reply.packet != NULL)
packet_dereference(&reply.packet, MDL);
if (reply.client_id.data != NULL)
data_string_forget(&reply.client_id, MDL);
}
/*!
*
* \brief Checks if the dhcp6.unicast option has been defined
*
* Scans the option space for the presence of the dhcp6.unicast option. The
* function attempts to map the inbound packet to a shared network first
* by an ip address specified via an D6O_IA_XX option and if that fails then
* by the packet's source information (e.g. relay link, link, or interace).
* Once the packet is mapped to a shared network, the function executes all
* statements from the network's group outward into a local option cache.
* The option cache is then scanned for the presence of unicast option. If
* the packet cannot be mapped to a shared network, the function returns
* ISC_FALSE.
* \param packet inbound packet from the client
*
* \return ISC_TRUE if the dhcp6.unicast option is defined, false otherwise.
*
*/
isc_boolean_t
is_unicast_option_defined(struct packet *packet) {
isc_boolean_t is_defined = ISC_FALSE;
struct option_state *opt_state = NULL;
struct option_cache *oc = NULL;
struct shared_network *shared = NULL;
if (!option_state_allocate(&opt_state, MDL)) {
log_fatal("is_unicast_option_defined:"
"No memory for option state.");
}
/* We try to map the packet to a network first by an IA_XX value.
* If that fails, we try by packet source. */
if (((shared_network_from_requested_addr(&shared, packet)
!= ISC_R_SUCCESS) &&
(shared_network_from_packet6(&shared, packet) != ISC_R_SUCCESS))
|| (shared == NULL)) {
/* @todo what would this really mean? I think wrong network
* logic will catch it */
log_error("is_unicast_option_defined:"
"cannot attribute packet to a network.");
return (ISC_FALSE);
}
/* Now that we've mapped it to a network, execute statments to that
* scope, looking for the unicast option. We don't care about the
* value of the option, only whether or not it is defined. */
execute_statements_in_scope(NULL, NULL, NULL, NULL, NULL, opt_state,
&global_scope, shared->group, NULL, NULL);
oc = lookup_option(&dhcpv6_universe, opt_state, D6O_UNICAST);
is_defined = (oc != NULL ? ISC_TRUE : ISC_FALSE);
log_debug("is_unicast_option_defined: option found : %d", is_defined);
if (shared != NULL) {
shared_network_dereference(&shared, MDL);
}
if (opt_state != NULL) {
option_state_dereference(&opt_state, MDL);
}
return (is_defined);
}
/*!
*
* \brief Maps a packet to a shared network based on the requested IP address
*
* The function attempts to find a subnet that matches the first requested IP
* address contained within the given packet. Note that it looks first for
* D6O_IA_NAs, then D6O_IA_PDs and lastly D6O_IA_TAs. If a matching network is
* found, a reference to it is returned in the parameter, shared.
*
* \param shared shared_network pointer which will receive the matching network
* \param packet inbound packet from the client
*
* \return ISC_R_SUCCESS if the packet can be mapped to a shared_network.
*
*/
static isc_result_t
shared_network_from_requested_addr (struct shared_network **shared,
struct packet* packet) {
struct iaddr iaddr;
struct subnet* subnet = NULL;
isc_result_t status = ISC_R_FAILURE;
/* Try to match first IA_ address or prefix we find to a subnet. In
* theory all IA_ values in a given request are supposed to be in the
* same subnet so we only need to try one right? */
if ((get_first_ia_addr_val(packet, D6O_IA_NA, &iaddr) != ISC_R_SUCCESS)
&& (get_first_ia_addr_val(packet, D6O_IA_PD, &iaddr)
!= ISC_R_SUCCESS)
&& (get_first_ia_addr_val(packet, D6O_IA_TA, &iaddr)
!= ISC_R_SUCCESS)) {
/* we found nothing to match against */
log_debug("share_network_from_request_addr: nothing to match");
return (ISC_R_FAILURE);
}
if (!find_subnet(&subnet, iaddr, MDL)) {
log_debug("shared_network_from_requested_addr:"
"No subnet found for addr %s.", piaddr(iaddr));
} else {
status = shared_network_reference(shared,
subnet->shared_network, MDL);
subnet_dereference(&subnet, MDL);
log_debug("shared_network_from_requested_addr:"
" found shared network %s for address %s.",
((*shared)->name ? (*shared)->name : "unnamed"),
piaddr(iaddr));
return (status);
}
return (ISC_R_FAILURE);
}
/*!
