mirror of
https://gitlab.isc.org/isc-projects/dhcp
synced 2025-08-22 09:57:20 +00:00
client/dhclient.c relay/dhcrelay.c extern'ed local_port,remote_port common/discover.c init local_port,remote_port to 0 server/mdb.c extern'ed dhcp_type_host server/mdb6.c create_prefix6() - eliminated memcpy string overflow error
3024 lines
83 KiB
C
3024 lines
83 KiB
C
/*
|
|
* Copyright (C) 2007-2017 by Internet Systems Consortium, Inc. ("ISC")
|
|
*
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
|
|
* REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
|
|
* AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
|
|
* INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
|
|
* LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
|
|
* OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
|
|
* PERFORMANCE OF THIS SOFTWARE.
|
|
*/
|
|
|
|
/*!
|
|
* \todo assert()
|
|
* \todo simplify functions, as pool is now in iaaddr
|
|
*/
|
|
|
|
/*! \file server/mdb6.c
|
|
*
|
|
* \page ipv6structures IPv6 Structures Overview
|
|
*
|
|
* A brief description of the IPv6 structures as reverse engineered.
|
|
*
|
|
* There are four major data structures in the lease configuraion.
|
|
*
|
|
* - shared_network - The shared network is the outer enclosing scope for a
|
|
* network region that shares a broadcast domain. It is
|
|
* composed of one or more subnets all of which are valid
|
|
* in the given region. The share network may be
|
|
* explicitly defined or implicitly created if there is
|
|
* only a subnet statement. This structrure is shared
|
|
* with v4. Each shared network statment or naked subnet
|
|
* will map to one of these structures
|
|
*
|
|
* - subnet - The subnet structure mostly specifies the address range
|
|
* that could be valid in a given region. This structute
|
|
* doesn't include the addresses that the server can delegate
|
|
* those are in the ipv6_pool. This structure is also shared
|
|
* with v4. Each subnet statement will map to one of these
|
|
* structures.
|
|
*
|
|
* - ipv6_pond - The pond structure is a grouping of the address and prefix
|
|
* information via the pointers to the ipv6_pool and the
|
|
* allowability of this pool for given clinets via the permit
|
|
* lists and the valid TIMEs. This is equivilent to the v4
|
|
* pool structure and would have been named ip6_pool except
|
|
* that the name was already in use. Generally each pool6
|
|
* statement will map to one of these structures. In addition
|
|
* there may be one or for each group of naked range6 and
|
|
* prefix6 statements within a shared network that share
|
|
* the same group of statements.
|
|
*
|
|
* - ipv6_pool - this contains information about a pool of addresses or prefixes
|
|
* that the server is using. This includes a hash table that
|
|
* tracks the active items and a pair of heap tables one for
|
|
* active items and one for non-active items. The heap tables
|
|
* are used to determine the next items to be modified due to
|
|
* timing events (expire mostly).
|
|
*
|
|
* The linkages then look like this:
|
|
* \verbatim
|
|
*+--------------+ +-------------+
|
|
*|Shared Network| | ipv6_pond |
|
|
*| group | | group |
|
|
*| | | permit info |
|
|
*| | | next ---->
|
|
*| ponds ---->| |
|
|
*| |<---- shared |
|
|
*| Subnets | | pools |
|
|
*+-----|--------+ +------|------+
|
|
* | ^ | ^
|
|
* | | v |
|
|
* | | +-----------|-+
|
|
* | | | ipv6_pool | |
|
|
* | | | type | |
|
|
* | | | ipv6_pond |
|
|
* | | | |
|
|
* | | | next ---->
|
|
* | | | |
|
|
* | | | subnet |
|
|
* | | +-----|-------+
|
|
* | | |
|
|
* | | v
|
|
* | | +-------------+
|
|
* | | | subnet |
|
|
* | +---------- shared |
|
|
* +----------->| |
|
|
* | group |
|
|
* +-------------+
|
|
*
|
|
* The shared network contains a list of all the subnets that are on a broadcast
|
|
* doamin. These can be used to determine if an address makes sense in a given
|
|
* domain, but the subnets do not contain the addresses the server can delegate.
|
|
* Those are stored in the ponds and pools.
|
|
*
|
|
* In the simple case to find an acceptable address the server would first find
|
|
* the shared network the client is on based on either the interface used to
|
|
* receive the request or the relay agent's information. From the shared
|
|
* network the server will walk through it's list of ponds. For each pond it
|
|
* will evaluate the permit information against the (already done) classification.
|
|
* If it finds an acceptable pond it will then walk through the pools for that
|
|
* pond. The server first checks the type of the pool (NA, TA and PD) agaisnt the
|
|
* request and if they match it attemps to find an address within that pool. On
|
|
* success the address is used, on failure the server steps to the next pool and
|
|
* if necessary to the next pond.
|
|
*
|
|
* When the server is successful in finding an address it will execute any
|
|
* statements assocaited with the pond, then the subnet, then the shared
|
|
* network the group field is for in the above picture).
|
|
*
|
|
* In configurations that don't include either a shared network or a pool6
|
|
* statement (or both) the missing pieces are created.
|
|
*
|
|
*
|
|
* There are three major data structuress involved in the lease database:
|
|
*
|
|
* - ipv6_pool - see above
|
|
* - ia_xx - this contains information about a single IA from a request
|
|
* normally it will contain one pointer to a lease for the client
|
|
* but it may contain more in some circumstances. There are 3
|
|
* hash tables to aid in accessing these one each for NA, TA and PD.
|
|
* - iasubopt - the v6 lease structure. These are created dynamically when
|
|
* a client asks for something and will eventually be destroyed
|
|
* if the client doesn't re-ask for that item. A lease has space
|
|
* for backpointers to the IA and to the pool to which it belongs.
|
|
* The pool backpointer is always filled, the IA pointer may not be.
|
|
*
|
|
* In normal use we then have something like this:
|
|
*
|
|
* \verbatim
|
|
* ia hash tables
|
|
* ia_na_active +----------------+
|
|
* ia_ta_active +------------+ | pool |
|
|
* ia_pd_active | iasubopt |<--| active hash |
|
|
* +-----------------+ | aka lease |<--| active heap |
|
|
* | ia_xx | | pool ptr |-->| |
|
|
* | iasubopt array |<---| iaptr |<--| inactive heap |
|
|
* | lease ptr |--->| | | |
|
|
* +-----------------+ +------------+ +----------------+
|
|
* \endverbatim
|
|
*
|
|
* For the pool either the inactive heap will have a pointer
|
|
* or both the active heap and the active hash will have pointers.
|
|
*
|
|
* I think there are several major items to notice. The first is
|
|
* that as a lease moves around it will be added to and removed
|
|
* from the address hash table in the pool and between the active
|
|
* and inactive hash tables. The hash table and the active heap
|
|
* are used when the lease is either active or abandoned. The
|
|
* inactive heap is used for all other states. In particular a
|
|
* lease that has expired or been released will be cleaned
|
|
* (DDNS removal etc) and then moved to the inactive heap. After
|
|
* some time period (currently 1 hour) it will be freed.
|
|
*
|
|
* The second is that when a client requests specific addresses,
|
|
* either because it previously owned them or if the server supplied
|
|
* them as part of a solicit, the server will try to lookup the ia_xx
|
|
* associated with the client and find the addresses there. If it
|
|
* does find appropriate leases it moves them from the old IA to
|
|
* a new IA and eventually replaces the old IA with the new IA
|
|
* in the IA hash tables.
|
|
*
|
|
*/
|
|
#include "config.h"
|
|
|
|
#include <sys/types.h>
|
|
#include <time.h>
|
|
#include <netinet/in.h>
|
|
|
|
#include <stdarg.h>
|
|
#include "dhcpd.h"
|
|
#include "omapip/omapip.h"
|
|
#include "omapip/hash.h"
|
|
#include <isc/md5.h>
|
|
|
|
HASH_FUNCTIONS(ia, unsigned char *, struct ia_xx, ia_hash_t,
|
|
ia_reference, ia_dereference, do_string_hash)
|
|
|
|
ia_hash_t *ia_na_active;
|
|
ia_hash_t *ia_ta_active;
|
|
ia_hash_t *ia_pd_active;
|
|
|
|
HASH_FUNCTIONS(iasubopt, struct in6_addr *, struct iasubopt, iasubopt_hash_t,
|
|
iasubopt_reference, iasubopt_dereference, do_string_hash)
|
|
|
|
struct ipv6_pool **pools;
|
|
int num_pools;
|
|
|
|
/*
|
|
* Create a new IAADDR/PREFIX structure.
|
|
*
|
|
* - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
|
|
* initialized to NULL
|
|
*/
|
|
isc_result_t
|
|
iasubopt_allocate(struct iasubopt **iasubopt, const char *file, int line) {
|
|
struct iasubopt *tmp;
|
|
|
|
if (iasubopt == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*iasubopt != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = dmalloc(sizeof(*tmp), file, line);
|
|
if (tmp == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
tmp->refcnt = 1;
|
|
tmp->state = FTS_FREE;
|
|
tmp->active_index = 0;
|
|
tmp->inactive_index = 0;
|
|
tmp->plen = 255;
|
|
|
|
*iasubopt = tmp;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Reference an IAADDR/PREFIX structure.
|
|
*
|
|
* - iasubopt must be a pointer to a (struct iasubopt *) pointer previously
|
|
* initialized to NULL
|
|
*/
|
|
isc_result_t
|
|
iasubopt_reference(struct iasubopt **iasubopt, struct iasubopt *src,
|
|
const char *file, int line) {
|
|
if (iasubopt == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*iasubopt != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (src == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
*iasubopt = src;
|
|
src->refcnt++;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Dereference an IAADDR/PREFIX structure.
|
|
*
|
|
* If it is the last reference, then the memory for the
|
|
* structure is freed.
|
|
*/
|
|
isc_result_t
|
|
iasubopt_dereference(struct iasubopt **iasubopt, const char *file, int line) {
|
|
struct iasubopt *tmp;
|
|
|
|
if ((iasubopt == NULL) || (*iasubopt == NULL)) {
|
|
log_error("%s(%d): NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = *iasubopt;
|
|
*iasubopt = NULL;
|
|
|
|
tmp->refcnt--;
|
|
if (tmp->refcnt < 0) {
|
|
log_error("%s(%d): negative refcnt", file, line);
|
|
tmp->refcnt = 0;
|
|
}
|
|
if (tmp->refcnt == 0) {
|
|
if (tmp->ia != NULL) {
|
|
ia_dereference(&(tmp->ia), file, line);
|
|
}
|
|
if (tmp->ipv6_pool != NULL) {
|
|
ipv6_pool_dereference(&(tmp->ipv6_pool), file, line);
|
|
}
|
|
if (tmp->scope != NULL) {
|
|
binding_scope_dereference(&tmp->scope, file, line);
|
|
}
|
|
|
|
if (tmp->on_star.on_expiry != NULL) {
|
|
executable_statement_dereference
|
|
(&tmp->on_star.on_expiry, MDL);
|
|
}
|
|
if (tmp->on_star.on_commit != NULL) {
|
|
executable_statement_dereference
|
|
(&tmp->on_star.on_commit, MDL);
|
|
}
|
|
if (tmp->on_star.on_release != NULL) {
|
|
executable_statement_dereference
|
|
(&tmp->on_star.on_release, MDL);
|
|
}
|
|
|
|
dfree(tmp, file, line);
|
|
}
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Make the key that we use for IA.
|
|
*/
|
|
isc_result_t
|
|
ia_make_key(struct data_string *key, u_int32_t iaid,
|
|
const char *duid, unsigned int duid_len,
|
|
const char *file, int line) {
|
|
|
|
memset(key, 0, sizeof(*key));
|
|
key->len = duid_len + sizeof(iaid);
|
|
if (!buffer_allocate(&(key->buffer), key->len, file, line)) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
key->data = key->buffer->data;
|
|
memcpy((char *)key->data, &iaid, sizeof(iaid));
|
|
memcpy((char *)key->data + sizeof(iaid), duid, duid_len);
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Create a new IA structure.
|
|
*
|
|
* - ia must be a pointer to a (struct ia_xx *) pointer previously
|
|
* initialized to NULL
|
|
* - iaid and duid are values from the client
|
|
*
|
|
* XXXsk: we don't concern ourself with the byte order of the IAID,
|
|
* which might be a problem if we transfer this structure
|
|
* between machines of different byte order
|
|
*/
|
|
isc_result_t
|
|
ia_allocate(struct ia_xx **ia, u_int32_t iaid,
|
|
const char *duid, unsigned int duid_len,
|
|
const char *file, int line) {
|
|
struct ia_xx *tmp;
|
|
|
|
if (ia == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*ia != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = dmalloc(sizeof(*tmp), file, line);
|
|
if (tmp == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
if (ia_make_key(&tmp->iaid_duid, iaid,
|
|
duid, duid_len, file, line) != ISC_R_SUCCESS) {
|
|
dfree(tmp, file, line);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
tmp->refcnt = 1;
|
|
|
|
*ia = tmp;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Reference an IA structure.
|
|
*
|
|
* - ia must be a pointer to a (struct ia_xx *) pointer previously
|
|
* initialized to NULL
|
|
*/
|
|
isc_result_t
|
|
ia_reference(struct ia_xx **ia, struct ia_xx *src,
|
|
const char *file, int line) {
|
|
if (ia == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*ia != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (src == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
*ia = src;
|
|
src->refcnt++;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Dereference an IA structure.
