2
0
mirror of https://gitlab.isc.org/isc-projects/dhcp synced 2025-08-22 09:57:20 +00:00
isc-dhcp/common/dispatch.c

366 lines
9.0 KiB
C

/* dispatch.c
Network input dispatcher... */
/*
* Copyright (c) 1995, 1996, 1998, 1999 The Internet Software Consortium.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of The Internet Software Consortium nor the names
* of its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE INTERNET SOFTWARE CONSORTIUM AND
* CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE INTERNET SOFTWARE CONSORTIUM OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* This software has been written for the Internet Software Consortium
* by Ted Lemon <mellon@fugue.com> in cooperation with Vixie
* Enterprises. To learn more about the Internet Software Consortium,
* see ``http://www.vix.com/isc''. To learn more about Vixie
* Enterprises, see ``http://www.vix.com''.
*/
#ifndef lint
static char copyright[] =
"$Id: dispatch.c,v 1.53 1999/02/24 17:56:44 mellon Exp $ Copyright (c) 1995, 1996, 1997, 1998, 1999 The Internet Software Consortium. All rights reserved.\n";
#endif /* not lint */
#include "dhcpd.h"
struct protocol *protocols;
struct timeout *timeouts;
static struct timeout *free_timeouts;
int interfaces_invalidated;
#ifdef USE_POLL
/* Wait for packets to come in using poll(). When a packet comes in,
call receive_packet to receive the packet and possibly strip hardware
addressing information from it, and then call through the
bootp_packet_handler hook to try to do something with it. */
void dispatch ()
{
struct protocol *l;
int nfds = 0;
struct pollfd *fds;
int count;
int i;
int to_msec;
nfds = 0;
for (l = protocols; l; l = l -> next) {
++nfds;
}
fds = (struct pollfd *)malloc ((nfds) * sizeof (struct pollfd));
if (!fds)
log_fatal ("Can't allocate poll structures.");
do {
/* Call any expired timeouts, and then if there's
still a timeout registered, time out the select
call then. */
another:
if (timeouts) {
struct timeout *t;
if (timeouts -> when <= cur_time) {
t = timeouts;
timeouts = timeouts -> next;
(*(t -> func)) (t -> what);
t -> next = free_timeouts;
free_timeouts = t;
goto another;
}
/* Figure timeout in milliseconds, and check for
potential overflow. We assume that integers
are 32 bits, which is harmless if they're 64
bits - we'll just get extra timeouts in that
case. Lease times would have to be quite
long in order for a 32-bit integer to overflow,
anyway. */
to_msec = timeouts -> when - cur_time;
if (to_msec > 2147483)
to_msec = 2147483;
to_msec *= 1000;
} else
to_msec = -1;
/* Set up the descriptors to be polled. */
i = 0;
for (l = protocols; l; l = l -> next) {
fds [i].fd = l -> fd;
fds [i].events = POLLIN;
fds [i].revents = 0;
++i;
}
/* Wait for a packet or a timeout... XXX */
count = poll (fds, nfds, to_msec);
/* Get the current time... */
GET_TIME (&cur_time);
/* Not likely to be transitory... */
if (count < 0) {
if (errno == EAGAIN || errno == EINTR)
continue;
else
log_fatal ("poll: %m");
}
i = 0;
for (l = protocols; l; l = l -> next) {
if ((fds [i].revents & POLLIN)) {
fds [i].revents = 0;
if (l -> handler)
(*(l -> handler)) (l);
if (interfaces_invalidated)
break;
}
++i;
}
interfaces_invalidated = 0;
} while (1);
}
#else
/* Wait for packets to come in using select(). When one does, call
receive_packet to receive the packet and possibly strip hardware
addressing information from it, and then call through the
bootp_packet_handler hook to try to do something with it. */
void dispatch ()
{
fd_set r, w, x;
struct protocol *l;
int max = 0;
int count;
struct timeval tv, *tvp;
FD_ZERO (&w);
FD_ZERO (&x);
do {
/* Call any expired timeouts, and then if there's
still a timeout registered, time out the select
call then. */
