2
0
mirror of https://gitlab.isc.org/isc-projects/kea synced 2025-08-29 13:07:50 +00:00

[master] Merged trac4070 (option tuple)

This commit is contained in:
Francis Dupont 2017-04-18 07:23:49 +02:00
commit 7fa24b7daf
13 changed files with 969 additions and 22 deletions

View File

@ -69,6 +69,13 @@
// only so for instance '\x' is translated into '\x'. But
// as it works on a JSON string value each of these '\'
// characters must be doubled on JSON input.
},
{
// A few options are encoded in (length, string) tuples
// which can be defined using only strings as the CSV
// processing computes lengths.
"name": "bootfile-param",
"data": "root=/dev/sda2, quiet, splash"
}
],
"pools": [

View File

@ -1284,6 +1284,7 @@ It is merely echoed by the server
<row><entry>psid</entry><entry>PSID and PSID length separated by a slash, e.g. 3/4 specifies PSID=3 and PSID length=4. In the wire format it is represented by an 8-bit field carrying PSID length (in this case equal to 4) and the 16-bits long PSID value field (in this case equal to "0011000000000000b" using binary notation). Allowed values for a PSID length are 0 to 16. See <ulink url="http://tools.ietf.org/html/rfc7597">RFC 7597</ulink> for the details about the PSID wire representation</entry></row>
<row><entry>record</entry><entry>Structured data that may comprise any types (except "record" and "empty")</entry></row>
<row><entry>string</entry><entry>Any text</entry></row>
<row><entry>tuple</entry><entry>A length encoded as a 8 (16 for DHCPv6) bit unsigned integer followed by a string of this length</entry></row>
<row><entry>uint8</entry><entry>8 bit unsigned integer with allowed values 0 to 255</entry></row>
<row><entry>uint16</entry><entry>16 bit unsigned integer with allowed values 0 to 65535</entry></row>
<row><entry>uint32</entry><entry>32 bit unsigned integer with allowed values 0 to 4294967295</entry></row>

View File

@ -1204,7 +1204,7 @@ temporarily override a list of interface names and listen on all interfaces.
<row><entry>lq-relay-data</entry><entry>47</entry><entry>record (ipv6-address, binary)</entry><entry>false</entry></row>
<row><entry>lq-client-link</entry><entry>48</entry><entry>ipv6-address</entry><entry>true</entry></row>
<row><entry>bootfile-url</entry><entry>59</entry><entry>string</entry><entry>false</entry></row>
<row><entry>bootfile-param</entry><entry>60</entry><entry>binary</entry><entry>false</entry></row>
<row><entry>bootfile-param</entry><entry>60</entry><entry>tuple</entry><entry>true</entry></row>
<row><entry>client-arch-type</entry><entry>61</entry><entry>uint16</entry><entry>true</entry></row>
<row><entry>nii</entry><entry>62</entry><entry>record (uint8, uint8, uint8)</entry><entry>false</entry></row>
<row><entry>aftr-name</entry><entry>64</entry><entry>fqdn</entry><entry>false</entry></row>

View File

@ -64,6 +64,26 @@ OptionCustom::addArrayDataField(const IOAddress& address) {
buffers_.push_back(buf);
}
void
OptionCustom::addArrayDataField(const std::string& value) {
checkArrayType();
OpaqueDataTuple::LengthFieldType lft = getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE : OpaqueDataTuple::LENGTH_2_BYTES;
OptionBuffer buf;
OptionDataTypeUtil::writeTuple(value, lft, buf);
buffers_.push_back(buf);
}
void
OptionCustom::addArrayDataField(const OpaqueDataTuple& value) {
checkArrayType();
OptionBuffer buf;
OptionDataTypeUtil::writeTuple(value, buf);
buffers_.push_back(buf);
}
void
OptionCustom::addArrayDataField(const bool value) {
checkArrayType();
@ -252,6 +272,18 @@ OptionCustom::createBuffers(const OptionBuffer& data_buf) {
if (std::distance(data, data_buf.end()) > 0) {
data_size = static_cast<size_t>(sizeof(uint8_t) + (*data + 7) / 8);
}
} else if (*field == OPT_TUPLE_TYPE) {
OpaqueDataTuple::LengthFieldType lft =
getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE :
OpaqueDataTuple::LENGTH_2_BYTES;
std::string value =
OptionDataTypeUtil::readTuple(OptionBuffer(data, data_buf.end()),
lft);
data_size = value.size();
// The size of the buffer holding a tuple is always
// 1 or 2 byte larger than the size of the string
data_size += getUniverse() == Option::V4 ? 1 : 2;
} else {
// If we reached the end of buffer we assume that this option is
// truncated because there is no remaining data to initialize
@ -314,6 +346,19 @@ OptionCustom::createBuffers(const OptionBuffer& data_buf) {
// Data size comprises 1 byte holding a prefix length and the
// prefix length (in bytes) rounded to the nearest byte boundary.
data_size = sizeof(uint8_t) + (prefix.first.asUint8() + 7) / 8;
} else if (data_type == OPT_TUPLE_TYPE) {
OpaqueDataTuple::LengthFieldType lft =
getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE :
OpaqueDataTuple::LENGTH_2_BYTES;
std::string value =
OptionDataTypeUtil::readTuple(OptionBuffer(data, data_buf.end()),
lft);
data_size = value.size();
// The size of the buffer holding a tuple is always
// 1 or 2 byte larger than the size of the string
data_size += getUniverse() == Option::V4 ? 1 : 2;
}
// We don't perform other checks for data types that can't be
// used together with array indicator such as strings, empty field
@ -351,6 +396,19 @@ OptionCustom::createBuffers(const OptionBuffer& data_buf) {
data_size = static_cast<size_t>
(sizeof(uint8_t) + (data_buf[0] + 7) / 8);
}
} else if (data_type == OPT_TUPLE_TYPE) {
OpaqueDataTuple::LengthFieldType lft =
getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE :
OpaqueDataTuple::LENGTH_2_BYTES;
std::string value =
OptionDataTypeUtil::readTuple(OptionBuffer(data, data_buf.end()),
lft);
data_size = value.size();
// The size of the buffer holding a tuple is always
// 1 or 2 byte larger than the size of the string
data_size += getUniverse() == Option::V4 ? 1 : 2;
} else {
data_size = std::distance(data, data_buf.end());
}
@ -415,6 +473,9 @@ OptionCustom::dataFieldToText(const OptionDataType data_type,
case OPT_FQDN_TYPE:
text << "\"" << readFqdn(index) << "\"";
break;
case OPT_TUPLE_TYPE:
text << "\"" << readTuple(index) << "\"";
break;
case OPT_STRING_TYPE:
text << "\"" << readString(index) << "\"";
break;
@ -499,6 +560,39 @@ OptionCustom::writeBinary(const OptionBuffer& buf,
buffers_[index] = buf;
}
std::string
OptionCustom::readTuple(const uint32_t index) const {
checkIndex(index);
OpaqueDataTuple::LengthFieldType lft = getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE : OpaqueDataTuple::LENGTH_2_BYTES;
return (OptionDataTypeUtil::readTuple(buffers_[index], lft));
}
void
OptionCustom::readTuple(OpaqueDataTuple& tuple,
const uint32_t index) const {
checkIndex(index);
OptionDataTypeUtil::readTuple(buffers_[index], tuple);
}
void
OptionCustom::writeTuple(const std::string& value, const uint32_t index) {
checkIndex(index);
buffers_[index].clear();
OpaqueDataTuple::LengthFieldType lft = getUniverse() == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE : OpaqueDataTuple::LENGTH_2_BYTES;
OptionDataTypeUtil::writeTuple(value, lft, buffers_[index]);
}
void
OptionCustom::writeTuple(const OpaqueDataTuple& value, const uint32_t index) {
checkIndex(index);
buffers_[index].clear();
OptionDataTypeUtil::writeTuple(value, buffers_[index]);
}
bool
OptionCustom::readBoolean(const uint32_t index) const {
checkIndex(index);