|
|
*
|
|
* If it is the last reference, then the memory for the
|
|
* structure is freed.
|
|
*/
|
|
isc_result_t
|
|
ia_dereference(struct ia_xx **ia, const char *file, int line) {
|
|
struct ia_xx *tmp;
|
|
int i;
|
|
|
|
if ((ia == NULL) || (*ia == NULL)) {
|
|
log_error("%s(%d): NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = *ia;
|
|
*ia = NULL;
|
|
|
|
tmp->refcnt--;
|
|
if (tmp->refcnt < 0) {
|
|
log_error("%s(%d): negative refcnt", file, line);
|
|
tmp->refcnt = 0;
|
|
}
|
|
if (tmp->refcnt == 0) {
|
|
if (tmp->iasubopt != NULL) {
|
|
for (i=0; i<tmp->num_iasubopt; i++) {
|
|
iasubopt_dereference(&(tmp->iasubopt[i]),
|
|
file, line);
|
|
}
|
|
dfree(tmp->iasubopt, file, line);
|
|
}
|
|
data_string_forget(&(tmp->iaid_duid), file, line);
|
|
dfree(tmp, file, line);
|
|
}
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* Add an IAADDR/PREFIX entry to an IA structure.
|
|
*/
|
|
isc_result_t
|
|
ia_add_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
|
|
const char *file, int line) {
|
|
int max;
|
|
struct iasubopt **new;
|
|
|
|
/*
|
|
* Grow our array if we need to.
|
|
*
|
|
* Note: we pick 4 as the increment, as that seems a reasonable
|
|
* guess as to how many addresses/prefixes we might expect
|
|
* on an interface.
|
|
*/
|
|
if (ia->max_iasubopt <= ia->num_iasubopt) {
|
|
max = ia->max_iasubopt + 4;
|
|
new = dmalloc(max * sizeof(struct iasubopt *), file, line);
|
|
if (new == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
memcpy(new, ia->iasubopt,
|
|
ia->num_iasubopt * sizeof(struct iasubopt *));
|
|
ia->iasubopt = new;
|
|
ia->max_iasubopt = max;
|
|
}
|
|
|
|
iasubopt_reference(&(ia->iasubopt[ia->num_iasubopt]), iasubopt,
|
|
file, line);
|
|
ia->num_iasubopt++;
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Remove an IAADDR/PREFIX entry to an IA structure.
|
|
*
|
|
* Note: if a suboption appears more than once, then only ONE will be removed.
|
|
*/
|
|
void
|
|
ia_remove_iasubopt(struct ia_xx *ia, struct iasubopt *iasubopt,
|
|
const char *file, int line) {
|
|
int i, j;
|
|
if (ia == NULL || iasubopt == NULL)
|
|
return;
|
|
|
|
for (i=0; i<ia->num_iasubopt; i++) {
|
|
if (ia->iasubopt[i] == iasubopt) {
|
|
/* remove this sub option */
|
|
iasubopt_dereference(&(ia->iasubopt[i]), file, line);
|
|
/* move remaining suboption pointers down one */
|
|
for (j=i+1; j < ia->num_iasubopt; j++) {
|
|
ia->iasubopt[j-1] = ia->iasubopt[j];
|
|
}
|
|
/* decrease our total count */
|
|
/* remove the back-reference in the suboption itself */
|
|
ia_dereference(&iasubopt->ia, file, line);
|
|
ia->num_iasubopt--;
|
|
return;
|
|
}
|
|
}
|
|
log_error("%s(%d): IAADDR/PREFIX not in IA", file, line);
|
|
}
|
|
|
|
/*
|
|
* Remove all addresses/prefixes from an IA.
|
|
*/
|
|
void
|
|
ia_remove_all_lease(struct ia_xx *ia, const char *file, int line) {
|
|
int i;
|
|
|
|
for (i=0; i<ia->num_iasubopt; i++) {
|
|
ia_dereference(&(ia->iasubopt[i]->ia), file, line);
|
|
iasubopt_dereference(&(ia->iasubopt[i]), file, line);
|
|
}
|
|
ia->num_iasubopt = 0;
|
|
}
|
|
|
|
/*
|
|
* Compare two IA.
|
|
*/
|
|
isc_boolean_t
|
|
ia_equal(const struct ia_xx *a, const struct ia_xx *b)
|
|
{
|
|
isc_boolean_t found;
|
|
int i, j;
|
|
|
|
/*
|
|
* Handle cases where one or both of the inputs is NULL.
|
|
*/
|
|
if (a == NULL) {
|
|
if (b == NULL) {
|
|
return ISC_TRUE;
|
|
} else {
|
|
return ISC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check the type is the same.
|
|
*/
|
|
if (a->ia_type != b->ia_type) {
|
|
return ISC_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Check the DUID is the same.
|
|
*/
|
|
if (a->iaid_duid.len != b->iaid_duid.len) {
|
|
return ISC_FALSE;
|
|
}
|
|
if (memcmp(a->iaid_duid.data,
|
|
b->iaid_duid.data, a->iaid_duid.len) != 0) {
|
|
return ISC_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Make sure we have the same number of addresses/prefixes in each.
|
|
*/
|
|
if (a->num_iasubopt != b->num_iasubopt) {
|
|
return ISC_FALSE;
|
|
}
|
|
|
|
/*
|
|
* Check that each address/prefix is present in both.
|
|
*/
|
|
for (i=0; i<a->num_iasubopt; i++) {
|
|
found = ISC_FALSE;
|
|
for (j=0; j<a->num_iasubopt; j++) {
|
|
if (a->iasubopt[i]->plen != b->iasubopt[i]->plen)
|
|
continue;
|
|
if (memcmp(&(a->iasubopt[i]->addr),
|
|
&(b->iasubopt[j]->addr),
|
|
sizeof(struct in6_addr)) == 0) {
|
|
found = ISC_TRUE;
|
|
break;
|
|
}
|
|
}
|
|
if (!found) {
|
|
return ISC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* These are the same in every way we care about.
|
|
*/
|
|
return ISC_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Helper function for lease heaps.
|
|
* Makes the top of the heap the oldest lease.
|
|
*/
|
|
static isc_boolean_t
|
|
lease_older(void *a, void *b) {
|
|
struct iasubopt *la = (struct iasubopt *)a;
|
|
struct iasubopt *lb = (struct iasubopt *)b;
|
|
|
|
if (la->hard_lifetime_end_time == lb->hard_lifetime_end_time) {
|
|
return difftime(la->soft_lifetime_end_time,
|
|
lb->soft_lifetime_end_time) < 0;
|
|
} else {
|
|
return difftime(la->hard_lifetime_end_time,
|
|
lb->hard_lifetime_end_time) < 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Helper functions for lease address/prefix heaps.
|
|
* Callback when an address's position in the heap changes.
|
|
*/
|
|
static void
|
|
active_changed(void *iasubopt, unsigned int new_heap_index) {
|
|
((struct iasubopt *)iasubopt)->active_index = new_heap_index;
|
|
}
|
|
|
|
static void
|
|
inactive_changed(void *iasubopt, unsigned int new_heap_index) {
|
|
((struct iasubopt *)iasubopt)->inactive_index = new_heap_index;
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief Create a new IPv6 lease pool structure
|
|
*
|
|
* Allocate space for a new ipv6_pool structure and return a reference
|
|
* to it, includes setting the reference count to 1.
|
|
*
|
|
* \param pool = space for returning a referenced pointer to the pool.
|
|
* This must point to a space that has been initialzied
|
|
* to NULL by the caller.
|
|
* \param[in] type = The type of the pool NA, TA or PD
|
|
* \param[in] start_addr = The first address in the range for the pool
|
|
* \param[in] bits = The contiguous bits of the pool
|
|
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pool was successfully created, pool points to it.
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
|
|
* modified
|
|
* ISC_R_NOMEMORY = The system wasn't able to allocate memory, pool has
|
|
* not been modified.
|
|
*/
|
|
isc_result_t
|
|
ipv6_pool_allocate(struct ipv6_pool **pool, u_int16_t type,
|
|
const struct in6_addr *start_addr, int bits,
|
|
int units, const char *file, int line) {
|
|
struct ipv6_pool *tmp;
|
|
|
|
if (pool == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*pool != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = dmalloc(sizeof(*tmp), file, line);
|
|
if (tmp == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
tmp->refcnt = 1;
|
|
tmp->pool_type = type;
|
|
tmp->start_addr = *start_addr;
|
|
tmp->bits = bits;
|
|
tmp->units = units;
|
|
if (!iasubopt_new_hash(&tmp->leases, DEFAULT_HASH_SIZE, file, line)) {
|
|
dfree(tmp, file, line);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
if (isc_heap_create(dhcp_gbl_ctx.mctx, lease_older, active_changed,
|
|
0, &(tmp->active_timeouts)) != ISC_R_SUCCESS) {
|
|
iasubopt_free_hash_table(&(tmp->leases), file, line);
|
|
dfree(tmp, file, line);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
if (isc_heap_create(dhcp_gbl_ctx.mctx, lease_older, inactive_changed,
|
|
0, &(tmp->inactive_timeouts)) != ISC_R_SUCCESS) {
|
|
isc_heap_destroy(&(tmp->active_timeouts));
|
|
iasubopt_free_hash_table(&(tmp->leases), file, line);
|
|
dfree(tmp, file, line);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
*pool = tmp;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief reference an IPv6 pool structure.
|
|
*
|
|
* This function genreates a reference to an ipv6_pool structure
|
|
* and increments the reference count on the structure.
|
|
*
|
|
* \param[out] pool = space for returning a referenced pointer to the pool.
|
|
* This must point to a space that has been initialzied
|
|
* to NULL by the caller.
|
|
* \param[in] src = A pointer to the pool to reference. This must not be
|
|
* NULL.
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pool was successfully referenced, pool now points
|
|
* to src.
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
|
|
* modified.
|
|
*/
|
|
isc_result_t
|
|
ipv6_pool_reference(struct ipv6_pool **pool, struct ipv6_pool *src,
|
|
const char *file, int line) {
|
|
if (pool == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*pool != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (src == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
*pool = src;
|
|
src->refcnt++;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Note: Each IAADDR/PREFIX in a pool is referenced by the pool. This is needed
|
|
* to prevent the lease from being garbage collected out from under the
|
|
* pool.
|
|
*
|
|
* The references are made from the hash and from the heap. The following
|
|
* helper functions dereference these when a pool is destroyed.
|
|
*/
|
|
|
|
/*
|
|
* Helper function for pool cleanup.
|
|
* Dereference each of the hash entries in a pool.
|
|
*/
|
|
static isc_result_t
|
|
dereference_hash_entry(const void *name, unsigned len, void *value) {
|
|
struct iasubopt *iasubopt = (struct iasubopt *)value;
|
|
|
|
iasubopt_dereference(&iasubopt, MDL);
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Helper function for pool cleanup.
|
|
* Dereference each of the heap entries in a pool.
|
|
*/
|
|
static void
|
|
dereference_heap_entry(void *value, void *dummy) {
|
|
struct iasubopt *iasubopt = (struct iasubopt *)value;
|
|
|
|
iasubopt_dereference(&iasubopt, MDL);
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief de-reference an IPv6 pool structure.
|
|
*
|
|
* This function decrements the reference count in an ipv6_pool structure.
|
|
* If this was the last reference then the memory for the structure is
|
|
* freed.
|
|
*
|
|
* \param[in] pool = A pointer to the pointer to the pool that should be
|
|
* de-referenced. On success the pointer to the pool
|
|
* is cleared. It must not be NULL and must not point
|
|
* to NULL.
