mirror of
https://gitlab.isc.org/isc-projects/dhcp
synced 2025-08-22 09:57:20 +00:00
added. If this option is enabled, dhcpd will perform normal DHCID conflict resolution (the default). If this option is disabled, it will instead trust the assigned name implicitly (removing any other bindings on that name). This option has not been made available in dhclient. [ISC-Bugs #16165]
989 lines
28 KiB
C
989 lines
28 KiB
C
/* dns.c
|
|
|
|
Domain Name Service subroutines. */
|
|
|
|
/*
|
|
* Copyright (c) 2004-2006 by Internet Systems Consortium, Inc. ("ISC")
|
|
* Copyright (c) 2001-2003 by Internet Software Consortium
|
|
*
|
|
* Permission to use, copy, modify, and distribute this software for any
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
* copyright notice and this permission notice appear in all copies.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR
|
|
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
|
|
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
|
|
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
|
|
*
|
|
* Internet Systems Consortium, Inc.
|
|
* 950 Charter Street
|
|
* Redwood City, CA 94063
|
|
* <info@isc.org>
|
|
* http://www.isc.org/
|
|
*
|
|
* This software has been written for Internet Systems Consortium
|
|
* by Ted Lemon in cooperation with Nominum, Inc.
|
|
* To learn more about Internet Systems Consortium, see
|
|
* ``http://www.isc.org/''. To learn more about Nominum, Inc., see
|
|
* ``http://www.nominum.com''.
|
|
*/
|
|
|
|
#ifndef lint
|
|
static char copyright[] =
|
|
"$Id: dns.c,v 1.40 2006/07/19 17:14:55 dhankins Exp $ Copyright (c) 2004-2006 Internet Systems Consortium. All rights reserved.\n";
|
|
#endif /* not lint */
|
|
|
|
#include "dhcpd.h"
|
|
#include "arpa/nameser.h"
|
|
#include "dst/md5.h"
|
|
|
|
/* This file is kind of a crutch for the BIND 8 nsupdate code, which has
|
|
* itself been cruelly hacked from its original state. What this code
|
|
* does is twofold: first, it maintains a database of zone cuts that can
|
|
* be used to figure out which server should be contacted to update any
|
|
* given domain name. Secondly, it maintains a set of named TSIG keys,
|
|
* and associates those keys with zones. When an update is requested for
|
|
* a particular zone, the key associated with that zone is used for the
|
|
* update.
|
|
*
|
|
* The way this works is that you define the domain name to which an
|
|
* SOA corresponds, and the addresses of some primaries for that domain name:
|
|
*
|
|
* zone FOO.COM {
|
|
* primary 10.0.17.1;
|
|
* secondary 10.0.22.1, 10.0.23.1;
|
|
* key "FOO.COM Key";
|
|
* }
|
|
*
|
|
* If an update is requested for GAZANGA.TOPANGA.FOO.COM, then the name
|
|
* server looks in its database for a zone record for "GAZANGA.TOPANGA.FOO.COM",
|
|
* doesn't find it, looks for one for "TOPANGA.FOO.COM", doesn't find *that*,
|
|
* looks for "FOO.COM", finds it. So it
|
|
* attempts the update to the primary for FOO.COM. If that times out, it
|
|
* tries the secondaries. You can list multiple primaries if you have some
|
|
* kind of magic name server that supports that. You shouldn't list
|
|
* secondaries that don't know how to forward updates (e.g., BIND 8 doesn't
|
|
* support update forwarding, AFAIK). If no TSIG key is listed, the update
|
|
* is attempted without TSIG.
|
|
*
|
|
* The DHCP server tries to find an existing zone for any given name by
|
|
* trying to look up a local zone structure for each domain containing
|
|
* that name, all the way up to '.'. If it finds one cached, it tries
|
|
* to use that one to do the update. That's why it tries to update
|
|
* "FOO.COM" above, even though theoretically it should try GAZANGA...
|
|
* and TOPANGA... first.
|
|
*
|
|
* If the update fails with a predefined or cached zone (we'll get to
|
|
* those in a second), then it tries to find a more specific zone. This
|
|
* is done by looking first for an SOA for GAZANGA.TOPANGA.FOO.COM. Then
|
|
* an SOA for TOPANGA.FOO.COM is sought. If during this search a predefined
|
|
* or cached zone is found, the update fails - there's something wrong
|
|
* somewhere.