View File

@ -1,4 +1,4 @@
// Copyright (C) 2012-2016 Internet Systems Consortium, Inc. ("ISC")
// Copyright (C) 2012-2017 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
@ -113,6 +113,16 @@ public:
buffers_.push_back(buf);
}
/// @brief Create new buffer and store tuple value in it
///
/// @param value value to be stored as a tuple in the created buffer.
void addArrayDataField(const std::string& value);
/// @brief Create new buffer and store tuple value in it
///
/// @param value value to be stored as a tuple in the created buffer.
void addArrayDataField(const OpaqueDataTuple& value);
/// @brief Create new buffer and store variable length prefix in it.
///
/// @param prefix_len Prefix length.
@ -163,6 +173,34 @@ public:
/// @param index buffer index.
void writeBinary(const OptionBuffer& buf, const uint32_t index = 0);
/// @brief Read a buffer as length and string tuple.
///
/// @param index buffer index.
///
/// @throw isc::OutOfRange if index is out of range.
/// @return string read from a buffer.
std::string readTuple(const uint32_t index = 0) const;
/// @brief Read a buffer into a length and string tuple.
///
/// @param tuple tuple to fill.
/// @param index buffer index.
///
/// @throw isc::OutOfRange if index is out of range.
void readTuple(OpaqueDataTuple& tuple, const uint32_t index = 0) const;
/// @brief Write a length and string tuple into a buffer.
///
/// @param value value to be written.
/// @param index buffer index.
void writeTuple(const std::string& value, const uint32_t index = 0);
/// @brief Write a length and string tuple into a buffer.
///
/// @param value value to be written.
/// @param index buffer index.
void writeTuple(const OpaqueDataTuple& value, const uint32_t index = 0);
/// @brief Read a buffer as boolean value.
///
/// @param index buffer index.