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pool was successfully de-referenced, pool now points
|
|
* to NULL
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pool has not been
|
|
* modified.
|
|
*/
|
|
isc_result_t
|
|
ipv6_pool_dereference(struct ipv6_pool **pool, const char *file, int line) {
|
|
struct ipv6_pool *tmp;
|
|
|
|
if ((pool == NULL) || (*pool == NULL)) {
|
|
log_error("%s(%d): NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = *pool;
|
|
*pool = NULL;
|
|
|
|
tmp->refcnt--;
|
|
if (tmp->refcnt < 0) {
|
|
log_error("%s(%d): negative refcnt", file, line);
|
|
tmp->refcnt = 0;
|
|
}
|
|
if (tmp->refcnt == 0) {
|
|
iasubopt_hash_foreach(tmp->leases, dereference_hash_entry);
|
|
iasubopt_free_hash_table(&(tmp->leases), file, line);
|
|
isc_heap_foreach(tmp->active_timeouts,
|
|
dereference_heap_entry, NULL);
|
|
isc_heap_destroy(&(tmp->active_timeouts));
|
|
isc_heap_foreach(tmp->inactive_timeouts,
|
|
dereference_heap_entry, NULL);
|
|
isc_heap_destroy(&(tmp->inactive_timeouts));
|
|
dfree(tmp, file, line);
|
|
}
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Create an address by hashing the input, and using that for
|
|
* the non-network part.
|
|
*/
|
|
static void
|
|
build_address6(struct in6_addr *addr,
|
|
const struct in6_addr *net_start_addr, int net_bits,
|
|
const struct data_string *input) {
|
|
isc_md5_t ctx;
|
|
int net_bytes;
|
|
int i;
|
|
char *str;
|
|
const char *net_str;
|
|
|
|
/*
|
|
* Use MD5 to get a nice 128 bit hash of the input.
|
|
* Yes, we know MD5 isn't cryptographically sound.
|
|
* No, we don't care.
|
|
*/
|
|
isc_md5_init(&ctx);
|
|
isc_md5_update(&ctx, input->data, input->len);
|
|
isc_md5_final(&ctx, (unsigned char *)addr);
|
|
|
|
/*
|
|
* Copy the [0..128] network bits over.
|
|
*/
|
|
str = (char *)addr;
|
|
net_str = (const char *)net_start_addr;
|
|
net_bytes = net_bits / 8;
|
|
for (i = 0; i < net_bytes; i++) {
|
|
str[i] = net_str[i];
|
|
}
|
|
switch (net_bits % 8) {
|
|
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
|
|
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
|
|
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
|
|
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
|
|
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
|
|
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
|
|
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
|
|
}
|
|
|
|
/*
|
|
* Set the universal/local bit ("u bit") to zero for /64s. The
|
|
* individual/group bit ("g bit") is unchanged, because the g-bit
|
|
* has no meaning when the u-bit is cleared.
|
|
*/
|
|
if (net_bits == 64)
|
|
str[8] &= ~0x02;
|
|
}
|
|
|
|
#ifdef EUI_64
|
|
int
|
|
valid_eui_64_duid(const struct data_string* uid, int offset) {
|
|
if (uid->len == (offset + EUI_64_ID_LEN)) {
|
|
const unsigned char* duid = uid->data + offset;
|
|
return (((duid[0] == 0x00 && duid[1] == 0x03) &&
|
|
(duid[2] == 0x00 && duid[3] == 0x1b)));
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
|
|
/*
|
|
* Create an EUI-64 address
|
|
*/
|
|
static isc_result_t
|
|
build_address6_eui_64(struct in6_addr *addr,
|
|
const struct in6_addr *net_start_addr, int net_bits,
|
|
const struct data_string *iaid_duid, int duid_beg) {
|
|
|
|
if (net_bits != 64) {
|
|
log_error("build_address_eui_64: network is not 64 bits");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
if (valid_eui_64_duid(iaid_duid, duid_beg)) {
|
|
const unsigned char *duid = iaid_duid->data + duid_beg;
|
|
|
|
/* copy network prefix to the high 64 bits */
|
|
memcpy(addr->s6_addr, net_start_addr->s6_addr, 8);
|
|
|
|
/* copy Link-layer address to low 64 bits */
|
|
memcpy(addr->s6_addr + 8, duid + 4, 8);
|
|
|
|
/* RFC-3315 Any address assigned by a server that is based
|
|
* on an EUI-64 identifier MUST include an interface identifier
|
|
* with the "u" (universal/local) and "g" (individual/group)
|
|
* bits of the interface identifier set appropriately, as
|
|
* indicated in section 2.5.1 of RFC 2373 [5]. */
|
|
addr->s6_addr[8] |= 0x02;
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
log_error("build_address_eui_64: iaid_duid not a valid EUI-64: %s",
|
|
print_hex_1(iaid_duid->len, iaid_duid->data, 60));
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
int
|
|
valid_for_eui_64_pool(struct ipv6_pool* pool, struct data_string* uid,
|
|
int duid_beg, struct in6_addr* ia_addr) {
|
|
struct in6_addr test_addr;
|
|
/* If it's not an EUI-64 pool bail */
|
|
if (!pool->ipv6_pond->use_eui_64) {
|
|
return (0);
|
|
}
|
|
|
|
if (!valid_eui_64_duid(uid, duid_beg)) {
|
|
/* Dynamic lease in a now eui_64 pond, toss it*/
|
|
return (0);
|
|
}
|
|
|
|
/* Call build_address6_eui_64() and compare it's result to
|
|
* this lease and see if they match. */
|
|
memset (&test_addr, 0, sizeof(test_addr));
|
|
build_address6_eui_64(&test_addr, &pool->start_addr, pool->bits,
|
|
uid, duid_beg);
|
|
|
|
return (!memcmp(ia_addr, &test_addr, sizeof(test_addr)));
|
|
}
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Create a temporary address by a variant of RFC 4941 algo.
|
|
* Note: this should not be used for prefixes shorter than 64 bits.
|
|
*/
|
|
static void
|
|
build_temporary6(struct in6_addr *addr,
|
|
const struct in6_addr *net_start_addr, int net_bits,
|
|
const struct data_string *input) {
|
|
static u_int32_t history[2];
|
|
static u_int32_t counter = 0;
|
|
isc_md5_t ctx;
|
|
unsigned char md[16];
|
|
|
|
/*
|
|
* First time/time to reseed.
|
|
* Please use a good pseudo-random generator here!
|
|
*/
|
|
if (counter == 0) {
|
|
isc_random_get(&history[0]);
|
|
isc_random_get(&history[1]);
|
|
}
|
|
|
|
/*
|
|
* Use MD5 as recommended by RFC 4941.
|
|
*/
|
|
isc_md5_init(&ctx);
|
|
isc_md5_update(&ctx, (unsigned char *)&history[0], 8UL);
|
|
isc_md5_update(&ctx, input->data, input->len);
|
|
isc_md5_final(&ctx, md);
|
|
|
|
/*
|
|
* Build the address.
|
|
*/
|
|
if (net_bits == 64) {
|
|
memcpy(&addr->s6_addr[0], &net_start_addr->s6_addr[0], 8);
|
|
memcpy(&addr->s6_addr[8], md, 8);
|
|
addr->s6_addr[8] &= ~0x02;
|
|
} else {
|
|
int net_bytes;
|
|
int i;
|
|
char *str;
|
|
const char *net_str;
|
|
|
|
/*
|
|
* Copy the [0..128] network bits over.
|
|
*/
|
|
str = (char *)addr;
|
|
net_str = (const char *)net_start_addr;
|
|
net_bytes = net_bits / 8;
|
|
for (i = 0; i < net_bytes; i++) {
|
|
str[i] = net_str[i];
|
|
}
|
|
memcpy(str + net_bytes, md, 16 - net_bytes);
|
|
switch (net_bits % 8) {
|
|
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
|
|
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
|
|
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
|
|
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
|
|
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
|
|
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
|
|
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Save history for the next call.
|
|
*/
|
|
memcpy((unsigned char *)&history[0], md + 8, 8);
|
|
counter++;
|
|
}
|
|
|
|
/* Reserved Subnet Router Anycast ::0:0:0:0. */
|
|
static struct in6_addr rtany;
|
|
/* Reserved Subnet Anycasts ::fdff:ffff:ffff:ff80-::fdff:ffff:ffff:ffff. */
|
|
static struct in6_addr resany;
|
|
|
|
/*
|
|
* Create a lease for the given address and client duid.
|
|
*
|
|
* - pool must be a pointer to a (struct ipv6_pool *) pointer previously
|
|
* initialized to NULL
|
|
*
|
|
* Right now we simply hash the DUID, and if we get a collision, we hash
|
|
* again until we find a free address. We try this a fixed number of times,
|
|
* to avoid getting stuck in a loop (this is important on small pools
|
|
* where we can run out of space).
|
|
*
|
|
* We return the number of attempts that it took to find an available
|
|
* lease. This tells callers when a pool is are filling up, as
|
|
* well as an indication of how full the pool is; statistically the
|
|
* more full a pool is the more attempts must be made before finding
|
|
* a free lease. Realistically this will only happen in very full
|
|
* pools.
|
|
*
|
|
* We probably want different algorithms depending on the network size, in
|
|
* the long term.
|
|
*/
|
|
isc_result_t
|
|
create_lease6(struct ipv6_pool *pool, struct iasubopt **addr,
|
|
unsigned int *attempts,
|
|
const struct data_string *uid, time_t soft_lifetime_end_time) {
|
|
struct data_string ds;
|
|
struct in6_addr tmp;
|
|
struct iasubopt *test_iaaddr;
|
|
struct data_string new_ds;
|
|
struct iasubopt *iaaddr;
|
|
isc_result_t result;
|
|
isc_boolean_t reserved_iid;
|
|
static isc_boolean_t init_resiid = ISC_FALSE;
|
|
|
|
/*
|
|
* Fill the reserved IIDs.
|
|
*/
|
|
if (!init_resiid) {
|
|
memset(&rtany, 0, 16);
|
|
memset(&resany, 0, 8);
|
|
resany.s6_addr[8] = 0xfd;
|
|
memset(&resany.s6_addr[9], 0xff, 6);
|
|
init_resiid = ISC_TRUE;
|
|
}
|
|
|
|
/*
|
|
* Use the UID as our initial seed for the hash
|
|
*/
|
|
memset(&ds, 0, sizeof(ds));
|
|
data_string_copy(&ds, (struct data_string *)uid, MDL);
|
|
|
|
*attempts = 0;
|
|
for (;;) {
|
|
/*
|
|
* Give up at some point.
|
|
*/
|
|
if (++(*attempts) > 100) {
|
|
data_string_forget(&ds, MDL);
|
|
return ISC_R_NORESOURCES;
|
|
}
|
|
|
|
/*
|
|
* Build a resource.
|
|
*/
|
|
switch (pool->pool_type) {
|
|
case D6O_IA_NA:
|
|
/* address */
|
|
build_address6(&tmp, &pool->start_addr,
|
|
pool->bits, &ds);
|
|
break;
|
|
case D6O_IA_TA:
|
|
/* temporary address */
|
|
build_temporary6(&tmp, &pool->start_addr,
|
|
pool->bits, &ds);
|
|
break;
|
|
case D6O_IA_PD:
|
|
/* prefix */
|
|
log_error("create_lease6: prefix pool.");
|
|
data_string_forget(&ds, MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
default:
|
|
log_error("create_lease6: untyped pool.");
|
|
data_string_forget(&ds, MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
/*
|
|
* Avoid reserved interface IDs. (cf. RFC 5453)
|
|
*/
|
|
reserved_iid = ISC_FALSE;
|
|
if (memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) {
|
|
reserved_iid = ISC_TRUE;
|
|
}
|
|
if (!reserved_iid &&
|
|
(memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
|
|
((tmp.s6_addr[15] & 0x80) == 0x80)) {
|
|
reserved_iid = ISC_TRUE;
|
|
}
|
|
|
|
/*
|
|
* If this address is not in use, we're happy with it
|
|
*/
|
|
test_iaaddr = NULL;
|
|
if (!reserved_iid &&
|
|
(iasubopt_hash_lookup(&test_iaaddr, pool->leases,
|
|
&tmp, sizeof(tmp), MDL) == 0)) {
|
|
break;
|
|
}
|
|
if (test_iaaddr != NULL)
|
|
iasubopt_dereference(&test_iaaddr, MDL);
|
|
|
|
/*
|
|
* Otherwise, we create a new input, adding the address
|
|
*/
|
|
memset(&new_ds, 0, sizeof(new_ds));
|
|
new_ds.len = ds.len + sizeof(tmp);
|
|
if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
|
|
data_string_forget(&ds, MDL);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
new_ds.data = new_ds.buffer->data;
|
|
memcpy(new_ds.buffer->data, ds.data, ds.len);
|
|
memcpy(new_ds.buffer->data + ds.len, &tmp, sizeof(tmp));
|
|
data_string_forget(&ds, MDL);
|
|
data_string_copy(&ds, &new_ds, MDL);
|
|
data_string_forget(&new_ds, MDL);
|
|
}
|
|
|
|
data_string_forget(&ds, MDL);
|
|
|
|
/*
|
|
* We're happy with the address, create an IAADDR
|
|
* to hold it.
|
|
*/
|
|
iaaddr = NULL;
|
|
result = iasubopt_allocate(&iaaddr, MDL);
|
|
if (result != ISC_R_SUCCESS) {
|
|
return result;
|
|
}
|
|
iaaddr->plen = 0;
|
|
memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
|
|
|
|
/*
|
|
* Add the lease to the pool (note state is free, not active?!).
|
|
*/
|
|
result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
|
|
if (result == ISC_R_SUCCESS) {
|
|
iasubopt_reference(addr, iaaddr, MDL);
|
|
}
|
|
iasubopt_dereference(&iaaddr, MDL);
|
|
return result;
|
|
}
|
|
|
|
#ifdef EUI_64
|
|
/*!
|
|
* \brief Assign an EUI-64 address from a pool for a given iaid-duid
|
|
*
|
|
* \param pool - pool from which the address is assigned
|
|
* \param iaddr - pointer to the iasubopt to contain the assigned address is
|
|
* \param uid - data_string containing the iaid-duid tuple
|
|
* \param soft_lifetime_end_time - lifetime of the lease for a solicit?