*
* \brief Retrieves the first IP address from a given packet of a given type
*
* Search a packet for options of a given type (D6O_IA_AN, D6O_IA_PD, or
* D6O_IA_TA) for the first non-blank IA_XX value and return its IP address
* component.
*
* \param packet packet received from the client
* \param addr_type the address option type (D6O_IA_NA , D6O_IA_PD, or
* D6O_IP_TA) to look for within the packet.
* \param iaddr pointer to the iaddr structure which will receive the extracted
* address.
*
* \return ISC_R_SUCCESS if an address was succesfully extracted, ISC_R_FALURE
* otherwise.
*
*/
static isc_result_t
get_first_ia_addr_val (struct packet* packet, int addr_type,
struct iaddr* iaddr) {
struct option_cache *ia;
struct option_cache *oc = NULL;
struct data_string cli_enc_opt_data;
struct option_state *cli_enc_opt_state;
int addr_opt_offset;
int addr_opt;
int addr_opt_data_len;
int ip_addr_offset;
isc_result_t status = ISC_R_FAILURE;
memset(iaddr, 0, sizeof(struct iaddr));
/* Set up address type specifics */
switch (addr_type) {
case D6O_IA_NA:
addr_opt_offset = IA_NA_OFFSET;
addr_opt = D6O_IAADDR;
addr_opt_data_len = 24;
ip_addr_offset = 0;
break;
case D6O_IA_TA:
addr_opt_offset = IA_TA_OFFSET;
addr_opt = D6O_IAADDR;
addr_opt_data_len = 24;
ip_addr_offset = 0;
break;
case D6O_IA_PD:
addr_opt_offset = IA_PD_OFFSET;
addr_opt = D6O_IAPREFIX;
addr_opt_data_len = 25;
ip_addr_offset = 9;
break;
default:
/* shouldn't be here */
log_error ("get_first_ia_addr_val: invalid opt type %d",
addr_type);
return (ISC_R_FAILURE);
}
/* Find the first, non-blank IA_XX value within an D6O_IA_XX option. */
for (ia = lookup_option(&dhcpv6_universe, packet->options, addr_type);
ia != NULL && oc == NULL; ia = ia->next) {
if (!get_encapsulated_IA_state(&cli_enc_opt_state,
&cli_enc_opt_data,
packet, ia, addr_opt_offset)) {
log_debug ("get_first_ia_addr_val:"
" couldn't unroll enclosing option");
return (ISC_R_FAILURE);
}
oc = lookup_option(&dhcpv6_universe, cli_enc_opt_state,
addr_opt);
if (oc == NULL) {
/* no address given for this IA, ignore */
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
}
}
/* If we found a non-blank IA_XX then extract its ip address. */
if (oc != NULL) {
struct data_string iaddr_str;
memset(&iaddr_str, 0, sizeof(iaddr_str));
if (!evaluate_option_cache(&iaddr_str, packet, NULL, NULL,
packet->options, NULL, &global_scope,
oc, MDL)) {
log_error("get_first_ia_addr_val: "
"error evaluating IA_XX option.");
} else {
if (iaddr_str.len != addr_opt_data_len) {
log_error("shared_network_from_requested_addr:"
" invalid length %d, expected %d",
iaddr_str.len, addr_opt_data_len);
} else {
iaddr->len = 16;
memcpy (iaddr->iabuf,
iaddr_str.data + ip_addr_offset, 16);
status = ISC_R_SUCCESS;
}
data_string_forget(&iaddr_str, MDL);
}
option_state_dereference(&cli_enc_opt_state, MDL);
data_string_forget(&cli_enc_opt_data, MDL);
}
return (status);
}
/*
* \brief Calculates the reply T1/T2 times and stuffs them in outbound buffer
*
* T1/T2 time selection is kind of weird. We actually use DHCP * (v4) scoped
* options, dhcp-renewal-time and dhcp-rebinding-time, as handy existing places
* where these can be configured by an administrator. A value of zero tells the
* client it may choose its own value.