|
|
*
|
|
* If a more specific zone _is_ found, that zone is cached for the length of
|
|
* its TTL in the same database as that described above. TSIG updates are
|
|
* never done for cached zones - if you want TSIG updates you _must_
|
|
* write a zone definition linking the key to the zone. In cases where you
|
|
* know for sure what the key is but do not want to hardcode the IP addresses
|
|
* of the primary or secondaries, a zone declaration can be made that doesn't
|
|
* include any primary or secondary declarations. When the DHCP server
|
|
* encounters this while hunting up a matching zone for a name, it looks up
|
|
* the SOA, fills in the IP addresses, and uses that record for the update.
|
|
* If the SOA lookup returns NXRRSET, a warning is printed and the zone is
|
|
* discarded, TSIG key and all. The search for the zone then continues as if
|
|
* the zone record hadn't been found. Zones without IP addresses don't
|
|
* match when initially hunting for a predefined or cached zone to update.
|
|
*
|
|
* When an update is attempted and no predefined or cached zone is found
|
|
* that matches any enclosing domain of the domain being updated, the DHCP
|
|
* server goes through the same process that is done when the update to a
|
|
* predefined or cached zone fails - starting with the most specific domain
|
|
* name (GAZANGA.TOPANGA.FOO.COM) and moving to the least specific (the root),
|
|
* it tries to look up an SOA record. When it finds one, it creates a cached
|
|
* zone and attempts an update, and gives up if the update fails.
|
|
*
|
|
* TSIG keys are defined like this:
|
|
*
|
|
* key "FOO.COM Key" {
|
|
* algorithm HMAC-MD5.SIG-ALG.REG.INT;
|
|
* secret <Base64>;
|
|
* }
|
|
*
|
|
* <Base64> is a number expressed in base64 that represents the key.
|
|
* It's also permissible to use a quoted string here - this will be
|
|
* translated as the ASCII bytes making up the string, and will not
|
|
* include any NUL termination. The key name can be any text string,
|
|
* and the key type must be one of the key types defined in the draft
|
|
* or by the IANA. Currently only the HMAC-MD5... key type is
|
|
* supported.
|
|
*/
|
|
|
|
dns_zone_hash_t *dns_zone_hash;
|
|
|
|
#if defined (NSUPDATE)
|
|
isc_result_t find_tsig_key (ns_tsig_key **key, const char *zname,
|
|
struct dns_zone *zone)
|
|
{
|
|
isc_result_t status;
|
|
ns_tsig_key *tkey;
|
|
|
|
if (!zone)
|
|
return ISC_R_NOTFOUND;
|
|
|
|
if (!zone -> key) {
|
|
return ISC_R_KEY_UNKNOWN;
|
|
}
|
|
|
|
if ((!zone -> key -> name ||
|
|
strlen (zone -> key -> name) > NS_MAXDNAME) ||
|
|
(!zone -> key -> algorithm ||
|
|
strlen (zone -> key -> algorithm) > NS_MAXDNAME) ||
|
|
(!zone -> key) ||
|
|
(!zone -> key -> key) ||
|
|
(zone -> key -> key -> len == 0)) {
|
|
return ISC_R_INVALIDKEY;
|
|
}
|
|
tkey = dmalloc (sizeof *tkey, MDL);
|
|
if (!tkey) {
|
|
nomem:
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
memset (tkey, 0, sizeof *tkey);
|
|
tkey -> data = dmalloc (zone -> key -> key -> len, MDL);
|
|
if (!tkey -> data) {
|
|
dfree (tkey, MDL);
|
|
goto nomem;
|
|
}
|
|
strcpy (tkey -> name, zone -> key -> name);
|
|
strcpy (tkey -> alg, zone -> key -> algorithm);
|
|
memcpy (tkey -> data,
|
|