|
|
*
|
|
* \return status indicating success or nature of the failure
|
|
*/
|
|
isc_result_t
|
|
create_lease6_eui_64(struct ipv6_pool *pool, struct iasubopt **addr,
|
|
const struct data_string *uid,
|
|
time_t soft_lifetime_end_time) {
|
|
struct in6_addr tmp;
|
|
struct iasubopt *test_iaaddr;
|
|
struct iasubopt *iaaddr;
|
|
isc_result_t result;
|
|
static isc_boolean_t init_resiid = ISC_FALSE;
|
|
|
|
/* Fill the reserved IIDs. */
|
|
if (!init_resiid) {
|
|
memset(&rtany, 0, 16);
|
|
memset(&resany, 0, 8);
|
|
resany.s6_addr[8] = 0xfd;
|
|
memset(&resany.s6_addr[9], 0xff, 6);
|
|
init_resiid = ISC_TRUE;
|
|
}
|
|
|
|
/* Pool must be IA_NA */
|
|
if (pool->pool_type != D6O_IA_NA) {
|
|
log_error("create_lease6_eui_64: pool type is not IA_NA.");
|
|
return (DHCP_R_INVALIDARG);
|
|
}
|
|
|
|
/* Attempt to build the address */
|
|
if (build_address6_eui_64 (&tmp, &pool->start_addr, pool->bits,
|
|
uid, IAID_LEN) != ISC_R_SUCCESS) {
|
|
log_error("create_lease6_eui_64: build_address6_eui_64 failed");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
/* Avoid reserved interface IDs. (cf. RFC 5453) */
|
|
if ((memcmp(&tmp.s6_addr[8], &rtany.s6_addr[8], 8) == 0) ||
|
|
((memcmp(&tmp.s6_addr[8], &resany.s6_addr[8], 7) == 0) &&
|
|
((tmp.s6_addr[15] & 0x80) == 0x80))) {
|
|
log_error("create_lease6_eui_64: "
|
|
"address conflicts with reserved IID");
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
|
|
/* If this address is not in use, we're happy with it */
|
|
test_iaaddr = NULL;
|
|
if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
|
|
&tmp, sizeof(tmp), MDL) != 0) {
|
|
|
|
/* See if it's ours. Static leases won't have an ia */
|
|
int ours = 0;
|
|
if (!test_iaaddr->ia) {
|
|
log_error("create_lease6_eui_64: "
|
|
"address %s is assigned to static lease",
|
|
pin6_addr(&test_iaaddr->addr));
|
|
} else {
|
|
/* Not sure if this can actually happen */
|
|
struct data_string* found = &test_iaaddr->ia->iaid_duid;
|
|
ours = ((found->len == uid->len) &&
|
|
(!memcmp(found->data, uid->data, uid->len)));
|
|
log_error("create_lease6_eui_64: "
|
|
"address %s belongs to %s",
|
|
pin6_addr(&test_iaaddr->addr),
|
|
print_hex_1(found->len, found->data, 60));
|
|
}
|
|
|
|
iasubopt_dereference(&test_iaaddr, MDL);
|
|
if (!ours) {
|
|
/* Cant' use it */
|
|
return (ISC_R_FAILURE);
|
|
}
|
|
}
|
|
|
|
/* We're happy with the address, create an IAADDR to hold it. */
|
|
iaaddr = NULL;
|
|
result = iasubopt_allocate(&iaaddr, MDL);
|
|
if (result != ISC_R_SUCCESS) {
|
|
log_error("create_lease6_eui_64: could not allocate iasubop");
|
|
return result;
|
|
}
|
|
iaaddr->plen = 0;
|
|
memcpy(&iaaddr->addr, &tmp, sizeof(iaaddr->addr));
|
|
|
|
/* Add the lease to the pool and the reply */
|
|
result = add_lease6(pool, iaaddr, soft_lifetime_end_time);
|
|
if (result == ISC_R_SUCCESS) {
|
|
iasubopt_reference(addr, iaaddr, MDL);
|
|
}
|
|
|
|
iasubopt_dereference(&iaaddr, MDL);
|
|
return result;
|
|
}
|
|
#endif
|
|
|
|
/*!
|
|
*
|
|
* \brief Cleans up leases when reading from a lease file
|
|
*
|
|
* This function is only expected to be run when reading leases in from a file.
|
|
* It checks to see if a lease already exists for the new leases's address.
|
|
* We don't add expired leases to the structures when reading a lease file
|
|
* which limits what can happen. We have two variables the owners of the leases
|
|
* being the same or different and the new lease being active or non-active:
|
|
* Owners active
|
|
* same no remove old lease and its connections
|
|
* same yes nothing to do, other code will update the structures.
|
|
* diff no nothing to do
|
|
* diff yes this combination shouldn't happen, we should only have a
|
|
* single active lease per address at a time and that lease
|
|
* should move to non-active before any other lease can
|
|
* become active for that address.
|
|
* Currently we delete the previous lease and pass an error
|
|
* to the caller who should log an error.
|
|
*
|
|
* When we remove a lease we remove it from the hash table and active heap
|
|
* (remember only active leases are in the structures at this time) for the
|
|
* pool, and from the IA's array. If, after we've removed the pointer from
|
|
* IA's array to the lease, the IA has no more pointers we remove it from
|
|
* the appropriate hash table as well.
|
|
*
|
|
* \param[in] ia_table = the hash table for the IA
|
|
* \param[in] pool = the pool to update
|
|
* \param[in] lease = the new lease we want to add
|
|
* \param[in] ia = the new ia we are building
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = the incoming lease and any previous lease were in
|
|
* an expected state - one of the first 3 options above.
|
|
* If necessary the old lease was removed.
|
|
* ISC_R_FAILURE = there is already an active lease for the address in
|
|
* the incoming lease. This shouldn't happen if it does
|
|
* flag an error for the caller to log.
|
|
*/
|
|
|
|
isc_result_t
|
|
cleanup_lease6(ia_hash_t *ia_table,
|
|
struct ipv6_pool *pool,
|
|
struct iasubopt *lease,
|
|
struct ia_xx *ia) {
|
|
|
|
struct iasubopt *test_iasubopt, *tmp_iasubopt;
|
|
struct ia_xx *old_ia;
|
|
isc_result_t status = ISC_R_SUCCESS;
|
|
|
|
test_iasubopt = NULL;
|
|
old_ia = NULL;
|
|
|
|
/*
|
|
* Look up the address - if we don't find a lease
|
|
* we don't need to do anything.
|
|
*/
|
|
if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
|
|
&lease->addr, sizeof(lease->addr),
|
|
MDL) == 0) {
|
|
return (ISC_R_SUCCESS);
|
|
}
|
|
|
|
if (test_iasubopt->ia == NULL) {
|
|
/* no old ia, no work to do */
|
|
iasubopt_dereference(&test_iasubopt, MDL);
|
|
return (status);
|
|
}
|
|
|
|
ia_reference(&old_ia, test_iasubopt->ia, MDL);
|
|
|
|
if ((old_ia->iaid_duid.len == ia->iaid_duid.len) &&
|
|
(memcmp((unsigned char *)ia->iaid_duid.data,
|
|
(unsigned char *)old_ia->iaid_duid.data,
|
|
ia->iaid_duid.len) == 0)) {
|
|
/* same IA */
|
|
if ((lease->state == FTS_ACTIVE) ||
|
|
(lease->state == FTS_ABANDONED)) {
|
|
/* still active, no need to delete */
|
|
goto cleanup;
|
|
}
|
|
} else {
|
|
/* different IA */
|
|
if ((lease->state != FTS_ACTIVE) &&
|
|
(lease->state != FTS_ABANDONED)) {
|
|
/* new lease isn't active, no work */
|
|
goto cleanup;
|
|
}
|
|
|
|
/*
|
|
* We appear to have two active leases, this shouldn't happen.
|
|
* Before a second lease can be set to active the first lease
|
|
* should be set to inactive (released, expired etc). For now
|
|
* delete the previous lease and indicate a failure to the
|
|
* caller so it can generate a warning.
|
|
* In the future we may try and determine which is the better
|
|
* lease to keep.
|
|
*/
|
|
|
|
status = ISC_R_FAILURE;
|
|
}
|
|
|
|
/*
|
|
* Remove the old lease from the active heap and from the hash table
|
|
* then remove the lease from the IA and clean up the IA if necessary.
|
|
*/
|
|
isc_heap_delete(pool->active_timeouts, test_iasubopt->active_index);
|
|
pool->num_active--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_active--;
|
|
|
|
if (lease->state == FTS_ABANDONED) {
|
|
pool->num_abandoned--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned--;
|
|
}
|
|
|
|
iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
|
|
sizeof(test_iasubopt->addr), MDL);
|
|
ia_remove_iasubopt(old_ia, test_iasubopt, MDL);
|
|
if (old_ia->num_iasubopt <= 0) {
|
|
ia_hash_delete(ia_table,
|
|
(unsigned char *)old_ia->iaid_duid.data,
|
|
old_ia->iaid_duid.len, MDL);
|
|
}
|
|
|
|
/*
|
|
* We derefenrece the subopt here as we've just removed it from
|
|
* the hash table in the pool. We need to make a copy as we
|
|
* need to derefernece it again later.
|
|
*/
|
|
tmp_iasubopt = test_iasubopt;
|
|
iasubopt_dereference(&tmp_iasubopt, MDL);
|
|
|
|
cleanup:
|
|
ia_dereference(&old_ia, MDL);
|
|
|
|
/*
|
|
* Clean up the reference, this is in addition to the deference
|
|
* above after removing the entry from the hash table
|
|
*/
|
|
iasubopt_dereference(&test_iasubopt, MDL);
|
|
|
|
return (status);
|
|
}
|
|
|
|
/*
|
|
* Put a lease in the pool directly. This is intended to be used when
|
|
* loading leases from the file.
|
|
*/
|
|
isc_result_t
|
|
add_lease6(struct ipv6_pool *pool, struct iasubopt *lease,
|
|
time_t valid_lifetime_end_time) {
|
|
isc_result_t insert_result;
|
|
struct iasubopt *test_iasubopt;
|
|
struct iasubopt *tmp_iasubopt;
|
|
|
|
/* If a state was not assigned by the caller, assume active. */
|
|
if (lease->state == 0)
|
|
lease->state = FTS_ACTIVE;
|
|
|
|
ipv6_pool_reference(&lease->ipv6_pool, pool, MDL);
|
|
|
|
/*
|
|
* If this IAADDR/PREFIX is already in our structures, remove the
|
|
* old one.
|
|
*/
|
|
test_iasubopt = NULL;
|
|
if (iasubopt_hash_lookup(&test_iasubopt, pool->leases,
|
|
&lease->addr, sizeof(lease->addr), MDL)) {
|
|
/* XXX: we should probably ask the lease what heap it is on
|
|
* (as a consistency check).
|
|
* XXX: we should probably have one function to "put this lease
|
|
* on its heap" rather than doing these if's everywhere. If
|
|
* you add more states to this list, don't.
|
|
*/
|
|
if ((test_iasubopt->state == FTS_ACTIVE) ||
|
|
(test_iasubopt->state == FTS_ABANDONED)) {
|
|
isc_heap_delete(pool->active_timeouts,
|
|
test_iasubopt->active_index);
|
|
pool->num_active--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_active--;
|
|
|
|
if (test_iasubopt->state == FTS_ABANDONED) {
|
|
pool->num_abandoned--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned--;
|
|
}
|
|
} else {
|
|
isc_heap_delete(pool->inactive_timeouts,
|
|
test_iasubopt->inactive_index);
|
|
pool->num_inactive--;
|
|
}
|
|
|
|
iasubopt_hash_delete(pool->leases, &test_iasubopt->addr,
|
|
sizeof(test_iasubopt->addr), MDL);
|
|
|
|
/*
|
|
* We're going to do a bit of evil trickery here.
|
|
*
|
|
* We need to dereference the entry once to remove our
|
|
* current reference (in test_iasubopt), and then one
|
|
* more time to remove the reference left when the
|
|
* address was added to the pool before.
|
|
*/
|
|
tmp_iasubopt = test_iasubopt;
|
|
iasubopt_dereference(&test_iasubopt, MDL);
|
|
iasubopt_dereference(&tmp_iasubopt, MDL);
|
|
}
|
|
|
|
/*
|
|
* Add IAADDR/PREFIX to our structures.
|
|
*/
|
|
tmp_iasubopt = NULL;
|
|
iasubopt_reference(&tmp_iasubopt, lease, MDL);
|
|
if ((tmp_iasubopt->state == FTS_ACTIVE) ||
|
|
(tmp_iasubopt->state == FTS_ABANDONED)) {
|
|
tmp_iasubopt->hard_lifetime_end_time = valid_lifetime_end_time;
|
|
iasubopt_hash_add(pool->leases, &tmp_iasubopt->addr,
|
|
sizeof(tmp_iasubopt->addr), lease, MDL);
|
|
insert_result = isc_heap_insert(pool->active_timeouts,
|
|
tmp_iasubopt);
|
|
if (insert_result == ISC_R_SUCCESS) {
|
|
pool->num_active++;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_active++;
|
|
|
|
if (tmp_iasubopt->state == FTS_ABANDONED) {
|
|
pool->num_abandoned++;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned++;
|
|
}
|
|
}
|
|
|
|
} else {
|
|
tmp_iasubopt->soft_lifetime_end_time = valid_lifetime_end_time;
|
|
insert_result = isc_heap_insert(pool->inactive_timeouts,
|
|
tmp_iasubopt);
|
|
if (insert_result == ISC_R_SUCCESS)
|
|
pool->num_inactive++;
|
|
}
|
|
if (insert_result != ISC_R_SUCCESS) {
|
|
iasubopt_hash_delete(pool->leases, &lease->addr,
|
|
sizeof(lease->addr), MDL);
|
|
iasubopt_dereference(&tmp_iasubopt, MDL);
|
|
return insert_result;
|
|
}
|
|
|
|
/*
|
|
* Note: we intentionally leave tmp_iasubopt referenced; there
|
|
* is a reference in the heap/hash, after all.