View File

@ -9,6 +9,7 @@
#include <dns/name.h>
#include <util/encode/hex.h>
#include <algorithm>
#include <limits>
using namespace isc::asiolink;
@ -30,6 +31,7 @@ OptionDataTypeUtil::OptionDataTypeUtil() {
data_types_["ipv6-prefix"] = OPT_IPV6_PREFIX_TYPE;
data_types_["psid"] = OPT_PSID_TYPE;
data_types_["string"] = OPT_STRING_TYPE;
data_types_["tuple"] = OPT_TUPLE_TYPE;
data_types_["fqdn"] = OPT_FQDN_TYPE;
data_types_["record"] = OPT_RECORD_TYPE;
@ -47,6 +49,7 @@ OptionDataTypeUtil::OptionDataTypeUtil() {
data_type_names_[OPT_IPV6_PREFIX_TYPE] = "ipv6-prefix";
data_type_names_[OPT_PSID_TYPE] = "psid";
data_type_names_[OPT_STRING_TYPE] = "string";
data_type_names_[OPT_TUPLE_TYPE] = "tuple";
data_type_names_[OPT_FQDN_TYPE] = "fqdn";
data_type_names_[OPT_RECORD_TYPE] = "record";
// The "unknown" data type is declared here so as
@ -141,7 +144,7 @@ OptionDataTypeUtil::readAddress(const std::vector<uint8_t>& buf,
return (IOAddress::fromBytes(AF_INET6, &buf[0]));
} else {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
"IP address. Invalid family: " << family);
<< " IP address. Invalid family: " << family);
}
}
@ -170,6 +173,118 @@ OptionDataTypeUtil::writeBinary(const std::string& hex_str,
buf.insert(buf.end(), binary.begin(), binary.end());
}
std::string
OptionDataTypeUtil::readTuple(const std::vector<uint8_t>& buf,
OpaqueDataTuple::LengthFieldType lengthfieldtype) {
if (lengthfieldtype == OpaqueDataTuple::LENGTH_1_BYTE) {
if (buf.size() < 1) {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
<< " tuple (length). Invalid buffer size: "
<< buf.size());
}
uint8_t len = buf[0];
if (buf.size() < 1 + len) {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
<< " tuple (length " << static_cast<unsigned>(len)
<< "). Invalid buffer size: " << buf.size());
}
std::string value;
value.resize(len);
std::memcpy(&value[0], &buf[1], len);
return (value);
} else if (lengthfieldtype == OpaqueDataTuple::LENGTH_2_BYTES) {
if (buf.size() < 2) {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
<< " tuple (length). Invalid buffer size: "
<< buf.size());
}
uint16_t len = isc::util::readUint16(&buf[0], 2);
if (buf.size() < 2 + len) {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
<< " tuple (length " << len
<< "). Invalid buffer size: " << buf.size());
}
std::string value;
value.resize(len);
std::memcpy(&value[0], &buf[2], len);
return (value);
} else {
isc_throw(BadDataTypeCast, "unable to read data from the buffer as"
<< " tuple. Invalid length type field: "
<< static_cast<unsigned>(lengthfieldtype));
}
}
void
OptionDataTypeUtil::readTuple(const std::vector<uint8_t>& buf,
OpaqueDataTuple& tuple) {
try {
tuple.unpack(buf.begin(), buf.end());
} catch (const OpaqueDataTupleError& ex) {
isc_throw(BadDataTypeCast, ex.what());
}
}
void
OptionDataTypeUtil::writeTuple(const std::string& value,
OpaqueDataTuple::LengthFieldType lengthfieldtype,
std::vector<uint8_t>& buf) {
if (lengthfieldtype == OpaqueDataTuple::LENGTH_1_BYTE) {
if (value.size() > std::numeric_limits<uint8_t>::max()) {
isc_throw(BadDataTypeCast, "invalid tuple value (size "
<< value.size() << " larger than "
<< std::numeric_limits<uint8_t>::max() << ")");
}
buf.push_back(static_cast<uint8_t>(value.size()));
} else if (lengthfieldtype == OpaqueDataTuple::LENGTH_2_BYTES) {
if (value.size() > std::numeric_limits<uint16_t>::max()) {
isc_throw(BadDataTypeCast, "invalid tuple value (size "
<< value.size() << " larger than "
<< std::numeric_limits<uint16_t>::max() << ")");
}
buf.resize(buf.size() + 2);
isc::util::writeUint16(static_cast<uint16_t>(value.size()),
&buf[buf.size() - 2], 2);
} else {
isc_throw(BadDataTypeCast, "unable to write data to the buffer as"
<< " tuple. Invalid length type field: "
<< static_cast<unsigned>(lengthfieldtype));
}
buf.insert(buf.end(), value.begin(), value.end());
}
void
OptionDataTypeUtil::writeTuple(const OpaqueDataTuple& tuple,
std::vector<uint8_t>& buf) {
if (tuple.getLength() == 0) {
isc_throw(BadDataTypeCast, "invalid empty tuple value");
}
if (tuple.getLengthFieldType() == OpaqueDataTuple::LENGTH_1_BYTE) {
if (tuple.getLength() > std::numeric_limits<uint8_t>::max()) {
isc_throw(BadDataTypeCast, "invalid tuple value (size "
<< tuple.getLength() << " larger than "
<< std::numeric_limits<uint8_t>::max() << ")");
}
buf.push_back(static_cast<uint8_t>(tuple.getLength()));
} else if (tuple.getLengthFieldType() == OpaqueDataTuple::LENGTH_2_BYTES) {
if (tuple.getLength() > std::numeric_limits<uint16_t>::max()) {
isc_throw(BadDataTypeCast, "invalid tuple value (size "
<< tuple.getLength() << " larger than "
<< std::numeric_limits<uint16_t>::max() << ")");
}
buf.resize(buf.size() + 2);
isc::util::writeUint16(static_cast<uint16_t>(tuple.getLength()),
&buf[buf.size() - 2], 2);
} else {
isc_throw(BadDataTypeCast, "unable to write data to the buffer as"
<< " tuple. Invalid length type field: "
<< tuple.getLengthFieldType());
}
buf.insert(buf.end(), tuple.getData().begin(), tuple.getData().end());
}
bool
OptionDataTypeUtil::readBool(const std::vector<uint8_t>& buf) {
if (buf.empty()) {

View File

@ -8,6 +8,7 @@
#define OPTION_DATA_TYPES_H
#include <asiolink/io_address.h>
#include <dhcp/opaque_data_tuple.h>
#include <dhcp/option.h>
#include <exceptions/exceptions.h>
#include <util/io_utilities.h>
@ -57,6 +58,7 @@ enum OptionDataType {
OPT_IPV6_PREFIX_TYPE,
OPT_PSID_TYPE,
OPT_STRING_TYPE,
OPT_TUPLE_TYPE,
OPT_FQDN_TYPE,
OPT_RECORD_TYPE,
OPT_UNKNOWN_TYPE
@ -382,6 +384,42 @@ public:
static void writeBinary(const std::string& hex_str,
std::vector<uint8_t>& buf);
/// @brief Read length and string tuple from a buffer.
///
/// @param buf input buffer.
/// @param lengthfieldtype LENGTH_1_BYTE (DHCPv4) or LENGTH_2_BYTES (DHCPv6)
/// @throw isc::dhcp::BadDataTypeCast when the data being read
/// is truncated.
/// @return string being read.
static std::string readTuple(const std::vector<uint8_t>& buf,
OpaqueDataTuple::LengthFieldType lengthfieldtype);
/// @brief Read length and string tuple from a buffer.
///
/// @param buf input buffer.
/// @param tuple reference of the tuple to read into
/// @throw isc::dhcp::BadDataTypeCast when the data being read
/// is truncated.
/// @return tuple being read.
static void readTuple(const std::vector<uint8_t>& buf,
OpaqueDataTuple& tuple);
/// @brief Append length and string tuple to a buffer
///
/// @param value length and string tuple
/// @param lengthfieldtype LENGTH_1_BYTE (DHCPv4) or LENGTH_2_BYTES (DHCPv6)
/// @param [out] buf output buffer.
static void writeTuple(const std::string& value,
OpaqueDataTuple::LengthFieldType lengthfieldtype,
std::vector<uint8_t>& buf);
/// @brief Append length and string tuple to a buffer
///
/// @param tuple length and string tuple
/// @param [out] buf output buffer.
static void writeTuple(const OpaqueDataTuple& tuple,
std::vector<uint8_t>& buf);
/// @brief Read boolean value from a buffer.
///
/// @param buf input buffer.