zone -> key -> key -> value, zone -> key -> key -> len);
|
|
tkey -> len = zone -> key -> key -> len;
|
|
*key = tkey;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
void tkey_free (ns_tsig_key **key)
|
|
{
|
|
if ((*key) -> data)
|
|
dfree ((*key) -> data, MDL);
|
|
dfree ((*key), MDL);
|
|
*key = (ns_tsig_key *)0;
|
|
}
|
|
#endif
|
|
|
|
isc_result_t enter_dns_zone (struct dns_zone *zone)
|
|
{
|
|
struct dns_zone *tz = (struct dns_zone *)0;
|
|
|
|
if (dns_zone_hash) {
|
|
dns_zone_hash_lookup (&tz,
|
|
dns_zone_hash, zone -> name, 0, MDL);
|
|
if (tz == zone) {
|
|
dns_zone_dereference (&tz, MDL);
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
if (tz) {
|
|
dns_zone_hash_delete (dns_zone_hash,
|
|
zone -> name, 0, MDL);
|
|
dns_zone_dereference (&tz, MDL);
|
|
}
|
|
} else {
|
|
if (!dns_zone_new_hash(&dns_zone_hash, DNS_HASH_SIZE, MDL))
|
|
return ISC_R_NOMEMORY;
|
|
}
|
|
dns_zone_hash_add (dns_zone_hash, zone -> name, 0, zone, MDL);
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
isc_result_t dns_zone_lookup (struct dns_zone **zone, const char *name)
|
|
{
|
|
struct dns_zone *tz = (struct dns_zone *)0;
|
|
int len;
|
|
char *tname = (char *)0;
|
|
isc_result_t status;
|
|
|
|
if (!dns_zone_hash)
|
|
return ISC_R_NOTFOUND;
|
|
|
|
len = strlen (name);
|
|
if (name [len - 1] != '.') {
|
|
tname = dmalloc ((unsigned)len + 2, MDL);
|
|
if (!tname)
|
|
return ISC_R_NOMEMORY;;
|
|
strcpy (tname, name);
|
|
tname [len] = '.';
|
|
tname [len + 1] = 0;
|
|
name = tname;
|
|
}
|
|
if (!dns_zone_hash_lookup (zone, dns_zone_hash, name, 0, MDL))
|
|
status = ISC_R_NOTFOUND;
|
|
else
|
|
status = ISC_R_SUCCESS;
|
|
|
|
if (tname)
|
|
dfree (tname, MDL);
|
|
return status;
|
|
}
|
|
|
|
int dns_zone_dereference (ptr, file, line)
|
|
struct dns_zone **ptr;
|
|
const char *file;
|
|
int line;
|
|
{
|
|
int i;
|
|
struct dns_zone *dns_zone;
|
|
|
|
if (!ptr || !*ptr) {
|
|
log_error ("%s(%d): null pointer", file, line);
|
|
#if defined (POINTER_DEBUG)
|
|
abort ();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
dns_zone = *ptr;
|
|
*ptr = (struct dns_zone *)0;
|
|
--dns_zone -> refcnt;
|
|
rc_register (file, line, ptr, dns_zone, dns_zone -> refcnt, 1, RC_MISC);
|
|
if (dns_zone -> refcnt > 0)
|
|
return 1;
|
|
|
|
if (dns_zone -> refcnt < 0) {
|
|
log_error ("%s(%d): negative refcnt!", file, line);
|
|
#if defined (DEBUG_RC_HISTORY)
|
|
dump_rc_history (dns_zone);
|
|
#endif
|
|
#if defined (POINTER_DEBUG)
|
|
abort ();
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
if (dns_zone -> name)
|
|
dfree (dns_zone -> name, file, line);
|
|
if (dns_zone -> key)
|
|
omapi_auth_key_dereference (&dns_zone -> key, file, line);
|
|
if (dns_zone -> primary)
|
|
option_cache_dereference (&dns_zone -> primary, file, line);
|
|
if (dns_zone -> secondary)
|
|
option_cache_dereference (&dns_zone -> secondary, file, line);
|
|
dfree (dns_zone, file, line);
|
|
return 1;
|
|
}
|
|
|
|
#if defined (NSUPDATE)
|
|
isc_result_t find_cached_zone (const char *dname, ns_class class,
|
|
char *zname, size_t zsize,
|
|
struct in_addr *addrs,
|
|
int naddrs, int *naddrout,
|
|
struct dns_zone **zcookie)
|
|
{
|
|
isc_result_t status = ISC_R_NOTFOUND;
|
|
const char *np;