*
* When those options are not defined, the values will be set to zero unless
* the global option, dhcpv6-set-tee-times is enabled. When this option is
* enabled the values are calculated as recommended by RFC 3315, Section 22.4:
*
* T1 will be set to 0.5 times the shortest preferred lifetime
* in the IA_XX option. If the "shortest" preferred lifetime is
* 0xFFFFFFFF, T1 will set to 0xFFFFFFFF.
*
* T2 will be set to 0.8 times the shortest preferred lifetime
* in the IA_XX option. If the "shortest" preferred lifetime is
* 0xFFFFFFFF, T2 will set to 0xFFFFFFFF.
*
* Note that dhcpv6-set-tee-times is intended to be transitional and will
* likely be removed in 4.4.0, leaving the behavior as getting the values
* either from the configured parameters (if you want zeros, define them as
* zeros) or by calculating them per the RFC.
*
* \param reply - pointer to the reply_state structure
* \param ia_cursor - offset of the beginning of the IA_XX option within the
* reply's outbound data buffer
*/
static void
set_reply_tee_times(struct reply_state* reply, unsigned ia_cursor)
{
struct option_cache *oc;
int set_tee_times;
/* Found out if calculated values are enabled. */
oc = lookup_option(&server_universe, reply->opt_state,
SV_DHCPV6_SET_TEE_TIMES);
set_tee_times = (oc &&
evaluate_boolean_option_cache(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state,
&global_scope, oc, MDL));
oc = lookup_option(&dhcp_universe, reply->opt_state,
DHO_DHCP_RENEWAL_TIME);
if (oc != NULL) {
/* dhcp-renewal-time is defined, use it */
struct data_string data;
memset(&data, 0x00, sizeof(data));
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, &global_scope,
oc, MDL) ||
(data.len != 4)) {
log_error("Invalid renewal time.");
reply->renew = 0;
} else {
reply->renew = getULong(data.data);
}
if (data.data != NULL)
data_string_forget(&data, MDL);
} else if (set_tee_times) {
/* Setting them is enabled so T1 is either infinite or
* 0.5 * the shortest preferred lifetime in the IA_XX */
if (reply->min_prefer == INFINITE_TIME)
reply->renew = INFINITE_TIME;
else
reply->renew = reply->min_prefer / 2;
} else {
/* Default is to let the client choose */
reply->renew = 0;
}
putULong(reply->buf.data + ia_cursor + 8, reply->renew);
/* Now T2. */
oc = lookup_option(&dhcp_universe, reply->opt_state,
DHO_DHCP_REBINDING_TIME);
if (oc != NULL) {
/* dhcp-rebinding-time is defined, use it */
struct data_string data;
memset(&data, 0x00, sizeof(data));
if (!evaluate_option_cache(&data, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, &global_scope,
oc, MDL) ||
(data.len != 4)) {
log_error("Invalid rebinding time.");
reply->rebind = 0;
} else {
reply->rebind = getULong(data.data);
}
if (data.data != NULL)
data_string_forget(&data, MDL);
} else if (set_tee_times) {
/* Setting them is enabled so T2 is either infinite or
* 0.8 * the shortest preferred lifetime in the reply */
if (reply->min_prefer == INFINITE_TIME)
reply->rebind = INFINITE_TIME;
else
reply->rebind = (reply->min_prefer / 5) * 4;
} else {
/* Default is to let the client choose */
reply->rebind = 0;
}
putULong(reply->buf.data + ia_cursor + 12, reply->rebind);
}
/*
* Releases the iasubopts in the pre-existing IA, if they are not in
* the same shared-network as the new IA.