|
|
*/
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Determine if an address is present in a pool or not.
|
|
*/
|
|
isc_boolean_t
|
|
lease6_exists(const struct ipv6_pool *pool, const struct in6_addr *addr) {
|
|
struct iasubopt *test_iaaddr;
|
|
|
|
test_iaaddr = NULL;
|
|
if (iasubopt_hash_lookup(&test_iaaddr, pool->leases,
|
|
(void *)addr, sizeof(*addr), MDL)) {
|
|
iasubopt_dereference(&test_iaaddr, MDL);
|
|
return ISC_TRUE;
|
|
} else {
|
|
return ISC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief Check if address is available to a lease
|
|
*
|
|
* Determine if the address in the lease is available to that
|
|
* lease. Either the address isn't in use or it is in use
|
|
* but by that lease.
|
|
*
|
|
* \param[in] lease = lease to check
|
|
*
|
|
* \return
|
|
* ISC_TRUE = The lease is allowed to use that address
|
|
* ISC_FALSE = The lease isn't allowed to use that address
|
|
*/
|
|
isc_boolean_t
|
|
lease6_usable(struct iasubopt *lease) {
|
|
struct iasubopt *test_iaaddr;
|
|
isc_boolean_t status = ISC_TRUE;
|
|
|
|
test_iaaddr = NULL;
|
|
if (iasubopt_hash_lookup(&test_iaaddr, lease->ipv6_pool->leases,
|
|
(void *)&lease->addr,
|
|
sizeof(lease->addr), MDL)) {
|
|
if (test_iaaddr != lease) {
|
|
status = ISC_FALSE;
|
|
}
|
|
iasubopt_dereference(&test_iaaddr, MDL);
|
|
}
|
|
|
|
return (status);
|
|
}
|
|
|
|
/*
|
|
* Put the lease on our active pool.
|
|
*/
|
|
static isc_result_t
|
|
move_lease_to_active(struct ipv6_pool *pool, struct iasubopt *lease) {
|
|
isc_result_t insert_result;
|
|
|
|
insert_result = isc_heap_insert(pool->active_timeouts, lease);
|
|
if (insert_result == ISC_R_SUCCESS) {
|
|
iasubopt_hash_add(pool->leases, &lease->addr,
|
|
sizeof(lease->addr), lease, MDL);
|
|
isc_heap_delete(pool->inactive_timeouts,
|
|
lease->inactive_index);
|
|
pool->num_active++;
|
|
pool->num_inactive--;
|
|
lease->state = FTS_ACTIVE;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_active++;
|
|
|
|
}
|
|
return insert_result;
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief Renew a lease in the pool.
|
|
*
|
|
* The hard_lifetime_end_time of the lease should be set to
|
|
* the current expiration time.
|
|
* The soft_lifetime_end_time of the lease should be set to
|
|
* the desired expiration time.
|
|
*
|
|
* This routine will compare the two and call the correct
|
|
* heap routine to move the lease. If the lease is active
|
|
* and the new expiration time is greater (the normal case)
|
|
* then we call isc_heap_decreased() as a larger time is a
|
|
* lower priority. If the new expiration time is less then
|
|
* we call isc_heap_increased().
|
|
*
|
|
* If the lease is abandoned then it will be on the active list
|
|
* and we will always call isc_heap_increased() as the previous
|
|
* expiration would have been all 1s (as close as we can get
|
|
* to infinite).
|
|
*
|
|
* If the lease is moving to active we call that routine
|
|
* which will move it from the inactive list to the active list.
|
|
*
|
|
* \param pool = a pool the lease belongs to
|
|
* \param lease = the lease to be renewed
|
|
*
|
|
* \return result of the renew operation (ISC_R_SUCCESS if successful,
|
|
ISC_R_NOMEMORY when run out of memory)
|
|
*/
|
|
isc_result_t
|
|
renew_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
|
|
time_t old_end_time = lease->hard_lifetime_end_time;
|
|
lease->hard_lifetime_end_time = lease->soft_lifetime_end_time;
|
|
lease->soft_lifetime_end_time = 0;
|
|
|
|
if (lease->state == FTS_ACTIVE) {
|
|
if (old_end_time <= lease->hard_lifetime_end_time) {
|
|
isc_heap_decreased(pool->active_timeouts,
|
|
lease->active_index);
|
|
} else {
|
|
isc_heap_increased(pool->active_timeouts,
|
|
lease->active_index);
|
|
}
|
|
return ISC_R_SUCCESS;
|
|
} else if (lease->state == FTS_ABANDONED) {
|
|
char tmp_addr[INET6_ADDRSTRLEN];
|
|
lease->state = FTS_ACTIVE;
|
|
isc_heap_increased(pool->active_timeouts, lease->active_index);
|
|
log_info("Reclaiming previously abandoned address %s",
|
|
inet_ntop(AF_INET6, &(lease->addr), tmp_addr,
|
|
sizeof(tmp_addr)));
|
|
|
|
pool->num_abandoned--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned--;
|
|
|
|
return ISC_R_SUCCESS;
|
|
} else {
|
|
return move_lease_to_active(pool, lease);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Put the lease on our inactive pool, with the specified state.
|
|
*/
|
|
static isc_result_t
|
|
move_lease_to_inactive(struct ipv6_pool *pool, struct iasubopt *lease,
|
|
binding_state_t state) {
|
|
isc_result_t insert_result;
|
|
|
|
insert_result = isc_heap_insert(pool->inactive_timeouts, lease);
|
|
if (insert_result == ISC_R_SUCCESS) {
|
|
/*
|
|
* Handle expire and release statements
|
|
* To get here we must be active and have done a commit so
|
|
* we should run the proper statements if they exist, though
|
|
* that will change when we remove the inactive heap.
|
|
* In addition we get rid of the references for both as we
|
|
* can only do one (expire or release) on a lease
|
|
*/
|
|
if (lease->on_star.on_expiry != NULL) {
|
|
if (state == FTS_EXPIRED) {
|
|
execute_statements(NULL, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
&lease->scope,
|
|
lease->on_star.on_expiry,
|
|
&lease->on_star);
|
|
}
|
|
executable_statement_dereference
|
|
(&lease->on_star.on_expiry, MDL);
|
|
}
|
|
|
|
if (lease->on_star.on_release != NULL) {
|
|
if (state == FTS_RELEASED) {
|
|
execute_statements(NULL, NULL, NULL,
|
|
NULL, NULL, NULL,
|
|
&lease->scope,
|
|
lease->on_star.on_release,
|
|
&lease->on_star);
|
|
}
|
|
executable_statement_dereference
|
|
(&lease->on_star.on_release, MDL);
|
|
}
|
|
|
|
#if defined (NSUPDATE)
|
|
/* Process events upon expiration. */
|
|
if (pool->pool_type != D6O_IA_PD) {
|
|
(void) ddns_removals(NULL, lease, NULL, ISC_FALSE);
|
|
}
|
|
#endif
|
|
|
|
/* Binding scopes are no longer valid after expiry or
|
|
* release.
|
|
*/
|
|
if (lease->scope != NULL) {
|
|
binding_scope_dereference(&lease->scope, MDL);
|
|
}
|
|
|
|
iasubopt_hash_delete(pool->leases,
|
|
&lease->addr, sizeof(lease->addr), MDL);
|
|
isc_heap_delete(pool->active_timeouts, lease->active_index);
|
|
lease->state = state;
|
|
pool->num_active--;
|
|
pool->num_inactive++;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_active--;
|
|
|
|
if (lease->state == FTS_ABANDONED) {
|
|
pool->num_abandoned--;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned--;
|
|
}
|
|
}
|
|
return insert_result;
|
|
}
|
|
|
|
/*
|
|
* Expire the oldest lease if it's lifetime_end_time is
|
|
* older than the given time.
|
|
*
|
|
* - leasep must be a pointer to a (struct iasubopt *) pointer previously
|
|
* initialized to NULL
|
|
*
|
|
* On return leasep has a reference to the removed entry. It is left
|
|
* pointing to NULL if the oldest lease has not expired.
|
|
*/
|
|
isc_result_t
|
|
expire_lease6(struct iasubopt **leasep, struct ipv6_pool *pool, time_t now) {
|
|
struct iasubopt *tmp;
|
|
isc_result_t result;
|
|
|
|
if (leasep == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*leasep != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
if (pool->num_active > 0) {
|
|
tmp = (struct iasubopt *)
|
|
isc_heap_element(pool->active_timeouts, 1);
|
|
if (now > tmp->hard_lifetime_end_time) {
|
|
result = move_lease_to_inactive(pool, tmp,
|
|
FTS_EXPIRED);
|
|
if (result == ISC_R_SUCCESS) {
|
|
iasubopt_reference(leasep, tmp, MDL);
|
|
}
|
|
return result;
|
|
}
|
|
}
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
|
|
/*
|
|
* For a declined lease, leave it on the "active" pool, but mark
|
|
* it as declined. Give it an infinite (well, really long) life.
|
|
*/
|
|
isc_result_t
|
|
decline_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
|
|
isc_result_t result;
|
|
|
|
if ((lease->state != FTS_ACTIVE) &&
|
|
(lease->state != FTS_ABANDONED)) {
|
|
result = move_lease_to_active(pool, lease);
|
|
if (result != ISC_R_SUCCESS) {
|
|
return result;
|
|
}
|
|
}
|
|
lease->state = FTS_ABANDONED;
|
|
|
|
pool->num_abandoned++;
|
|
if (pool->ipv6_pond)
|
|
pool->ipv6_pond->num_abandoned++;
|
|
|
|
lease->hard_lifetime_end_time = MAX_TIME;
|
|
isc_heap_decreased(pool->active_timeouts, lease->active_index);
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Put the returned lease on our inactive pool.
|
|
*/
|
|
isc_result_t
|
|
release_lease6(struct ipv6_pool *pool, struct iasubopt *lease) {
|
|
if (lease->state == FTS_ACTIVE) {
|
|
return move_lease_to_inactive(pool, lease, FTS_RELEASED);
|
|
} else {
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a prefix by hashing the input, and using that for
|
|
* the part subject to allocation.
|
|
*/
|
|
void
|
|
build_prefix6(struct in6_addr *pref,
|
|
const struct in6_addr *net_start_pref,
|
|
int pool_bits, int pref_bits,
|
|
const struct data_string *input) {
|
|
isc_md5_t ctx;
|
|
int net_bytes;
|
|
int i;
|
|
char *str;
|
|
const char *net_str;
|
|
|
|
/*
|
|
* Use MD5 to get a nice 128 bit hash of the input.
|
|
* Yes, we know MD5 isn't cryptographically sound.
|
|
* No, we don't care.
|
|
*/
|
|
isc_md5_init(&ctx);
|
|
isc_md5_update(&ctx, input->data, input->len);
|
|
isc_md5_final(&ctx, (unsigned char *)pref);
|
|
|
|
/*
|
|
* Copy the network bits over.
|
|
*/
|
|
str = (char *)pref;
|
|
net_str = (const char *)net_start_pref;
|
|
net_bytes = pool_bits / 8;
|
|
for (i = 0; i < net_bytes; i++) {
|
|
str[i] = net_str[i];
|
|
}
|
|
i = net_bytes;
|
|
switch (pool_bits % 8) {
|
|
case 1: str[i] = (str[i] & 0x7F) | (net_str[i] & 0x80); break;
|
|
case 2: str[i] = (str[i] & 0x3F) | (net_str[i] & 0xC0); break;
|
|
case 3: str[i] = (str[i] & 0x1F) | (net_str[i] & 0xE0); break;
|
|
case 4: str[i] = (str[i] & 0x0F) | (net_str[i] & 0xF0); break;
|
|
case 5: str[i] = (str[i] & 0x07) | (net_str[i] & 0xF8); break;
|
|
case 6: str[i] = (str[i] & 0x03) | (net_str[i] & 0xFC); break;
|
|
case 7: str[i] = (str[i] & 0x01) | (net_str[i] & 0xFE); break;
|
|
}
|
|
/*
|
|
* Zero the remaining bits.
|
|
*/
|
|
net_bytes = pref_bits / 8;
|
|
for (i=net_bytes+1; i<16; i++) {
|
|
str[i] = 0;
|
|
}
|
|
i = net_bytes;
|
|
switch (pref_bits % 8) {
|
|
case 0: str[i] &= 0; break;
|
|
case 1: str[i] &= 0x80; break;
|
|
case 2: str[i] &= 0xC0; break;
|
|
case 3: str[i] &= 0xE0; break;
|
|
case 4: str[i] &= 0xF0; break;
|
|
case 5: str[i] &= 0xF8; break;
|
|
case 6: str[i] &= 0xFC; break;
|
|
case 7: str[i] &= 0xFE; break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create a lease for the given prefix and client duid.
|
|
*
|
|
* - pool must be a pointer to a (struct ipv6_pool *) pointer previously
|
|
* initialized to NULL
|
|
*
|
|
* Right now we simply hash the DUID, and if we get a collision, we hash
|
|
* again until we find a free prefix. We try this a fixed number of times,
|
|
* to avoid getting stuck in a loop (this is important on small pools
|
|
* where we can run out of space).
|
|
*
|
|
* We return the number of attempts that it took to find an available
|
|
* prefix. This tells callers when a pool is are filling up, as
|
|
* well as an indication of how full the pool is; statistically the
|
|
* more full a pool is the more attempts must be made before finding
|
|
* a free prefix. Realistically this will only happen in very full
|
|
* pools.