|
|
struct dns_zone *zone = (struct dns_zone *)0;
|
|
struct data_string nsaddrs;
|
|
int ix;
|
|
|
|
/* The absence of the zcookie pointer indicates that we
|
|
succeeded previously, but the update itself failed, meaning
|
|
that we shouldn't use the cached zone. */
|
|
if (!zcookie)
|
|
return ISC_R_NOTFOUND;
|
|
|
|
/* We can't look up a null zone. */
|
|
if (!dname || !*dname)
|
|
return ISC_R_INVALIDARG;
|
|
|
|
/* For each subzone, try to find a cached zone. */
|
|
for (np = dname; np; np = strchr (np, '.')) {
|
|
np++;
|
|
status = dns_zone_lookup (&zone, np);
|
|
if (status == ISC_R_SUCCESS)
|
|
break;
|
|
}
|
|
|
|
if (status != ISC_R_SUCCESS)
|
|
return status;
|
|
|
|
/* Make sure the zone is valid. */
|
|
if (zone -> timeout && zone -> timeout < cur_time) {
|
|
dns_zone_dereference (&zone, MDL);
|
|
return ISC_R_CANCELED;
|
|
}
|
|
|
|
/* Make sure the zone name will fit. */
|
|
if (strlen (zone -> name) > zsize) {
|
|
dns_zone_dereference (&zone, MDL);
|
|
return ISC_R_NOSPACE;
|
|
}
|
|
strcpy (zname, zone -> name);
|
|
|
|
memset (&nsaddrs, 0, sizeof nsaddrs);
|
|
ix = 0;
|
|
|
|
if (zone -> primary) {
|
|
if (evaluate_option_cache (&nsaddrs, (struct packet *)0,
|
|
(struct lease *)0,
|
|
(struct client_state *)0,
|
|
(struct option_state *)0,
|
|
(struct option_state *)0,
|
|
&global_scope,
|
|
zone -> primary, MDL)) {
|
|
int ip = 0;
|
|
while (ix < naddrs) {
|
|
if (ip + 4 > nsaddrs.len)
|
|
break;
|
|
memcpy (&addrs [ix], &nsaddrs.data [ip], 4);
|
|
ip += 4;
|
|
ix++;
|
|
}
|
|
data_string_forget (&nsaddrs, MDL);
|
|
}
|
|
}
|
|
if (zone -> secondary) {
|
|
if (evaluate_option_cache (&nsaddrs, (struct packet *)0,
|
|
(struct lease *)0,
|
|
(struct client_state *)0,
|
|
(struct option_state *)0,
|
|
(struct option_state *)0,
|
|
&global_scope,
|
|
zone -> secondary, MDL)) {
|
|
int ip = 0;
|
|
while (ix < naddrs) {
|
|
if (ip + 4 > nsaddrs.len)
|
|
break;
|
|
memcpy (&addrs [ix], &nsaddrs.data [ip], 4);
|
|
ip += 4;
|
|
ix++;
|
|
}
|
|
data_string_forget (&nsaddrs, MDL);
|
|
}
|
|
}
|
|
|
|
/* It's not an error for zcookie to have a value here - actually,
|
|
it's quite likely, because res_nupdate cycles through all the
|
|
names in the update looking for their zones. */
|
|
if (!*zcookie)
|
|
dns_zone_reference (zcookie, zone, MDL);
|
|
dns_zone_dereference (&zone, MDL);
|
|
if (naddrout)
|
|
*naddrout = ix;
|
|
return ISC_R_SUCCESS;
|
|
}
|
|
|
|
void forget_zone (struct dns_zone **zone)
|
|
{
|
|
dns_zone_dereference (zone, MDL);
|
|
}
|
|
|
|
void repudiate_zone (struct dns_zone **zone)
|
|
{
|
|
/* XXX Currently we're not differentiating between a cached
|
|
XXX zone and a zone that's been repudiated, which means
|
|
XXX that if we reap cached zones, we blow away repudiated
|
|
XXX zones. This isn't a big problem since we're not yet
|
|
XXX caching zones... :'} */
|
|
|
|
(*zone) -> timeout = cur_time - 1;
|
|
dns_zone_dereference (zone, MDL);
|
|
}
|
|
|
|
void cache_found_zone (ns_class class,
|
|
char *zname, struct in_addr *addrs, int naddrs)
|
|
{
|
|
isc_result_t status = ISC_R_NOTFOUND;
|
|
struct dns_zone *zone = (struct dns_zone *)0;
|
|
struct data_string nsaddrs;
|
|
int ix = strlen (zname);
|
|
|
|
if (zname [ix - 1] == '.')