*
* returns 1 if the release was done, 0 otherwise
*/
int
release_on_roam(struct reply_state* reply) {
struct ia_xx* old_ia = reply->old_ia;
struct iasubopt *lease = NULL;
int i;
if ((!do_release_on_roam) || old_ia == NULL
|| old_ia->num_iasubopt <= 0) {
return(0);
}
/* If the old shared-network and new are the same, client hasn't
* roamed, nothing to do. We only check the first one because you
* cannot have iasubopts on different shared-networks within a
* single ia. */
lease = old_ia->iasubopt[0];
if (lease->ipv6_pool->shared_network == reply->shared) {
return (0);
}
/* Old and new are on different shared networks so the client must
* roamed. Release the old leases. */
for (i = 0; i < old_ia->num_iasubopt; i++) {
lease = old_ia->iasubopt[i];
log_info("Client: %s roamed to new network,"
" releasing lease: %s%s",
print_hex_1(reply->client_id.len,
reply->client_id.data, 60),
pin6_addr(&lease->addr), iasubopt_plen_str(lease));
release_lease6(lease->ipv6_pool, lease);
lease->ia->cltt = cur_time;
write_ia(lease->ia);
}
return (1);
}
/*
* Convenience function which returns a string (static buffer)
* containing either a "/" followed by the prefix length or an
* empty string depending on the lease type
*/
const char *iasubopt_plen_str(struct iasubopt *lease) {
static char prefix_buf[16];
*prefix_buf = 0;
if ((lease->ia) && (lease->ia->ia_type == D6O_IA_PD)) {
sprintf(prefix_buf, "/%-d", lease->plen);
}
return (prefix_buf);
}
#ifdef NSUPDATE
/*
* Initiates DDNS updates for static v6 leases if configured to do so.
*
* The function, which must be called after the IA has been written to the
* packet, adds an iasubopt to the IA for static lease. This is done so we
* have an iasubopt to pass into ddns_updates(). A reference to the IA is
* added to the DDNS control block to ensure it and it's iasubopt remain in
* scope until the update is complete.
*
*/
void ddns_update_static6(struct reply_state* reply) {
struct iasubopt *iasub = NULL;
struct binding_scope *scope = NULL;
struct option_cache *oc = NULL;
oc = lookup_option(&server_universe, reply->opt_state, SV_DDNS_UPDATES);
if ((oc != NULL) &&
(evaluate_boolean_option_cache(NULL, reply->packet, NULL, NULL,
reply->packet->options,
reply->opt_state, NULL,
oc, MDL) == 0)) {
return;
}
oc = lookup_option(&server_universe, reply->opt_state,
SV_UPDATE_STATIC_LEASES);
if ((oc == NULL) ||
(evaluate_boolean_option_cache(NULL, reply->packet,
NULL, NULL,
reply->packet->options,
reply->opt_state, NULL,
oc, MDL) == 0)) {
return;
}
if (iasubopt_allocate(&iasub, MDL) != ISC_R_SUCCESS) {
log_fatal("No memory for iasubopt.");
}
if (ia_add_iasubopt(reply->ia, iasub, MDL) != ISC_R_SUCCESS) {
log_fatal("Could not add iasubopt.");
}
ia_reference(&iasub->ia, reply->ia, MDL);
memcpy(iasub->addr.s6_addr, reply->fixed.data, 16);
iasub->plen = 0;
iasub->prefer = MAX_TIME;
iasub->valid = MAX_TIME;
iasub->static_lease = 1;
if (!binding_scope_allocate(&scope, MDL)) {
log_fatal("Out of memory for binding scope.");
}
binding_scope_reference(&iasub->scope, scope, MDL);
ddns_updates(reply->packet, NULL, NULL, iasub, NULL, reply->opt_state);
}
#endif /* NSUPDATE */
#endif /* DHCPv6 */