|
|
*
|
|
* We probably want different algorithms depending on the network size, in
|
|
* the long term.
|
|
*/
|
|
isc_result_t
|
|
create_prefix6(struct ipv6_pool *pool, struct iasubopt **pref,
|
|
unsigned int *attempts,
|
|
const struct data_string *uid,
|
|
time_t soft_lifetime_end_time) {
|
|
struct data_string ds;
|
|
struct in6_addr tmp;
|
|
struct iasubopt *test_iapref;
|
|
struct data_string new_ds;
|
|
struct iasubopt *iapref;
|
|
isc_result_t result;
|
|
|
|
/*
|
|
* Use the UID as our initial seed for the hash
|
|
*/
|
|
memset(&ds, 0, sizeof(ds));
|
|
data_string_copy(&ds, (struct data_string *)uid, MDL);
|
|
|
|
*attempts = 0;
|
|
for (;;) {
|
|
/*
|
|
* Give up at some point.
|
|
*/
|
|
if (++(*attempts) > 10) {
|
|
data_string_forget(&ds, MDL);
|
|
return ISC_R_NORESOURCES;
|
|
}
|
|
|
|
/*
|
|
* Build a prefix
|
|
*/
|
|
build_prefix6(&tmp, &pool->start_addr,
|
|
pool->bits, pool->units, &ds);
|
|
|
|
/*
|
|
* If this prefix is not in use, we're happy with it
|
|
*/
|
|
test_iapref = NULL;
|
|
if (iasubopt_hash_lookup(&test_iapref, pool->leases,
|
|
&tmp, sizeof(tmp), MDL) == 0) {
|
|
break;
|
|
}
|
|
iasubopt_dereference(&test_iapref, MDL);
|
|
|
|
/*
|
|
* Otherwise, we create a new input, adding the prefix
|
|
*/
|
|
memset(&new_ds, 0, sizeof(new_ds));
|
|
new_ds.len = ds.len + sizeof(tmp);
|
|
if (!buffer_allocate(&new_ds.buffer, new_ds.len, MDL)) {
|
|
data_string_forget(&ds, MDL);
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
new_ds.data = new_ds.buffer->data;
|
|
memcpy(new_ds.buffer->data, ds.data, ds.len);
|
|
memcpy(&new_ds.buffer->data[0] + ds.len, &tmp, sizeof(tmp));
|
|
data_string_forget(&ds, MDL);
|
|
data_string_copy(&ds, &new_ds, MDL);
|
|
data_string_forget(&new_ds, MDL);
|
|
}
|
|
|
|
data_string_forget(&ds, MDL);
|
|
|
|
/*
|
|
* We're happy with the prefix, create an IAPREFIX
|
|
* to hold it.
|
|
*/
|
|
iapref = NULL;
|
|
result = iasubopt_allocate(&iapref, MDL);
|
|
if (result != ISC_R_SUCCESS) {
|
|
return result;
|
|
}
|
|
iapref->plen = (u_int8_t)pool->units;
|
|
memcpy(&iapref->addr, &tmp, sizeof(iapref->addr));
|
|
|
|
/*
|
|
* Add the prefix to the pool (note state is free, not active?!).
|
|
*/
|
|
result = add_lease6(pool, iapref, soft_lifetime_end_time);
|
|
if (result == ISC_R_SUCCESS) {
|
|
iasubopt_reference(pref, iapref, MDL);
|
|
}
|
|
iasubopt_dereference(&iapref, MDL);
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Determine if a prefix is present in a pool or not.
|
|
*/
|
|
isc_boolean_t
|
|
prefix6_exists(const struct ipv6_pool *pool,
|
|
const struct in6_addr *pref, u_int8_t plen) {
|
|
struct iasubopt *test_iapref;
|
|
|
|
if ((int)plen != pool->units)
|
|
return ISC_FALSE;
|
|
|
|
test_iapref = NULL;
|
|
if (iasubopt_hash_lookup(&test_iapref, pool->leases,
|
|
(void *)pref, sizeof(*pref), MDL)) {
|
|
iasubopt_dereference(&test_iapref, MDL);
|
|
return ISC_TRUE;
|
|
} else {
|
|
return ISC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Mark an IPv6 address/prefix as unavailable from a pool.
|
|
*
|
|
* This is used for host entries and the addresses of the server itself.
|
|
*/
|
|
isc_result_t
|
|
mark_lease_unavailable(struct ipv6_pool *pool, const struct in6_addr *addr) {
|
|
struct iasubopt *dummy_iasubopt;
|
|
isc_result_t result;
|
|
|
|
dummy_iasubopt = NULL;
|
|
result = iasubopt_allocate(&dummy_iasubopt, MDL);
|
|
if (result == ISC_R_SUCCESS) {
|
|
dummy_iasubopt->addr = *addr;
|
|
iasubopt_hash_add(pool->leases, &dummy_iasubopt->addr,
|
|
sizeof(*addr), dummy_iasubopt, MDL);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/*
|
|
* Add a pool.
|
|
*/
|
|
isc_result_t
|
|
add_ipv6_pool(struct ipv6_pool *pool) {
|
|
struct ipv6_pool **new_pools;
|
|
|
|
new_pools = dmalloc(sizeof(struct ipv6_pool *) * (num_pools+1), MDL);
|
|
if (new_pools == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
if (num_pools > 0) {
|
|
memcpy(new_pools, pools,
|
|
sizeof(struct ipv6_pool *) * num_pools);
|
|
dfree(pools, MDL);
|
|
}
|
|
pools = new_pools;
|
|
|
|
pools[num_pools] = NULL;
|
|
ipv6_pool_reference(&pools[num_pools], pool, MDL);
|
|
num_pools++;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
static void
|
|
cleanup_old_expired(struct ipv6_pool *pool) {
|
|
struct iasubopt *tmp;
|
|
struct ia_xx *ia;
|
|
struct ia_xx *ia_active;
|
|
unsigned char *tmpd;
|
|
time_t timeout;
|
|
|
|
while (pool->num_inactive > 0) {
|
|
tmp = (struct iasubopt *)
|
|
isc_heap_element(pool->inactive_timeouts, 1);
|
|
if (tmp->hard_lifetime_end_time != 0) {
|
|
timeout = tmp->hard_lifetime_end_time;
|
|
timeout += EXPIRED_IPV6_CLEANUP_TIME;
|
|
} else {
|
|
timeout = tmp->soft_lifetime_end_time;
|
|
}
|
|
if (cur_time < timeout) {
|
|
break;
|
|
}
|
|
|
|
isc_heap_delete(pool->inactive_timeouts, tmp->inactive_index);
|
|
pool->num_inactive--;
|
|
|
|
if (tmp->ia != NULL) {
|
|
/*
|
|
* Check to see if this IA is in an active list,
|
|
* but has no remaining resources. If so, remove it
|
|
* from the active list.
|
|
*/
|
|
ia = NULL;
|
|
ia_reference(&ia, tmp->ia, MDL);
|
|
ia_remove_iasubopt(ia, tmp, MDL);
|
|
ia_active = NULL;
|
|
tmpd = (unsigned char *)ia->iaid_duid.data;
|
|
if ((ia->ia_type == D6O_IA_NA) &&
|
|
(ia->num_iasubopt <= 0) &&
|
|
(ia_hash_lookup(&ia_active, ia_na_active, tmpd,
|
|
ia->iaid_duid.len, MDL) == 0) &&
|
|
(ia_active == ia)) {
|
|
ia_hash_delete(ia_na_active, tmpd,
|
|
ia->iaid_duid.len, MDL);
|
|
}
|
|
if ((ia->ia_type == D6O_IA_TA) &&
|
|
(ia->num_iasubopt <= 0) &&
|
|
(ia_hash_lookup(&ia_active, ia_ta_active, tmpd,
|
|
ia->iaid_duid.len, MDL) == 0) &&
|
|
(ia_active == ia)) {
|
|
ia_hash_delete(ia_ta_active, tmpd,
|
|
ia->iaid_duid.len, MDL);
|
|
}
|
|
if ((ia->ia_type == D6O_IA_PD) &&
|
|
(ia->num_iasubopt <= 0) &&
|
|
(ia_hash_lookup(&ia_active, ia_pd_active, tmpd,
|
|
ia->iaid_duid.len, MDL) == 0) &&
|
|
(ia_active == ia)) {
|
|
ia_hash_delete(ia_pd_active, tmpd,
|
|
ia->iaid_duid.len, MDL);
|
|
}
|
|
ia_dereference(&ia, MDL);
|
|
}
|
|
iasubopt_dereference(&tmp, MDL);
|
|
}
|
|
}
|
|
|
|
static void
|
|
lease_timeout_support(void *vpool) {
|
|
struct ipv6_pool *pool;
|
|
struct iasubopt *lease;
|
|
|
|
pool = (struct ipv6_pool *)vpool;
|
|
for (;;) {
|
|
/*
|
|
* Get the next lease scheduled to expire.
|
|
*
|
|
* Note that if there are no leases in the pool,
|
|
* expire_lease6() will return ISC_R_SUCCESS with
|
|
* a NULL lease.
|
|
*
|
|
* expire_lease6() will call move_lease_to_inactive() which
|
|
* calls ddns_removals() do we want that on the standard
|
|
* expiration timer or a special 'depref' timer? Original
|
|
* query from DH, moved here by SAR.
|
|
*/
|
|
lease = NULL;
|
|
if (expire_lease6(&lease, pool, cur_time) != ISC_R_SUCCESS) {
|
|
break;
|
|
}
|
|
if (lease == NULL) {
|
|
break;
|
|
}
|
|
|
|
write_ia(lease->ia);
|
|
|
|
iasubopt_dereference(&lease, MDL);
|
|
}
|
|
|
|
/*
|
|
* If appropriate commit and rotate the lease file
|
|
* As commit_leases_timed() checks to see if we've done any writes
|
|
* we don't bother tracking if this function called write _ia
|
|
*/
|
|
(void) commit_leases_timed();
|
|
|
|
/*
|
|
* Do some cleanup of our expired leases.
|
|
*/
|
|
cleanup_old_expired(pool);
|
|
|
|
/*
|
|
* Schedule next round of expirations.
|
|
*/
|
|
schedule_lease_timeout(pool);
|
|
}
|
|
|
|
/*
|
|
* For a given pool, add a timer that will remove the next
|
|
* lease to expire.
|
|
*/
|
|
void
|
|
schedule_lease_timeout(struct ipv6_pool *pool) {
|
|
struct iasubopt *tmp;
|
|
time_t timeout;
|
|
time_t next_timeout;
|
|
struct timeval tv;
|
|
|
|
next_timeout = MAX_TIME;
|
|
|
|
if (pool->num_active > 0) {
|
|
tmp = (struct iasubopt *)
|
|
isc_heap_element(pool->active_timeouts, 1);
|
|
if (tmp->hard_lifetime_end_time < next_timeout) {
|
|
next_timeout = tmp->hard_lifetime_end_time + 1;
|
|
}
|
|
}
|
|
|
|
if (pool->num_inactive > 0) {
|
|
tmp = (struct iasubopt *)
|
|
isc_heap_element(pool->inactive_timeouts, 1);
|
|
if (tmp->hard_lifetime_end_time != 0) {
|
|
timeout = tmp->hard_lifetime_end_time;
|
|
timeout += EXPIRED_IPV6_CLEANUP_TIME;
|
|
} else {
|
|
timeout = tmp->soft_lifetime_end_time + 1;
|
|
}
|
|
if (timeout < next_timeout) {
|
|
next_timeout = timeout;
|
|
}
|
|
}
|
|
|
|
if (next_timeout < MAX_TIME) {
|
|
tv.tv_sec = next_timeout;
|
|
tv.tv_usec = 0;
|
|
add_timeout(&tv, lease_timeout_support, pool,
|
|
(tvref_t)ipv6_pool_reference,
|
|
(tvunref_t)ipv6_pool_dereference);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Schedule timeouts across all pools.
|
|
*/
|
|
void
|
|
schedule_all_ipv6_lease_timeouts(void) {
|
|
int i;
|
|
|
|
for (i=0; i<num_pools; i++) {
|
|
schedule_lease_timeout(pools[i]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given an address and the length of the network mask, return
|
|
* only the network portion.
|
|
*
|
|
* Examples:
|
|
*
|
|
* "fe80::216:6fff:fe49:7d9b", length 64 = "fe80::"
|
|
* "2001:888:1936:2:216:6fff:fe49:7d9b", length 48 = "2001:888:1936::"
|
|
*/
|
|
static void
|
|
ipv6_network_portion(struct in6_addr *result,
|
|
const struct in6_addr *addr, int bits) {
|
|
unsigned char *addrp;
|
|
int mask_bits;
|
|
int bytes;
|
|
int extra_bits;
|
|
int i;
|
|
|
|
static const unsigned char bitmasks[] = {
|
|
0x00, 0xFE, 0xFC, 0xF8,
|
|
0xF0, 0xE0, 0xC0, 0x80,
|
|
};
|
|
|
|
/*
|
|
* Sanity check our bits. ;)
|
|
*/
|
|
if ((bits < 0) || (bits > 128)) {
|
|
log_fatal("ipv6_network_portion: bits %d not between 0 and 128",
|
|
bits);
|
|
}
|
|
|
|
/*
|
|
* Copy our address portion.