View File

@ -205,6 +205,14 @@ OptionDefinition::optionFactory(Option::Universe u, uint16_t type,
case OPT_STRING_TYPE:
return (OptionPtr(new OptionString(u, type, begin, end)));
case OPT_TUPLE_TYPE:
// Handle array type only here (see comments for
// OPT_IPV4_ADDRESS_TYPE case).
if (array_type_) {
return (factoryOpaqueDataTuples(u, type, begin, end));
}
break;
default:
// Do nothing. We will return generic option a few lines down.
;
@ -231,11 +239,11 @@ OptionDefinition::optionFactory(Option::Universe u, uint16_t type,
isc_throw(InvalidOptionValue, "no option value specified");
}
} else {
writeToBuffer(util::str::trim(values[0]), type_, buf);
writeToBuffer(u, util::str::trim(values[0]), type_, buf);
}
} else if (array_type_ && type_ != OPT_RECORD_TYPE) {
for (size_t i = 0; i < values.size(); ++i) {
writeToBuffer(util::str::trim(values[i]), type_, buf);
writeToBuffer(u, util::str::trim(values[i]), type_, buf);
}
} else if (type_ == OPT_RECORD_TYPE) {
const RecordFieldsCollection& records = getRecordFields();
@ -245,8 +253,7 @@ OptionDefinition::optionFactory(Option::Universe u, uint16_t type,
<< " of values provided.");
}
for (size_t i = 0; i < records.size(); ++i) {
writeToBuffer(util::str::trim(values[i]),
records[i], buf);
writeToBuffer(u, util::str::trim(values[i]), records[i], buf);
}
}
return (optionFactory(u, type, buf.begin(), buf.end()));
@ -433,7 +440,7 @@ OptionDefinition::haveStatusCodeFormat() const {
bool
OptionDefinition::haveOpaqueDataTuplesFormat() const {
return (getType() == OPT_BINARY_TYPE);
return (haveType(OPT_TUPLE_TYPE) && getArrayType());
}
bool
@ -507,7 +514,8 @@ OptionDefinition::lexicalCastWithRangeCheck(const std::string& value_str)
}
void
OptionDefinition::writeToBuffer(const std::string& value,
OptionDefinition::writeToBuffer(Option::Universe u,
const std::string& value,
const OptionDataType type,
OptionBuffer& buf) const {
// We are going to write value given by value argument to the buffer.
@ -653,6 +661,13 @@ OptionDefinition::writeToBuffer(const std::string& value,
case OPT_FQDN_TYPE:
OptionDataTypeUtil::writeFqdn(value, buf);
return;
case OPT_TUPLE_TYPE:
{
OpaqueDataTuple::LengthFieldType lft = u == Option::V4 ?
OpaqueDataTuple::LENGTH_1_BYTE : OpaqueDataTuple::LENGTH_2_BYTES;
OptionDataTypeUtil::writeTuple(value, lft, buf);
return;
}
default:
// We hit this point because invalid option data type has been specified
// This may be the case because 'empty' or 'record' data type has been
@ -739,6 +754,17 @@ OptionDefinition::factoryIAPrefix6(uint16_t type,
return (option);
}
OptionPtr
OptionDefinition::factoryOpaqueDataTuples(Option::Universe u,
uint16_t type,
OptionBufferConstIter begin,
OptionBufferConstIter end) {
boost::shared_ptr<OptionOpaqueDataTuples>
option(new OptionOpaqueDataTuples(u, type, begin, end));
return (option);
}
OptionPtr
OptionDefinition::factorySpecialFormatOption(Option::Universe u,
OptionBufferConstIter begin,
@ -778,7 +804,7 @@ OptionDefinition::factorySpecialFormatOption(Option::Universe u,
return (OptionPtr(new Option6StatusCode(begin, end)));
} else if (getCode() == D6O_BOOTFILE_PARAM && haveOpaqueDataTuplesFormat()) {
// Bootfile params (option code 60)
return (OptionPtr(new OptionOpaqueDataTuples(Option::V6, getCode(), begin, end)));
return (factoryOpaqueDataTuples(Option::V6, getCode(), begin, end));
} else if ((getCode() == D6O_PD_EXCLUDE) && haveType(OPT_IPV6_PREFIX_TYPE)) {
// Prefix Exclude (option code 67)
return (OptionPtr(new Option6PDExclude(begin, end)));

View File

@ -85,7 +85,9 @@ class OptionIntArray;
/// value. For example, DHCPv6 option 8 comprises a two-byte option code, a
/// two-byte option length and two-byte field that carries a uint16 value
/// (RFC 3315 - http://ietf.org/rfc/rfc3315.txt). In such a case, the option
/// type is defined as "uint16".
/// type is defined as "uint16". Length and string tuples are a length
/// on one (DHCPv4) or two (DHCPv6) bytes followed by a string of
/// the given length.
///
/// When the option has a more complex structure, the option type may be
/// defined as "array", "record" or even "array of records".
@ -123,6 +125,7 @@ class OptionIntArray;
/// - "psid" (PSID length / value)
/// - "string"
/// - "fqdn" (fully qualified name)
/// - "tuple" (length and string)
/// - "record" (set of data fields of different types)
///
/// @todo Extend the comment to describe "generic factories".
@ -518,6 +521,20 @@ public:
OptionBufferConstIter begin,
OptionBufferConstIter end);
/// @brief Factory to create option with tuple list.
///
/// @param u option universe (V4 or V6).
/// @param begin iterator pointing to the beginning of the buffer
/// with a list of tuples.
/// @param end iterator pointing to the end of the buffer with
/// a list of tuples.
///
/// @return instance of the DHCP option.
static OptionPtr factoryOpaqueDataTuples(Option::Universe u,
uint16_t type,
OptionBufferConstIter begin,
OptionBufferConstIter end);
/// @brief Factory function to create option with integer value.
///
/// @param u universe (V4 or V6).
@ -644,13 +661,14 @@ private:
/// if it is successful it will store the data in the buffer
/// in a binary format.
///
/// @param u option universe (V4 or V6).
/// @param value string representation of the value to be written.
/// @param type the actual data type to be stored.
/// @param [in, out] buf buffer where the value is to be stored.
///
/// @throw BadDataTypeCast if data write was unsuccessful.
void writeToBuffer(const std::string& value, const OptionDataType type,
OptionBuffer& buf) const;
void writeToBuffer(Option::Universe u, const std::string& value,
const OptionDataType type, OptionBuffer& buf) const;
/// Option name.
std::string name_;