|
|
ix = 0;
|
|
|
|
/* See if there's already such a zone. */
|
|
if (dns_zone_lookup (&zone, zname) == ISC_R_SUCCESS) {
|
|
/* If it's not a dynamic zone, leave it alone. */
|
|
if (!zone -> timeout)
|
|
return;
|
|
/* Address may have changed, so just blow it away. */
|
|
if (zone -> primary)
|
|
option_cache_dereference (&zone -> primary, MDL);
|
|
if (zone -> secondary)
|
|
option_cache_dereference (&zone -> secondary, MDL);
|
|
} else if (!dns_zone_allocate (&zone, MDL))
|
|
return;
|
|
|
|
if (!zone -> name) {
|
|
zone -> name =
|
|
dmalloc (strlen (zname) + 1 + (ix != 0), MDL);
|
|
if (!zone -> name) {
|
|
dns_zone_dereference (&zone, MDL);
|
|
return;
|
|
}
|
|
strcpy (zone -> name, zname);
|
|
/* Add a trailing '.' if it was missing. */
|
|
if (ix) {
|
|
zone -> name [ix] = '.';
|
|
zone -> name [ix + 1] = 0;
|
|
}
|
|
}
|
|
|
|
/* XXX Need to get the lower-level code to push the actual zone
|
|
XXX TTL up to us. */
|
|
zone -> timeout = cur_time + 1800;
|
|
|
|
if (!option_cache_allocate (&zone -> primary, MDL)) {
|
|
dns_zone_dereference (&zone, MDL);
|
|
return;
|
|
}
|
|
if (!buffer_allocate (&zone -> primary -> data.buffer,
|
|
naddrs * sizeof (struct in_addr), MDL)) {
|
|
dns_zone_dereference (&zone, MDL);
|
|
return;
|
|
}
|
|
memcpy (zone -> primary -> data.buffer -> data,
|
|
addrs, naddrs * sizeof *addrs);
|
|
zone -> primary -> data.data =
|
|
&zone -> primary -> data.buffer -> data [0];
|
|
zone -> primary -> data.len = naddrs * sizeof *addrs;
|
|
|
|
enter_dns_zone (zone);
|
|
}
|
|
|
|
/* Have to use TXT records for now. */
|
|
#define T_DHCID T_TXT
|
|
|
|
int get_dhcid (struct data_string *id,
|
|
int type, const u_int8_t *data, unsigned len)
|
|
{
|
|
unsigned char buf[MD5_DIGEST_LENGTH];
|
|
MD5_CTX md5;
|
|
int i;
|
|
|
|
/* Types can only be 0..(2^16)-1. */
|
|
if (type < 0 || type > 65535)
|
|
return 0;
|
|
|
|
/* Hexadecimal MD5 digest plus two byte type and NUL. */
|
|
if (!buffer_allocate (&id -> buffer,
|
|
(MD5_DIGEST_LENGTH * 2) + 3, MDL))
|
|
return 0;
|
|
id -> data = id -> buffer -> data;
|
|
|
|
/*
|
|
* DHCP clients and servers should use the following forms of client
|
|
* identification, starting with the most preferable, and finishing
|
|
* with the least preferable. If the client does not send any of these
|
|
* forms of identification, the DHCP/DDNS interaction is not defined by
|
|
* this specification. The most preferable form of identification is
|
|
* the Globally Unique Identifier Option [TBD]. Next is the DHCP
|
|
* Client Identifier option. Last is the client's link-layer address,
|
|
* as conveyed in its DHCPREQUEST message. Implementors should note
|
|
* that the link-layer address cannot be used if there are no
|
|
* significant bytes in the chaddr field of the DHCP client's request,
|
|
* because this does not constitute a unique identifier.
|
|
* -- "Interaction between DHCP and DNS"
|
|
* <draft-ietf-dhc-dhcp-dns-12.txt>
|
|
* M. Stapp, Y. Rekhter
|
|
*/
|
|
|
|
/* Put the type in the first two bytes. */
|
|
id -> buffer -> data [0] = "0123456789abcdef" [type >> 4];
|
|
id -> buffer -> data [1] = "0123456789abcdef" [type % 15];
|
|
|
|
/* Mash together an MD5 hash of the identifier. */
|
|
MD5_Init (&md5);
|
|
MD5_Update (&md5, data, len);
|
|
MD5_Final (buf, &md5);
|
|
|
|
/* Convert into ASCII. */
|
|
for (i = 0; i < MD5_DIGEST_LENGTH; i++) {
|
|
id -> buffer -> data [i * 2 + 2] =
|
|
"0123456789abcdef" [(buf [i] >> 4) & 0xf];
|
|
id -> buffer -> data [i * 2 + 3] =
|
|
"0123456789abcdef" [buf [i] & 0xf];
|
|
}
|
|
id -> len = MD5_DIGEST_LENGTH * 2 + 2;
|
|
id -> buffer -> data [id -> len] = 0;
|
|
id -> terminated = 1;
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Now for the DDNS update code that is shared between client and
|
|
server... */
|
|
|
|
isc_result_t
|
|
ddns_update_a(struct data_string *ddns_fwd_name, struct iaddr ddns_addr,
|
|
struct data_string *ddns_dhcid, unsigned long ttl,
|
|
unsigned rrsetp, unsigned conflict)
|
|
{
|
|
ns_updque updqueue;
|
|
ns_updrec *updrec;
|
|
isc_result_t result;
|
|
char ddns_address [16];
|
|
const char *logstr;
|
|
|
|
if (ddns_addr.len != 4)
|
|
return ISC_R_INVALIDARG;
|
|
|
|
/* %Audit% Cannot exceed 16 bytes. %2004.06.17,Safe% */
|
|
sprintf (ddns_address, "%u.%u.%u.%u",
|
|
ddns_addr.iabuf[0], ddns_addr.iabuf[1],
|
|
ddns_addr.iabuf[2], ddns_addr.iabuf[3]);
|
|
|
|
/*
|
|
* When a DHCP client or server intends to update an A RR, it first
|
|
* prepares a DNS UPDATE query which includes as a prerequisite the
|
|
* assertion that the name does not exist. The update section of the
|
|
* query attempts to add the new name and its IP address mapping (an A
|
|
* RR), and the DHCID RR with its unique client-identity.