another:
if (timeouts) {
struct timeout *t;
if (timeouts -> when <= cur_time) {
t = timeouts;
timeouts = timeouts -> next;
(*(t -> func)) (t -> what);
t -> next = free_timeouts;
free_timeouts = t;
goto another;
}
tv.tv_sec = timeouts -> when - cur_time;
tv.tv_usec = 0;
tvp = &tv;
} else
tvp = (struct timeval *)0;
/* Set up the read mask. */
FD_ZERO (&r);
for (l = protocols; l; l = l -> next) {
FD_SET (l -> fd, &r);
if (l -> fd > max)
max = l -> fd;
}
/* Wait for a packet or a timeout... XXX */
count = select (max + 1, &r, &w, &x, tvp);
/* Get the current time... */
GET_TIME (&cur_time);
/* Not likely to be transitory... */
if (count < 0)
log_fatal ("select: %m");
for (l = protocols; l; l = l -> next) {
if (!FD_ISSET (l -> fd, &r))
continue;
if (l -> handler)
(*(l -> handler)) (l);
if (interfaces_invalidated)
break;
}
interfaces_invalidated = 0;
} while (1);
}
#endif /* USE_POLL */
int locate_network (packet)
struct packet *packet;
{
struct iaddr ia;
/* If this came through a gateway, find the corresponding subnet... */
if (packet -> raw -> giaddr.s_addr) {
struct subnet *subnet;
ia.len = 4;
memcpy (ia.iabuf, &packet -> raw -> giaddr, 4);
subnet = find_subnet (ia);
if (subnet)
packet -> shared_network = subnet -> shared_network;
else
packet -> shared_network = (struct shared_network *)0;
} else {
packet -> shared_network =
packet -> interface -> shared_network;
}
if (packet -> shared_network)
return 1;
return 0;
}
void add_timeout (when, where, what)
TIME when;
void (*where) PROTO ((void *));
void *what;
{
struct timeout *t, *q;
/* See if this timeout supersedes an existing timeout. */
t = (struct timeout *)0;
for (q = timeouts; q; q = q -> next) {
if (q -> func == where && q -> what == what) {
if (t)
t -> next = q -> next;
else
timeouts = q -> next;
break;
}
t = q;
}
/* If we didn't supersede a timeout, allocate a timeout
structure now. */
if (!q) {
if (free_timeouts) {
q = free_timeouts;
free_timeouts = q -> next;
q -> func = where;
q -> what = what;
} else {
q = (struct timeout *)malloc (sizeof (struct timeout));
if (!q)
log_fatal ("Can't allocate timeout structure!");
q -> func = where;
q -> what = what;
}
}
q -> when = when;
/* Now sort this timeout into the timeout list. */
/* Beginning of list? */
if (!timeouts || timeouts -> when > q -> when) {
q -> next = timeouts;
timeouts = q;
return;
}
/* Middle of list? */
for (t = timeouts; t -> next; t = t -> next) {
if (t -> next -> when > q -> when) {
q -> next = t -> next;
t -> next = q;
return;
}
}
/* End of list. */
t -> next = q;
q -> next = (struct timeout *)0;
}
void cancel_timeout (where, what)
void (*where) PROTO ((void *));
void *what;
{
struct timeout *t, *q;
/* Look for this timeout on the list, and unlink it if we find it. */
t = (struct timeout *)0;
for (q = timeouts; q; q = q -> next) {
if (q -> func == where && q -> what == what) {
if (t)
t -> next = q -> next;
else
timeouts = q -> next;
break;
}
t = q;
}
/* If we found the timeout, put it on the free list. */
if (q) {
q -> next = free_timeouts;
free_timeouts = q;
}
}
/* Add a protocol to the list of protocols... */
struct protocol *add_protocol (name, fd, handler, local)
char *name;
int fd;
void (*handler) PROTO ((struct protocol *));
void *local;
{
struct protocol *p;
p = (struct protocol *)malloc (sizeof *p);
if (!p)
log_fatal ("can't allocate protocol struct for %s", name);
p -> fd = fd;
p -> handler = handler;
p -> local = local;
p -> next = protocols;
protocols = p;
return p;
}
void remove_protocol (proto)
struct protocol *proto;
{
struct protocol *p, *next, *prev;
prev = (struct protocol *)0;
for (p = protocols; p; p = next) {
next = p -> next;
if (p == proto) {
if (prev)
prev -> next = p -> next;
else
protocols = p -> next;
free (p);
}
}
}