View File

@ -355,7 +355,7 @@ const OptionDefParams STANDARD_V6_OPTION_DEFINITIONS[] = {
{ "lq-client-link", D6O_LQ_CLIENT_LINK, OPT_IPV6_ADDRESS_TYPE, true,
NO_RECORD_DEF, "" },
{ "bootfile-url", D6O_BOOTFILE_URL, OPT_STRING_TYPE, false, NO_RECORD_DEF, "" },
{ "bootfile-param", D6O_BOOTFILE_PARAM, OPT_BINARY_TYPE, false, NO_RECORD_DEF, "" },
{ "bootfile-param", D6O_BOOTFILE_PARAM, OPT_TUPLE_TYPE, true, NO_RECORD_DEF, "" },
{ "client-arch-type", D6O_CLIENT_ARCH_TYPE, OPT_UINT16_TYPE, true, NO_RECORD_DEF, "" },
{ "nii", D6O_NII, OPT_RECORD_TYPE, false, RECORD_DEF(CLIENT_NII_RECORDS), "" },
{ "erp-local-domain-name", D6O_ERP_LOCAL_DOMAIN_NAME, OPT_FQDN_TYPE, false,

View File

@ -297,6 +297,109 @@ TEST_F(OptionCustomTest, booleanData) {
);
}
// The purpose of this test is to verify that the data from a buffer
// can be read as a DHCPv4 tuple.
TEST_F(OptionCustomTest, tupleData4) {
OptionDefinition opt_def("option-foo", 232, "tuple", "option-foo-space");
const char data[] = {
6, 102, 111, 111, 98, 97, 114 // "foobar"
};
std::vector<uint8_t> buf(data, data + sizeof(data));
// Append suboption. It should be present in the parsed packet.
appendV4Suboption(buf);
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V4, buf));
);
ASSERT_TRUE(option);
// We should have just one data field.
ASSERT_EQ(1, option->getDataFieldsNum());
// Check it
std::string value;
ASSERT_NO_THROW(value = option->readTuple(0));
EXPECT_EQ("foobar", value);
// Now as a tuple
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
EXPECT_NO_THROW(option->readTuple(tuple, 0));
EXPECT_EQ("foobar", tuple.getText());
// There should be one suboption present.
EXPECT_TRUE(hasV4Suboption(option.get()));
// Check that the option with truncated data can't be created.
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V4,
buf.begin(), buf.begin() + 6)),
isc::dhcp::BadDataTypeCast
);
// Check that the option with "no data" is rejected.
buf.clear();
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V4,
buf.begin(), buf.end())),
isc::dhcp::BadDataTypeCast
);
}
// The purpose of this test is to verify that the data from a buffer
// can be read as a DHCPv6 tuple.
TEST_F(OptionCustomTest, tupleData6) {
OptionDefinition opt_def("option-foo", 1000, "tuple", "option-foo-space");
const char data[] = {
0, 6, 102, 111, 111, 98, 97, 114 // "foobar"
};
std::vector<uint8_t> buf(data, data + sizeof(data));
// Append suboption. It should be present in the parsed packet.
appendV6Suboption(buf);
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V6, buf));
);
ASSERT_TRUE(option);
// We should have just one data field.
ASSERT_EQ(1, option->getDataFieldsNum());
// Check it
std::string value;
ASSERT_NO_THROW(value = option->readTuple(0));
EXPECT_EQ("foobar", value);
// Now as a tuple
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
EXPECT_NO_THROW(option->readTuple(tuple, 0));
EXPECT_EQ("foobar", tuple.getText());
// There should be one suboption present.
EXPECT_TRUE(hasV6Suboption(option.get()));
// Check that the option with truncated data can't be created.
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V6,
buf.begin(), buf.begin() + 1)),
isc::dhcp::BadDataTypeCast
);
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V6,
buf.begin(), buf.begin() + 7)),
isc::dhcp::BadDataTypeCast
);
}
// The purpose of this test is to verify that the data from a buffer
// can be read as FQDN.
TEST_F(OptionCustomTest, fqdnData) {
@ -956,6 +1059,96 @@ TEST_F(OptionCustomTest, psidDataArray) {
EXPECT_EQ(0x01, psid2.second.asUint16());
}
// The purpose of this test is to verify that the data from a buffer
// can be read as DHCPv4 tuples.
TEST_F(OptionCustomTest, tupleDataArray4) {
OptionDefinition opt_def("option-foo", 232, "tuple", true);
const char data[] = {
5, 104, 101, 108, 108, 111, // "hello"
1, 32, // " "
5, 119, 111, 114, 108, 100 // "world"
};
std::vector<uint8_t> buf(data, data + sizeof(data));
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V4, buf));
);
ASSERT_TRUE(option);
// We should have 3 data fields
ASSERT_EQ(3, option->getDataFieldsNum());
// Check them
std::string value;
ASSERT_NO_THROW(value = option->readTuple(0));
EXPECT_EQ("hello", value);
ASSERT_NO_THROW(value = option->readTuple(1));
EXPECT_EQ(" ", value);
ASSERT_NO_THROW(value = option->readTuple(2));
EXPECT_EQ("world", value);
// There should be no suboption present.
EXPECT_FALSE(hasV4Suboption(option.get()));
// Check that the option with truncated data can't be created.
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V4,
buf.begin(), buf.begin() + 12)),
isc::dhcp::BadDataTypeCast
);
}
// The purpose of this test is to verify that the data from a buffer
// can be read as DHCPv6 tuples.
TEST_F(OptionCustomTest, tupleDataArray6) {
OptionDefinition opt_def("option-foo", 1000, "tuple", true);
const char data[] = {
0, 5, 104, 101, 108, 108, 111, // "hello"
0, 1, 32, // " "
0, 5, 119, 111, 114, 108, 100 // "world"
};
std::vector<uint8_t> buf(data, data + sizeof(data));
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V6, buf));
);
ASSERT_TRUE(option);
// We should have 3 data fields
ASSERT_EQ(3, option->getDataFieldsNum());
// Check them
std::string value;
ASSERT_NO_THROW(value = option->readTuple(0));
EXPECT_EQ("hello", value);
ASSERT_NO_THROW(value = option->readTuple(1));
EXPECT_EQ(" ", value);
ASSERT_NO_THROW(value = option->readTuple(2));
EXPECT_EQ("world", value);
// There should be no suboption present.
EXPECT_FALSE(hasV6Suboption(option.get()));
// Check that the option with truncated data can't be created.
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V6,