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
ISC_LIST_INIT (updqueue);
|
|
|
|
/*
|
|
* A RR does not exist.
|
|
*/
|
|
updrec = minires_mkupdrec (S_PREREQ,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)0;
|
|
updrec -> r_size = 0;
|
|
updrec -> r_opcode = rrsetp ? NXRRSET : NXDOMAIN;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Add A RR.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, ttl);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)ddns_address;
|
|
updrec -> r_size = strlen (ddns_address);
|
|
updrec -> r_opcode = ADD;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Add DHCID RR.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_DHCID, ttl);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = ddns_dhcid -> data;
|
|
updrec -> r_size = ddns_dhcid -> len;
|
|
updrec -> r_opcode = ADD;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Attempt to perform the update.
|
|
*/
|
|
result = minires_nupdate (&resolver_state, ISC_LIST_HEAD (updqueue));
|
|
|
|
#ifdef DEBUG_DNS_UPDATES
|
|
print_dns_status ((int)result, &updqueue);
|
|
#endif
|
|
|
|
/*
|
|
* If this update operation succeeds, the updater can conclude that it
|
|
* has added a new name whose only RRs are the A and DHCID RR records.
|
|
* The A RR update is now complete (and a client updater is finished,
|
|
* while a server might proceed to perform a PTR RR update).
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
if (result == ISC_R_SUCCESS) {
|
|
log_info ("Added new forward map from %.*s to %s",
|
|
(int)ddns_fwd_name -> len,
|
|
(const char *)ddns_fwd_name -> data, ddns_address);
|
|
goto error;
|
|
}
|
|
|
|
|
|
/*
|
|
* If the first update operation fails with YXDOMAIN, the updater can
|
|
* conclude that the intended name is in use. The updater then
|
|
* attempts to confirm that the DNS name is not being used by some
|
|
* other host. The updater prepares a second UPDATE query in which the
|
|
* prerequisite is that the desired name has attached to it a DHCID RR
|
|
* whose contents match the client identity. The update section of
|
|
* this query deletes the existing A records on the name, and adds the
|
|
* A record that matches the DHCP binding and the DHCID RR with the
|
|
* client identity.
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
if (result != (rrsetp ? ISC_R_YXRRSET : ISC_R_YXDOMAIN)) {
|
|
log_error ("Unable to add forward map from %.*s to %s: %s",
|
|
(int)ddns_fwd_name -> len,
|
|
(const char *)ddns_fwd_name -> data, ddns_address,
|
|
isc_result_totext (result));
|
|
goto error;
|
|
}
|
|
|
|
while (!ISC_LIST_EMPTY (updqueue)) {
|
|
updrec = ISC_LIST_HEAD (updqueue);
|
|
ISC_LIST_UNLINK (updqueue, updrec, r_link);
|
|
minires_freeupdrec (updrec);
|
|
}
|
|
|
|
/* If we're doing conflict resolution, we use a set of prereqs. If
|
|
* not, we delete the DHCID in addition to all A rrsets.
|
|
*/
|
|
if (conflict) {
|
|
/*
|
|
* DHCID RR exists, and matches client identity.
|
|
*/
|
|
updrec = minires_mkupdrec (S_PREREQ,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_DHCID, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = ddns_dhcid -> data;
|
|
updrec -> r_size = ddns_dhcid -> len;
|
|
updrec -> r_opcode = YXRRSET;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
} else {
|
|
/*
|
|
* Conflict detection override: delete DHCID RRs.