|
|
*/
|
|
*result = *addr;
|
|
addrp = ((unsigned char *)result) + 15;
|
|
|
|
/*
|
|
* Zero out masked portion.
|
|
*/
|
|
mask_bits = 128 - bits;
|
|
bytes = mask_bits / 8;
|
|
extra_bits = mask_bits % 8;
|
|
|
|
for (i=0; i<bytes; i++) {
|
|
*addrp = 0;
|
|
addrp--;
|
|
}
|
|
if (extra_bits) {
|
|
*addrp &= bitmasks[extra_bits];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Determine if the given address/prefix is in the pool.
|
|
*/
|
|
isc_boolean_t
|
|
ipv6_in_pool(const struct in6_addr *addr, const struct ipv6_pool *pool) {
|
|
struct in6_addr tmp;
|
|
|
|
ipv6_network_portion(&tmp, addr, pool->bits);
|
|
if (memcmp(&tmp, &pool->start_addr, sizeof(tmp)) == 0) {
|
|
return ISC_TRUE;
|
|
} else {
|
|
return ISC_FALSE;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Find the pool that contains the given address.
|
|
*
|
|
* - pool must be a pointer to a (struct ipv6_pool *) pointer previously
|
|
* initialized to NULL
|
|
*/
|
|
isc_result_t
|
|
find_ipv6_pool(struct ipv6_pool **pool, u_int16_t type,
|
|
const struct in6_addr *addr) {
|
|
int i;
|
|
|
|
if (pool == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*pool != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", MDL);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
for (i=0; i<num_pools; i++) {
|
|
if (pools[i]->pool_type != type)
|
|
continue;
|
|
if (ipv6_in_pool(addr, pools[i])) {
|
|
ipv6_pool_reference(pool, pools[i], MDL);
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
}
|
|
return ISC_R_NOTFOUND;
|
|
}
|
|
|
|
/*
|
|
* Helper function for the various functions that act across all
|
|
* pools.
|
|
*/
|
|
static isc_result_t
|
|
change_leases(struct ia_xx *ia,
|
|
isc_result_t (*change_func)(struct ipv6_pool *,
|
|
struct iasubopt *)) {
|
|
isc_result_t retval;
|
|
isc_result_t renew_retval;
|
|
struct ipv6_pool *pool;
|
|
struct in6_addr *addr;
|
|
int i;
|
|
|
|
retval = ISC_R_SUCCESS;
|
|
for (i=0; i<ia->num_iasubopt; i++) {
|
|
pool = NULL;
|
|
addr = &ia->iasubopt[i]->addr;
|
|
if (find_ipv6_pool(&pool, ia->ia_type,
|
|
addr) == ISC_R_SUCCESS) {
|
|
renew_retval = change_func(pool, ia->iasubopt[i]);
|
|
if (renew_retval != ISC_R_SUCCESS) {
|
|
retval = renew_retval;
|
|
}
|
|
}
|
|
/* XXXsk: should we warn if we don't find a pool? */
|
|
}
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Renew all leases in an IA from all pools.
|
|
*
|
|
* The new lifetime should be in the soft_lifetime_end_time
|
|
* and will be moved to hard_lifetime_end_time by renew_lease6.
|
|
*/
|
|
isc_result_t
|
|
renew_leases(struct ia_xx *ia) {
|
|
return change_leases(ia, renew_lease6);
|
|
}
|
|
|
|
/*
|
|
* Release all leases in an IA from all pools.
|
|
*/
|
|
isc_result_t
|
|
release_leases(struct ia_xx *ia) {
|
|
return change_leases(ia, release_lease6);
|
|
}
|
|
|
|
/*
|
|
* Decline all leases in an IA from all pools.
|
|
*/
|
|
isc_result_t
|
|
decline_leases(struct ia_xx *ia) {
|
|
return change_leases(ia, decline_lease6);
|
|
}
|
|
|
|
#ifdef DHCPv6
|
|
/*
|
|
* Helper function to output leases.
|
|
*/
|
|
static int write_error;
|
|
|
|
static isc_result_t
|
|
write_ia_leases(const void *name, unsigned len, void *value) {
|
|
struct ia_xx *ia = (struct ia_xx *)value;
|
|
|
|
if (!write_error) {
|
|
if (!write_ia(ia)) {
|
|
write_error = 1;
|
|
}
|
|
}
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Write all DHCPv6 information.
|
|
*/
|
|
int
|
|
write_leases6(void) {
|
|
int nas, tas, pds;
|
|
|
|
write_error = 0;
|
|
write_server_duid();
|
|
nas = ia_hash_foreach(ia_na_active, write_ia_leases);
|
|
if (write_error) {
|
|
return 0;
|
|
}
|
|
tas = ia_hash_foreach(ia_ta_active, write_ia_leases);
|
|
if (write_error) {
|
|
return 0;
|
|
}
|
|
pds = ia_hash_foreach(ia_pd_active, write_ia_leases);
|
|
if (write_error) {
|
|
return 0;
|
|
}
|
|
|
|
log_info("Wrote %d NA, %d TA, %d PD leases to lease file.",
|
|
nas, tas, pds);
|
|
return 1;
|
|
}
|
|
#endif /* DHCPv6 */
|
|
|
|
static isc_result_t
|
|
mark_hosts_unavailable_support(const void *name, unsigned len, void *value) {
|
|
struct host_decl *h;
|
|
struct data_string fixed_addr;
|
|
struct in6_addr addr;
|
|
struct ipv6_pool *p;
|
|
|
|
h = (struct host_decl *)value;
|
|
|
|
/*
|
|
* If the host has no address, we don't need to mark anything.
|
|
*/
|
|
if (h->fixed_addr == NULL) {
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Evaluate the fixed address.
|
|
*/
|
|
memset(&fixed_addr, 0, sizeof(fixed_addr));
|
|
if (!evaluate_option_cache(&fixed_addr, NULL, NULL, NULL, NULL, NULL,
|
|
&global_scope, h->fixed_addr, MDL)) {
|
|
log_error("mark_hosts_unavailable: "
|
|
"error evaluating host address.");
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
if (fixed_addr.len != 16) {
|
|
log_error("mark_hosts_unavailable: "
|
|
"host address is not 128 bits.");
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
memcpy(&addr, fixed_addr.data, 16);
|
|
data_string_forget(&fixed_addr, MDL);
|
|
|
|
/*
|
|
* Find the pool holding this host, and mark the address.
|
|
* (I suppose it is arguably valid to have a host that does not
|
|
* sit in any pool.)
|
|
*/
|
|
p = NULL;
|
|
if (find_ipv6_pool(&p, D6O_IA_NA, &addr) == ISC_R_SUCCESS) {
|
|
mark_lease_unavailable(p, &addr);
|
|
ipv6_pool_dereference(&p, MDL);
|
|
}
|
|
if (find_ipv6_pool(&p, D6O_IA_TA, &addr) == ISC_R_SUCCESS) {
|
|
mark_lease_unavailable(p, &addr);
|
|
ipv6_pool_dereference(&p, MDL);
|
|
}
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
void
|
|
mark_hosts_unavailable(void) {
|
|
hash_foreach(host_name_hash, mark_hosts_unavailable_support);
|
|
}
|
|
|
|
static isc_result_t
|
|
mark_phosts_unavailable_support(const void *name, unsigned len, void *value) {
|
|
struct host_decl *h;
|
|
struct iaddrcidrnetlist *l;
|
|
struct in6_addr pref;
|
|
struct ipv6_pool *p;
|
|
|
|
h = (struct host_decl *)value;
|
|
|
|
/*
|
|
* If the host has no prefix, we don't need to mark anything.
|
|
*/
|
|
if (h->fixed_prefix == NULL) {
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*
|
|
* Get the fixed prefixes.
|
|
*/
|
|
for (l = h->fixed_prefix; l != NULL; l = l->next) {
|
|
if (l->cidrnet.lo_addr.len != 16) {
|
|
continue;
|
|
}
|
|
memcpy(&pref, l->cidrnet.lo_addr.iabuf, 16);
|
|
|
|
/*
|
|
* Find the pool holding this host, and mark the prefix.
|
|
* (I suppose it is arguably valid to have a host that does not
|
|
* sit in any pool.)
|
|
*/
|
|
p = NULL;
|
|
if (find_ipv6_pool(&p, D6O_IA_PD, &pref) != ISC_R_SUCCESS) {
|
|
continue;
|
|
}
|
|
if (l->cidrnet.bits != p->units) {
|
|
ipv6_pool_dereference(&p, MDL);
|
|
continue;
|
|
}
|
|
mark_lease_unavailable(p, &pref);
|
|
ipv6_pool_dereference(&p, MDL);
|
|
}
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
void
|
|
mark_phosts_unavailable(void) {
|
|
hash_foreach(host_name_hash, mark_phosts_unavailable_support);
|
|
}
|
|
|
|
void
|
|
mark_interfaces_unavailable(void) {
|
|
struct interface_info *ip;
|
|
int i;
|
|
struct ipv6_pool *p;
|
|
|
|
ip = interfaces;
|
|
while (ip != NULL) {
|
|
for (i=0; i<ip->v6address_count; i++) {
|
|
p = NULL;
|
|
if (find_ipv6_pool(&p, D6O_IA_NA, &ip->v6addresses[i])
|
|
== ISC_R_SUCCESS) {
|
|
mark_lease_unavailable(p,
|
|
&ip->v6addresses[i]);
|
|
ipv6_pool_dereference(&p, MDL);
|
|
}
|
|
if (find_ipv6_pool(&p, D6O_IA_TA, &ip->v6addresses[i])
|
|
== ISC_R_SUCCESS) {
|
|
mark_lease_unavailable(p,
|
|
&ip->v6addresses[i]);
|
|
ipv6_pool_dereference(&p, MDL);
|
|
}
|
|
}
|
|
ip = ip->next;
|
|
}
|
|
}
|
|
|
|
/*!
|
|
* \brief Create a new IPv6 pond structure.
|
|
*
|
|
* Allocate space for a new ipv6_pond structure and return a reference
|
|
* to it, includes setting the reference count to 1.
|
|
*
|
|
* \param pond = space for returning a referenced pointer to the pond.
|
|
* This must point to a space that has been initialzied
|
|
* to NULL by the caller.
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pond was successfully created, pond points to it.
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
|
|
* modified
|
|
* ISC_R_NOMEMORY = The system wasn't able to allocate memory, pond has
|
|
* not been modified.
|
|
*/
|
|
isc_result_t
|
|
ipv6_pond_allocate(struct ipv6_pond **pond, const char *file, int line) {
|
|
struct ipv6_pond *tmp;
|
|
|
|
if (pond == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*pond != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = dmalloc(sizeof(*tmp), file, line);
|
|
if (tmp == NULL) {
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
|
|
tmp->refcnt = 1;
|
|
|
|
*pond = tmp;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief reference an IPv6 pond structure.
|
|
*
|
|
* This function genreates a reference to an ipv6_pond structure
|
|
* and increments the reference count on the structure.
|
|
*
|
|
* \param[out] pond = space for returning a referenced pointer to the pond.
|
|
* This must point to a space that has been initialzied
|
|
* to NULL by the caller.
|
|
* \param[in] src = A pointer to the pond to reference. This must not be
|
|
* NULL.
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pond was successfully referenced, pond now points
|
|
* to src.
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
|
|
* modified.
|
|
*/
|
|
isc_result_t
|
|
ipv6_pond_reference(struct ipv6_pond **pond, struct ipv6_pond *src,
|
|
const char *file, int line) {
|
|
if (pond == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (*pond != NULL) {
|
|
log_error("%s(%d): non-NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
if (src == NULL) {
|
|
log_error("%s(%d): NULL pointer reference", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
*pond = src;
|
|
src->refcnt++;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
/*!
|
|
*
|
|
* \brief de-reference an IPv6 pond structure.
|
|
*
|
|
* This function decrements the reference count in an ipv6_pond structure.
|
|
* If this was the last reference then the memory for the structure is
|
|
* freed.
|
|
*
|
|
* \param[in] pond = A pointer to the pointer to the pond that should be
|
|
* de-referenced. On success the pointer to the pond
|
|
* is cleared. It must not be NULL and must not point
|
|
* to NULL.
|
|
*
|
|
* \return
|
|
* ISC_R_SUCCESS = The pond was successfully de-referenced, pond now points
|
|
* to NULL
|
|
* DHCP_R_INVALIDARG = One of the arugments was invalid, pond has not been
|
|
* modified.
|
|
*/
|
|
|
|
isc_result_t
|
|
ipv6_pond_dereference(struct ipv6_pond **pond, const char *file, int line) {
|
|
struct ipv6_pond *tmp;
|
|
|
|
if ((pond == NULL) || (*pond == NULL)) {
|
|
log_error("%s(%d): NULL pointer", file, line);
|
|
return DHCP_R_INVALIDARG;
|
|
}
|
|
|
|
tmp = *pond;
|
|
*pond = NULL;
|
|
|
|
tmp->refcnt--;
|
|
if (tmp->refcnt < 0) {
|
|
log_error("%s(%d): negative refcnt", file, line);
|
|
tmp->refcnt = 0;
|
|
}
|
|
if (tmp->refcnt == 0) {
|
|
dfree(tmp, file, line);
|
|
}
|
|
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
#ifdef EUI_64
|
|
/*
|
|
* Enables/disables EUI-64 address assignment for a pond
|
|
*
|
|
* Excecutes statements down to the pond's scope and sets the pond's
|
|
* use_eui_64 flag accordingly. In addition it iterates over the
|
|
* pond's pools ensuring they are all /64. Anything else is deemed
|
|
* invalid for EUI-64. It returns the number of invalid pools
|
|
* detected. This is done post-parsing as use-eui-64 can be set
|
|
* down to the pool scope and we can't reliably do it until the
|
|
* entire configuration has been parsed.