buf.begin(), buf.begin() + 8)),
isc::dhcp::BadDataTypeCast
);
EXPECT_THROW(
option.reset(new OptionCustom(opt_def, Option::V6,
buf.begin(), buf.begin() + 16)),
isc::dhcp::BadDataTypeCast
);
}
// The purpose of this test is to verify that the opton definition comprising
// a record of fixed-size fields can be used to create an option with a
// suboption.
@ -1626,6 +1819,96 @@ TEST_F(OptionCustomTest, setIPv6PrefixDataArray) {
});
}
/// The purpose of this test is to verify that an option comprising an
/// array of DHCPv4 tuples can be created with no tuples and that
/// tuples can be later added after the option has been created.
TEST_F(OptionCustomTest, setTupleDataArray4) {
OptionDefinition opt_def("option-foo", 232, "tuple", true);
// Create an option and let the data field be initialized
// to default value (do not provide any data buffer).
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V4));
);
ASSERT_TRUE(option);
// Initially, the array does not contain any data fields.
ASSERT_EQ(0, option->getDataFieldsNum());
// Add 3 new DHCPv4 tuple into the array.
ASSERT_NO_THROW(option->addArrayDataField(std::string("hello")));
ASSERT_NO_THROW(option->addArrayDataField(std::string(" ")));
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
tuple.append("world");
ASSERT_NO_THROW(option->addArrayDataField(tuple));
// We should have now 3 tuples added.
ASSERT_EQ(3, option->getDataFieldsNum());
// Verify the stored values.
ASSERT_NO_THROW({
std::string value = option->readTuple(0);
EXPECT_EQ("hello", value);
});
ASSERT_NO_THROW({
std::string value = option->readTuple(1);
EXPECT_EQ(" ", value);
});
ASSERT_NO_THROW({
OpaqueDataTuple value(OpaqueDataTuple::LENGTH_1_BYTE);
option->readTuple(value, 2);
EXPECT_EQ("world", value.getText());
});
}
/// The purpose of this test is to verify that an option comprising an
/// array of DHCPv6 tuples can be created with no tuples and that
/// tuples can be later added after the option has been created.
TEST_F(OptionCustomTest, setTupleDataArray6) {
OptionDefinition opt_def("option-foo", 1000, "tuple", true);
// Create an option and let the data field be initialized
// to default value (do not provide any data buffer).
boost::scoped_ptr<OptionCustom> option;
ASSERT_NO_THROW(
option.reset(new OptionCustom(opt_def, Option::V6));
);
ASSERT_TRUE(option);
// Initially, the array does not contain any data fields.
ASSERT_EQ(0, option->getDataFieldsNum());
// Add 3 new DHCPv6 tuple into the array.
ASSERT_NO_THROW(option->addArrayDataField(std::string("hello")));
ASSERT_NO_THROW(option->addArrayDataField(std::string(" ")));
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
tuple.append("world");
ASSERT_NO_THROW(option->addArrayDataField(tuple));
// We should have now 3 tuples added.
ASSERT_EQ(3, option->getDataFieldsNum());
// Verify the stored values.
ASSERT_NO_THROW({
std::string value = option->readTuple(0);
EXPECT_EQ("hello", value);
});
ASSERT_NO_THROW({
std::string value = option->readTuple(1);
EXPECT_EQ(" ", value);
});
ASSERT_NO_THROW({
OpaqueDataTuple value(OpaqueDataTuple::LENGTH_2_BYTES);
option->readTuple(value, 2);
EXPECT_EQ("world", value.getText());
});
}
TEST_F(OptionCustomTest, setRecordData) {
OptionDefinition opt_def("OPTION_FOO", 1000, "record");
@ -1636,6 +1919,7 @@ TEST_F(OptionCustomTest, setRecordData) {
ASSERT_NO_THROW(opt_def.addRecordField("ipv6-address"));
ASSERT_NO_THROW(opt_def.addRecordField("psid"));
ASSERT_NO_THROW(opt_def.addRecordField("ipv6-prefix"));
ASSERT_NO_THROW(opt_def.addRecordField("tuple"));
ASSERT_NO_THROW(opt_def.addRecordField("string"));
// Create an option and let the data field be initialized
@ -1648,7 +1932,7 @@ TEST_F(OptionCustomTest, setRecordData) {
// The number of elements should be equal to number of elements
// in the record.
ASSERT_EQ(8, option->getDataFieldsNum());
ASSERT_EQ(9, option->getDataFieldsNum());
// Check that the default values have been correctly set.
uint16_t value0;
@ -1674,9 +1958,12 @@ TEST_F(OptionCustomTest, setRecordData) {
ASSERT_NO_THROW(value6 = option->readPrefix(6));
EXPECT_EQ(0, value6.first.asUnsigned());
EXPECT_EQ("::", value6.second.toText());
std::string value7 = "xyz";
ASSERT_NO_THROW(value7 = option->readString(7));
EXPECT_TRUE(value7.empty());
std::string value7 = "abc";
// Tuple has no default value
EXPECT_THROW(option->readTuple(7), BadDataTypeCast);
std::string value8 = "xyz";
ASSERT_NO_THROW(value8 = option->readString(8));
EXPECT_TRUE(value8.empty());
// Override each value with a new value.
ASSERT_NO_THROW(option->writeInteger<uint16_t>(1234, 0));
@ -1687,7 +1974,8 @@ TEST_F(OptionCustomTest, setRecordData) {
ASSERT_NO_THROW(option->writePsid(PSIDLen(4), PSID(8), 5));
ASSERT_NO_THROW(option->writePrefix(PrefixLen(48),
IOAddress("2001:db8:1::"), 6));
ASSERT_NO_THROW(option->writeString("hello world", 7));
ASSERT_NO_THROW(option->writeTuple("foobar", 7));
ASSERT_NO_THROW(option->writeString("hello world", 8));
// Check that the new values have been correctly set.
ASSERT_NO_THROW(value0 = option->readInteger<uint16_t>(0));
@ -1706,8 +1994,10 @@ TEST_F(OptionCustomTest, setRecordData) {
ASSERT_NO_THROW(value6 = option->readPrefix(6));
EXPECT_EQ(48, value6.first.asUnsigned());
EXPECT_EQ("2001:db8:1::", value6.second.toText());
ASSERT_NO_THROW(value7 = option->readString(7));
EXPECT_EQ(value7, "hello world");
ASSERT_NO_THROW(value7 = option->readTuple(7));
EXPECT_EQ(value7, "foobar");
ASSERT_NO_THROW(value8 = option->readString(8));
EXPECT_EQ(value8, "hello world");
}
// The purpose of this test is to verify that pack function for