|
|
*/
|
|
updrec = minires_mkupdrec(S_UPDATE, ddns_fwd_name->data,
|
|
C_IN, T_DHCID, 0);
|
|
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec->r_data = NULL;
|
|
updrec->r_size = 0;
|
|
updrec->r_opcode = DELETE;
|
|
|
|
ISC_LIST_APPEND(updqueue, updrec, r_link);
|
|
}
|
|
|
|
|
|
/*
|
|
* Delete A RRset.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)0;
|
|
updrec -> r_size = 0;
|
|
updrec -> r_opcode = DELETE;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Add A RR.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, ttl);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)ddns_address;
|
|
updrec -> r_size = strlen (ddns_address);
|
|
updrec -> r_opcode = ADD;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Attempt to perform the update.
|
|
*/
|
|
result = minires_nupdate (&resolver_state, ISC_LIST_HEAD (updqueue));
|
|
|
|
switch (result) {
|
|
case ISC_R_SUCCESS:
|
|
logstr = NULL;
|
|
break;
|
|
|
|
case ISC_R_YXRRSET:
|
|
case ISC_R_YXDOMAIN:
|
|
logstr = "DHCID mismatch, belongs to another client.";
|
|
break;
|
|
|
|
case ISC_R_NXRRSET:
|
|
case ISC_R_NXDOMAIN:
|
|
logstr = "Has an A record but no DHCID, not mine.";
|
|
break;
|
|
|
|
default:
|
|
logstr = isc_result_totext(result);
|
|
break;
|
|
}
|
|
|
|
if (logstr != NULL)
|
|
log_error("Forward map from %.*s to %s FAILED: %s",
|
|
(int)ddns_fwd_name -> len,
|
|
(const char *)ddns_fwd_name -> data,
|
|
ddns_address, logstr);
|
|
else
|
|
log_info("Added new forward map from %.*s to %s",
|
|
(int)ddns_fwd_name -> len,
|
|
(const char *)ddns_fwd_name -> data, ddns_address);
|
|
|
|
#if defined (DEBUG_DNS_UPDATES)
|
|
print_dns_status ((int)result, &updqueue);
|
|
#endif
|
|
|
|
/*
|
|
* If this query succeeds, the updater can conclude that the current
|
|
* client was the last client associated with the domain name, and that
|
|
* the name now contains the updated A RR. The A RR update is now
|
|
* complete (and a client updater is finished, while a server would
|
|
* then proceed to perform a PTR RR update).
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
/*
|
|
* If the second query fails with NXRRSET, the updater must conclude
|
|
* that the client's desired name is in use by another host. At this
|
|
* juncture, the updater can decide (based on some administrative
|
|
* configuration outside of the scope of this document) whether to let
|
|
* the existing owner of the name keep that name, and to (possibly)
|
|
* perform some name disambiguation operation on behalf of the current
|
|
* client, or to replace the RRs on the name with RRs that represent
|
|
* the current client. If the configured policy allows replacement of
|
|
* existing records, the updater submits a query that deletes the
|
|
* existing A RR and the existing DHCID RR, adding A and DHCID RRs that
|
|
* represent the IP address and client-identity of the new client.
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
error:
|
|
while (!ISC_LIST_EMPTY (updqueue)) {
|
|
updrec = ISC_LIST_HEAD (updqueue);
|
|
ISC_LIST_UNLINK (updqueue, updrec, r_link);
|
|
minires_freeupdrec (updrec);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
isc_result_t ddns_remove_a (struct data_string *ddns_fwd_name,
|
|
struct iaddr ddns_addr,
|
|
struct data_string *ddns_dhcid)
|
|
{
|
|
ns_updque updqueue;
|
|
ns_updrec *updrec;
|
|
isc_result_t result = SERVFAIL;
|
|
char ddns_address [16];
|
|
|
|
if (ddns_addr.len != 4)
|
|
return ISC_R_INVALIDARG;
|
|
|
|
/* %Audit% Cannot exceed 16 bytes. %2004.06.17,Safe% */
|
|
sprintf (ddns_address, "%u.%u.%u.%u",
|
|
ddns_addr.iabuf[0], ddns_addr.iabuf[1],
|
|
ddns_addr.iabuf[2], ddns_addr.iabuf[3]);
|
|
|
|
/*
|
|
* The entity chosen to handle the A record for this client (either the
|
|
* client or the server) SHOULD delete the A record that was added when
|
|
* the lease was made to the client.
|
|
*
|
|
* In order to perform this delete, the updater prepares an UPDATE
|
|
* query which contains two prerequisites. The first prerequisite
|
|
* asserts that the DHCID RR exists whose data is the client identity
|
|
* described in Section 4.3. The second prerequisite asserts that the
|
|
* data in the A RR contains the IP address of the lease that has
|
|
* expired or been released.