|
|
*/
|
|
int
|
|
set_eui_64(struct ipv6_pond *pond) {
|
|
int invalid_cnt = 0;
|
|
struct option_state* options = NULL;
|
|
struct option_cache *oc = NULL;
|
|
option_state_allocate(&options, MDL);
|
|
execute_statements_in_scope(NULL, NULL, NULL, NULL, NULL, options,
|
|
&global_scope, pond->group, NULL, NULL);
|
|
|
|
pond->use_eui_64 =
|
|
((oc = lookup_option(&server_universe, options, SV_USE_EUI_64))
|
|
&&
|
|
(evaluate_boolean_option_cache (NULL, NULL, NULL, NULL,
|
|
options, NULL, &global_scope,
|
|
oc, MDL)));
|
|
if (pond->use_eui_64) {
|
|
// Check all pools are valid
|
|
int i = 0;
|
|
struct ipv6_pool* p;
|
|
while((p = pond->ipv6_pools[i++]) != NULL) {
|
|
if (p->bits != 64) {
|
|
log_error("Pool %s/%d cannot use EUI-64,"
|
|
" prefix must 64",
|
|
pin6_addr(&p->start_addr), p->bits);
|
|
invalid_cnt++;
|
|
} else {
|
|
log_debug("Pool: %s/%d - will use EUI-64",
|
|
pin6_addr(&p->start_addr), p->bits);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Don't need the options anymore. */
|
|
option_state_dereference(&options, MDL);
|
|
return (invalid_cnt);
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Emits a log for each pond that has been flagged as being a "jumbo range"
|
|
* A pond is considered a "jumbo range" when the total number of elements
|
|
* exceeds the maximum value of POND_TRACK_MAX (currently maximum value
|
|
* that can be stored by ipv6_pond.num_total). Since we disable threshold
|
|
* logging for jumbo ranges, we need to report this to the user. This
|
|
* function allows us to report jumbo ponds after config parsing, so the
|
|
* logs can be seen both on the console (-T) and the log facility (i.e syslog).
|
|
*
|
|
* Note, threshold logging is done at the pond level, so we need emit a list
|
|
* of the addresses ranges of the pools in the pond affected.
|
|
*/
|
|
void
|
|
report_jumbo_ranges() {
|
|
struct shared_network* s;
|
|
char log_buf[1084];
|
|
#ifdef EUI_64
|
|
int invalid_cnt = 0;
|
|
#endif
|
|
|
|
/* Loop thru all the networks looking for jumbo range ponds */
|
|
for (s = shared_networks; s; s = s -> next) {
|
|
struct ipv6_pond* pond = s->ipv6_pond;
|
|
while (pond) {
|
|
#ifdef EUI_64
|
|
/* while we're here, set the pond's use_eui_64 flag */
|
|
invalid_cnt += set_eui_64(pond);
|
|
#endif
|
|
/* if its a jumbo and has pools(sanity check) */
|
|
if (pond->jumbo_range == 1 && (pond->ipv6_pools)) {
|
|
struct ipv6_pool* pool;
|
|
char *bufptr = log_buf;
|
|
size_t space_left = sizeof(log_buf) - 1;
|
|
int i = 0;
|
|
int used = 0;
|
|
|
|
/* Build list containing the start-address/CIDR
|
|
* of each pool */
|
|
*bufptr = '\0';
|
|
while ((pool = pond->ipv6_pools[i++]) &&
|
|
(space_left > (INET6_ADDRSTRLEN + 6))) {
|
|
/* more than one so add a comma */
|
|
if (i > 1) {
|
|
*bufptr++ = ',';
|
|
*bufptr++ = ' ';
|
|
*bufptr = '\0';
|
|
space_left -= 2;
|
|
}
|
|
|
|
/* add the address */
|
|
inet_ntop(AF_INET6, &pool->start_addr,
|
|
bufptr, INET6_ADDRSTRLEN);
|
|
|
|
used = strlen(bufptr);
|
|
bufptr += used;
|
|
space_left -= used;
|
|
|
|
/* add the CIDR */
|
|
sprintf (bufptr, "/%d",pool->bits);
|
|
used = strlen(bufptr);
|
|
bufptr += used;
|
|
space_left -= used;
|
|
*bufptr = '\0';
|
|
}
|
|
|
|
log_info("Threshold logging disabled for shared"
|
|
" subnet of ranges: %s", log_buf);
|
|
}
|
|
pond = pond->next;
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef EUI_64
|
|
if (invalid_cnt) {
|
|
log_fatal ("%d pool(s) are invalid for EUI-64 use",
|
|
invalid_cnt);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
|
|
/*
|
|
* \brief Tests that 16-bit hardware type is less than 256
|
|
*
|
|
* XXX: DHCPv6 gives a 16-bit field for the htype. DHCPv4 gives an
|
|
* 8-bit field. To change the semantics of the generic 'hardware'
|
|
* structure, we would have to adjust many DHCPv4 sources (from
|
|
* interface to DHCPv4 lease code), and we would have to update the
|
|
* 'hardware' config directive (probably being reverse compatible and
|
|
* providing a new upgrade/replacement primitive). This is a little
|
|
* too much to change for now. Hopefully we will revisit this before
|
|
* hardware types exceeding 8 bits are assigned.
|
|
*
|
|
* Uses a static variable to limit log occurence to once per startup
|
|
*
|
|
* \param htype hardware type value to test
|
|
*
|
|
* \return returns 0 if the value is too large
|
|
*
|
|
*/
|
|
int htype_bounds_check(uint16_t htype) {
|
|
static int log_once = 0;
|
|
|
|
if (htype & 0xFF00) {
|
|
if (!log_once) {
|
|
log_error("Attention: At least one client advertises a "
|
|
"hardware type of %d, which exceeds the software "
|
|
"limitation of 255.", htype);
|
|
log_once = 1;
|
|
}
|
|
|
|
return(0);
|
|
}
|
|
|
|
return(1);
|
|
}
|
|
|
|
/*!
|
|
* \brief Look for hosts by MAC address if it's available
|
|
*
|
|
* Checks the inbound packet against host declarations which specified:
|
|
*
|
|
* "hardware ethernet <MAC>;"
|
|
*
|
|
* For directly connected clients, the function will use the MAC address
|
|
* contained in packet:haddr if it's populated. \TODO - While the logic is in
|
|
* place for this search, the socket layer does not yet populate packet:haddr,
|
|
* this is to be done under rt41523.
|
|
*
|
|
* For relayed clients, the function will use the MAC address from the
|
|
* client-linklayer-address option if it has been supplied by the relay
|
|
* directly connected to the client.
|
|
*
|
|
* \param hp[out] - pointer to storage for the host delcaration if found
|
|
* \param packet - received packet
|
|
* \param opt_state - option state to search
|
|
* \param file - source file
|
|
* \param line - line number
|
|
*
|
|
* \return non-zero if a matching host was found, zero otherwise
|
|
*/
|
|
int find_hosts_by_haddr6(struct host_decl **hp,
|
|
struct packet *packet,
|
|
struct option_state *opt_state,
|
|
const char *file, int line) {
|
|
int found = 0;
|
|
int htype;
|
|
int hlen;
|
|
|
|
/* For directly connected clients, use packet:haddr if populated */
|
|
if (packet->dhcpv6_container_packet == NULL) {
|
|
if (packet->haddr) {
|
|
htype = packet->haddr->hbuf[0];
|
|
hlen = packet->haddr->hlen - 1,
|
|
log_debug("find_hosts_by_haddr6: using packet->haddr,"
|
|
" type: %d, len: %d", htype, hlen);
|
|
found = find_hosts_by_haddr (hp, htype,
|
|
&packet->haddr->hbuf[1],
|
|
hlen, MDL);
|
|
}
|
|
} else {
|
|
/* The first container packet is the from the relay directly
|
|
* connected to the client. Per RFC 6939, that is only relay
|
|
* that may supply the client linklayer address option. */
|
|
struct packet *relay_packet = packet->dhcpv6_container_packet;
|
|
struct option_state *relay_state = relay_packet->options;
|
|
struct data_string rel_addr;
|
|
struct option_cache *oc;
|
|
|
|
/* Look for the option in the first relay packet */
|
|
oc = lookup_option(&dhcpv6_universe, relay_state,
|
|
D6O_CLIENT_LINKLAYER_ADDR);
|
|
if (!oc) {
|
|
/* Not there, so bail */
|
|
return (0);
|
|
}
|
|
|
|
/* The option is present, fetch the address data */
|
|
memset(&rel_addr, 0, sizeof(rel_addr));
|
|
if (!evaluate_option_cache(&rel_addr, relay_packet, NULL, NULL,
|
|
relay_state, NULL, &global_scope,
|
|
oc, MDL)) {
|
|
log_error("find_hosts_by_add6:"
|
|
"Error evaluating option cache");
|
|
return (0);
|
|
}
|
|
|
|
/* The relay address data should be:
|
|
* byte 0 - 1 = hardware type
|
|
* bytes 2 - hlen = hardware address
|
|
* where hlen ( hardware address len) is option data len - 2 */
|
|
hlen = rel_addr.len - 2;
|
|
if (hlen > 0 && hlen <= HARDWARE_ADDR_LEN) {
|
|
htype = getUShort(rel_addr.data);
|
|
if (htype_bounds_check(htype)) {
|
|
/* Looks valid, let's search with it */
|
|
log_debug("find_hosts_by_haddr6:"
|
|
"using relayed haddr"
|
|
" type: %d, len: %d", htype, hlen);
|
|
found = find_hosts_by_haddr (hp, htype,
|
|
&rel_addr.data[2],
|
|
hlen, MDL);
|
|
}
|
|
}
|
|
|
|
data_string_forget(&rel_addr, MDL);
|
|
}
|
|
|
|
return (found);
|
|
}
|
|
|
|
/*
|
|
* find_host_by_duid_chaddr() synthesizes a DHCPv4-like 'hardware'
|
|
* parameter from a DHCPv6 supplied DUID (client-identifier option),
|
|
* and may seek to use client or relay supplied hardware addresses.
|
|
*/
|
|
int
|
|
find_hosts_by_duid_chaddr(struct host_decl **host,
|
|
const struct data_string *client_id) {
|
|
int htype, hlen;
|
|
const unsigned char *chaddr;
|
|
|
|
/*
|
|
* The DUID-LL and DUID-LLT must have a 2-byte DUID type and 2-byte
|
|
* htype.
|
|
*/
|
|
if (client_id->len < 4)
|
|
return 0;
|
|
|
|
/*
|
|
* The third and fourth octets of the DUID-LL and DUID-LLT
|
|
* is the hardware type, but in 16 bits.
|
|
*/
|
|
htype = getUShort(client_id->data + 2);
|
|
hlen = 0;
|
|
chaddr = NULL;
|
|
|
|
/* The first two octets of the DUID identify the type. */
|
|
switch(getUShort(client_id->data)) {
|
|
case DUID_LLT:
|
|
if (client_id->len > 8) {
|
|
hlen = client_id->len - 8;
|
|
chaddr = client_id->data + 8;
|
|
}
|
|
break;
|
|
|
|
case DUID_LL:
|
|
/*
|
|
* Note that client_id->len must be greater than or equal
|
|
* to four to get to this point in the function.
|
|
*/
|
|
hlen = client_id->len - 4;
|
|
chaddr = client_id->data + 4;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if ((hlen == 0) || (hlen > HARDWARE_ADDR_LEN) ||
|
|
!htype_bounds_check(htype)) {
|
|
return (0);
|
|
}
|
|
|
|
return find_hosts_by_haddr(host, htype, chaddr, hlen, MDL);
|
|
}
|
|
|
|
/*
|
|
* \brief Finds a host record that matches the packet, if any
|
|
*
|
|
* This function centralizes the logic for matching v6 client
|
|
* packets to host declarations. We check in the following order
|
|
* for matches with:
|
|
*
|
|
* 1. client_id if specified
|
|
* 2. MAC address when explicitly available
|
|
* 3. packet option
|
|
* 4. synthesized hardware address - this is done last as some
|
|
* synthesis methods are not consided to be reliable
|
|
*
|
|
* \param[out] host - pointer to storage for the located host
|
|
* \param packet - inbound client packet
|
|
* \param client_id - client identifier (if one)
|
|
* \param file - source file
|
|
* \param line - source file line number
|
|
* \return non-zero if a host is found, zero otherwise
|
|
*/
|
|
int
|
|
find_hosts6(struct host_decl** host, struct packet* packet,
|
|
const struct data_string* client_id, char* file, int line) {
|
|
return (find_hosts_by_uid(host, client_id->data, client_id->len, MDL)
|
|
|| find_hosts_by_haddr6(host, packet, packet->options, MDL)
|
|
|| find_hosts_by_option(host, packet, packet->options, MDL)
|
|
|| find_hosts_by_duid_chaddr(host, client_id));
|
|
}
|
|
|
|
/* unittest moved to server/tests/mdb6_unittest.c */
|