View File

@ -192,6 +192,119 @@ TEST_F(OptionDataTypesTest, writeBinary) {
EXPECT_TRUE(std::equal(buf_ref.begin(), buf_ref.end(), buf.begin()));
}
// The purpose of this test is to verify that the tuple value stored
TEST_F(OptionDataTypesTest, readTuple) {
// The string
std::string value = "hello world";
// Create an input buffer.
std::vector<uint8_t> buf;
// DHCPv4 tuples use 1 byte length
writeInt<uint8_t>(static_cast<uint8_t>(value.size()), buf);
writeString(value, buf);
// Read the string from the buffer.
std::string result;
ASSERT_NO_THROW(
result = OptionDataTypeUtil::readTuple(buf, OpaqueDataTuple::LENGTH_1_BYTE);
);
// Check that it is valid.
EXPECT_EQ(value, result);
// Read the tuple from the buffer.
OpaqueDataTuple tuple4(OpaqueDataTuple::LENGTH_1_BYTE);
ASSERT_NO_THROW(OptionDataTypeUtil::readTuple(buf, tuple4));
// Check that it is valid.
EXPECT_EQ(value, tuple4.getText());
buf.clear();
// DHCPv6 tuples use 2 byte length
writeInt<uint16_t>(static_cast<uint16_t>(value.size()), buf);
writeString(value, buf);
// Read the string from the buffer.
ASSERT_NO_THROW(
result = OptionDataTypeUtil::readTuple(buf, OpaqueDataTuple::LENGTH_2_BYTES);
);
// Check that it is valid.
EXPECT_EQ(value, result);
// Read the tuple from the buffer.
OpaqueDataTuple tuple6(OpaqueDataTuple::LENGTH_2_BYTES);
ASSERT_NO_THROW(OptionDataTypeUtil::readTuple(buf, tuple6));
// Check that it is valid.
EXPECT_EQ(value, tuple6.getText());
}
// The purpose of this test is to verify that a tuple value
// are correctly encoded in a buffer (string version)
TEST_F(OptionDataTypesTest, writeTupleString) {
// The string
std::string value = "hello world";
// Create an output buffer.
std::vector<uint8_t> buf;
// Encode it in DHCPv4
OptionDataTypeUtil::writeTuple(value, OpaqueDataTuple::LENGTH_1_BYTE, buf);
// Check that it is valid.
ASSERT_EQ(value.size() + 1, buf.size());
std::vector<uint8_t> expected;
writeInt<uint8_t>(static_cast<uint8_t>(value.size()), expected);
writeString(value, expected);
EXPECT_EQ(0, std::memcmp(&buf[0], &expected[0], buf.size()));
buf.clear();
// Encode it in DHCPv6
OptionDataTypeUtil::writeTuple(value, OpaqueDataTuple::LENGTH_2_BYTES, buf);
// Check that it is valid.
ASSERT_EQ(value.size() + 2, buf.size());
expected.clear();
writeInt<uint16_t>(static_cast<uint16_t>(value.size()), expected);
writeString(value, expected);
EXPECT_EQ(0, std::memcmp(&buf[0], &expected[0], buf.size()));
}
// The purpose of this test is to verify that a tuple value
// are correctly encoded in a buffer (tuple version)
TEST_F(OptionDataTypesTest, writeTuple) {
// The string
std::string value = "hello world";
// Create a DHCPv4 tuple
OpaqueDataTuple tuple4(OpaqueDataTuple::LENGTH_1_BYTE);
tuple4.append(value);
// Create an output buffer.
std::vector<uint8_t> buf;
// Encode it in DHCPv4
OptionDataTypeUtil::writeTuple(tuple4, buf);
// Check that it is valid.
ASSERT_EQ(value.size() + 1, buf.size());
std::vector<uint8_t> expected;
writeInt<uint8_t>(static_cast<uint8_t>(value.size()), expected);
writeString(value, expected);
EXPECT_EQ(0, std::memcmp(&buf[0], &expected[0], buf.size()));
buf.clear();
// Create a DHCPv6 tuple
OpaqueDataTuple tuple6(OpaqueDataTuple::LENGTH_2_BYTES);
tuple6.append(value);
// Encode it in DHCPv6
OptionDataTypeUtil::writeTuple(tuple6, buf);
// Check that it is valid.
ASSERT_EQ(value.size() + 2, buf.size());
expected.clear();
writeInt<uint16_t>(static_cast<uint16_t>(value.size()), expected);
writeString(value, expected);
EXPECT_EQ(0, std::memcmp(&buf[0], &expected[0], buf.size()));
}
// The purpose of this test is to verify that the boolean value stored
// in a buffer is correctly read from this buffer.
TEST_F(OptionDataTypesTest, readBool) {