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
ISC_LIST_INIT (updqueue);
|
|
|
|
/*
|
|
* DHCID RR exists, and matches client identity.
|
|
*/
|
|
updrec = minires_mkupdrec (S_PREREQ,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_DHCID,0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = ddns_dhcid -> data;
|
|
updrec -> r_size = ddns_dhcid -> len;
|
|
updrec -> r_opcode = YXRRSET;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* A RR matches the expiring lease.
|
|
*/
|
|
updrec = minires_mkupdrec (S_PREREQ,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)ddns_address;
|
|
updrec -> r_size = strlen (ddns_address);
|
|
updrec -> r_opcode = YXRRSET;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
|
|
/*
|
|
* Delete appropriate A RR.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)ddns_address;
|
|
updrec -> r_size = strlen (ddns_address);
|
|
updrec -> r_opcode = DELETE;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
/*
|
|
* Attempt to perform the update.
|
|
*/
|
|
result = minires_nupdate (&resolver_state, ISC_LIST_HEAD (updqueue));
|
|
print_dns_status ((int)result, &updqueue);
|
|
|
|
/*
|
|
* If the query fails, the updater MUST NOT delete the DNS name. It
|
|
* may be that the host whose lease on the server has expired has moved
|
|
* to another network and obtained a lease from a different server,
|
|
* which has caused the client's A RR to be replaced. It may also be
|
|
* that some other client has been configured with a name that matches
|
|
* the name of the DHCP client, and the policy was that the last client
|
|
* to specify the name would get the name. In this case, the DHCID RR
|
|
* will no longer match the updater's notion of the client-identity of
|
|
* the host pointed to by the DNS name.
|
|
* -- "Interaction between DHCP and DNS"
|
|
*/
|
|
|
|
if (result != ISC_R_SUCCESS) {
|
|
/* If the rrset isn't there, we didn't need to do the
|
|
delete, which is success. */
|
|
if (result == ISC_R_NXRRSET || result == ISC_R_NXDOMAIN)
|
|
result = ISC_R_SUCCESS;
|
|
goto error;
|
|
}
|
|
|
|
while (!ISC_LIST_EMPTY (updqueue)) {
|
|
updrec = ISC_LIST_HEAD (updqueue);
|
|
ISC_LIST_UNLINK (updqueue, updrec, r_link);
|
|
minires_freeupdrec (updrec);
|
|
}
|
|
|
|
/* If the deletion of the A succeeded, and there are no A records
|
|
left for this domain, then we can blow away the DHCID record
|
|
as well. We can't blow away the DHCID record above because
|
|
it's possible that more than one A has been added to this
|
|
domain name. */
|
|
ISC_LIST_INIT (updqueue);
|
|
|
|
/*
|
|
* A RR does not exist.
|
|
*/
|
|
updrec = minires_mkupdrec (S_PREREQ,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_A, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = (unsigned char *)0;
|
|
updrec -> r_size = 0;
|
|
updrec -> r_opcode = NXRRSET;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
/*
|
|
* Delete appropriate DHCID RR.
|
|
*/
|
|
updrec = minires_mkupdrec (S_UPDATE,
|
|
(const char *)ddns_fwd_name -> data,
|
|
C_IN, T_DHCID, 0);
|
|
if (!updrec) {
|
|
result = ISC_R_NOMEMORY;
|
|
goto error;
|
|
}
|
|
|
|
updrec -> r_data = ddns_dhcid -> data;
|
|
updrec -> r_size = ddns_dhcid -> len;
|
|
updrec -> r_opcode = DELETE;
|
|
|
|
ISC_LIST_APPEND (updqueue, updrec, r_link);
|
|
|
|
/*
|
|
* Attempt to perform the update.
|
|
*/
|
|
result = minires_nupdate (&resolver_state, ISC_LIST_HEAD (updqueue));
|
|
print_dns_status ((int)result, &updqueue);
|
|
|
|
/* Fall through. */
|
|
error:
|
|
|
|
while (!ISC_LIST_EMPTY (updqueue)) {
|
|
updrec = ISC_LIST_HEAD (updqueue);
|
|
ISC_LIST_UNLINK (updqueue, updrec, r_link);
|
|
minires_freeupdrec (updrec);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
#endif /* NSUPDATE */
|
|
|
|
HASH_FUNCTIONS (dns_zone, const char *, struct dns_zone, dns_zone_hash_t,
|
|
dns_zone_reference, dns_zone_dereference, do_case_hash)
|