View File

@ -18,6 +18,7 @@
#include <dhcp/option_int.h>
#include <dhcp/option_int_array.h>
#include <dhcp/option_string.h>
#include <dhcp/option_opaque_data_tuples.h>
#include <exceptions/exceptions.h>
#include <boost/pointer_cast.hpp>
@ -1510,4 +1511,210 @@ TEST_F(OptionDefinitionTest, psidArrayTokenized) {
EXPECT_EQ(7, psid2.second.asUint16());
}
// This test verifies that a definition of an option with a single DHCPv4
// tuple can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, tuple4) {
OptionDefinition opt_def("option-tuple", 232, "tuple");
OptionPtr option;
// Create a buffer holding tuple
const char data[] = {
6, 102, 111, 111, 98, 97, 114 // "foobar"
};
OptionBuffer buf(data, data + sizeof(data));
// Create an instance of this option from the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V4, 232, buf);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
// Validate the value.
OptionCustomPtr option_cast =
boost::dynamic_pointer_cast<OptionCustom>(option);
ASSERT_EQ(1, option_cast->getDataFieldsNum());
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
ASSERT_NO_THROW(option_cast->readTuple(tuple));
EXPECT_EQ("foobar", tuple.getText());
}
// This test verifies that a definition of an option with a single DHCPv6
// tuple can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, tuple6) {
OptionDefinition opt_def("option-tuple", 1000, "tuple");
OptionPtr option;
// Create a buffer holding tuple
const char data[] = {
0, 6, 102, 111, 111, 98, 97, 114 // "foobar"
};
OptionBuffer buf(data, data + sizeof(data));
// Create an instance of this option from the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V6, 1000, buf);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
// Validate the value.
OptionCustomPtr option_cast =
boost::dynamic_pointer_cast<OptionCustom>(option);
ASSERT_EQ(1, option_cast->getDataFieldsNum());
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
ASSERT_NO_THROW(option_cast->readTuple(tuple));
EXPECT_EQ("foobar", tuple.getText());
}
// This test verifies that a definition of an option with a single DHCPv4
// tuple can be created and that the instance of this option can be
// created by specifying tuple value in the textual format.
TEST_F(OptionDefinitionTest, tuple4Tokenized) {
OptionDefinition opt_def("option-tuple", 232, "tuple");
OptionPtr option;
// Specify a single tuple with "foobar" content.
std::vector<std::string> values(1, "foobar");
// Create an instance of this option using the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V4, 232, values);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
// Validate the value.
OptionCustomPtr option_cast =
boost::dynamic_pointer_cast<OptionCustom>(option);
ASSERT_EQ(1, option_cast->getDataFieldsNum());
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
ASSERT_NO_THROW(option_cast->readTuple(tuple));
EXPECT_EQ("foobar", tuple.getText());
}
// This test verifies that a definition of an option with a single DHCPv6
// tuple can be created and that the instance of this option can be
// created by specifying tuple value in the textual format.
TEST_F(OptionDefinitionTest, tuple6Tokenized) {
OptionDefinition opt_def("option-tuple", 1000, "tuple");
OptionPtr option;
// Specify a single tuple with "foobar" content.
std::vector<std::string> values(1, "foobar");
// Create an instance of this option using the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V6, 1000, values);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
// Validate the value.
OptionCustomPtr option_cast =
boost::dynamic_pointer_cast<OptionCustom>(option);
ASSERT_EQ(1, option_cast->getDataFieldsNum());
OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
ASSERT_NO_THROW(option_cast->readTuple(tuple));
EXPECT_EQ("foobar", tuple.getText());
}
// This test verifies that a definition of an option with an array
// of DHCPv4 tuples can be created and that the instance of this option
// can be created by specifying multiple DHCPv4 tuples in the textual format.
TEST_F(OptionDefinitionTest, tuple4ArrayTokenized) {
OptionDefinition opt_def("option-tuple", 232, "tuple", true);
OptionPtr option;
// Specify 3 tuples.
std::vector<std::string> values;
values.push_back("hello");
values.push_back("the");
values.push_back("world");
// Create an instance of this option using the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V4, 232, values);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionOpaqueDataTuples));
// Validate the value.
OptionOpaqueDataTuplesPtr option_cast =
boost::dynamic_pointer_cast<OptionOpaqueDataTuples>(option);
// There should be 3 tuples in this option.
ASSERT_EQ(3, option_cast->getTuplesNum());
// Check their values.
OpaqueDataTuple tuple0 = option_cast->getTuple(0);
EXPECT_EQ("hello", tuple0.getText());
OpaqueDataTuple tuple1 = option_cast->getTuple(1);
EXPECT_EQ("the", tuple1.getText());
OpaqueDataTuple tuple2 = option_cast->getTuple(2);
EXPECT_EQ("world", tuple2.getText());
}
// This test verifies that a definition of an option with an array
// of DHCPv6 tuples can be created and that the instance of this option
// can be created by specifying multiple DHCPv6 tuples in the textual format.
TEST_F(OptionDefinitionTest, tuple6ArrayTokenized) {
OptionDefinition opt_def("option-tuple", 1000, "tuple", true);
OptionPtr option;
// Specify 3 tuples.
std::vector<std::string> values;
values.push_back("hello");
values.push_back("the");
values.push_back("world");
// Create an instance of this option using the definition.
ASSERT_NO_THROW(
option = opt_def.optionFactory(Option::V6, 1000, values);
);
// Make sure that the returned option class is correct.
const Option* optptr = option.get();
ASSERT_TRUE(optptr);
ASSERT_TRUE(typeid(*optptr) == typeid(OptionOpaqueDataTuples));
// Validate the value.
OptionOpaqueDataTuplesPtr option_cast =
boost::dynamic_pointer_cast<OptionOpaqueDataTuples>(option);
// There should be 3 tuples in this option.
ASSERT_EQ(3, option_cast->getTuplesNum());
// Check their values.
OpaqueDataTuple tuple0 = option_cast->getTuple(0);
EXPECT_EQ("hello", tuple0.getText());
OpaqueDataTuple tuple1 = option_cast->getTuple(1);
EXPECT_EQ("the", tuple1.getText());
OpaqueDataTuple tuple2 = option_cast->getTuple(2);
EXPECT_EQ("world", tuple2.getText());
}
} // anonymous namespace