2
0
mirror of https://gitlab.isc.org/isc-projects/kea synced 2025-09-05 16:35:23 +00:00
Files
kea/src/lib/dhcpsrv/subnet.cc
2024-01-22 17:33:26 +02:00

953 lines
31 KiB
C++

// Copyright (C) 2012-2023 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <asiolink/io_address.h>
#include <asiolink/addr_utilities.h>
#include <dhcp/option_space.h>
#include <dhcpsrv/dhcpsrv_log.h>
#include <dhcpsrv/flq_allocation_state.h>
#include <dhcpsrv/flq_allocator.h>
#include <dhcpsrv/iterative_allocation_state.h>
#include <dhcpsrv/iterative_allocator.h>
#include <dhcpsrv/random_allocation_state.h>
#include <dhcpsrv/random_allocator.h>
#include <dhcpsrv/shared_network.h>
#include <dhcpsrv/subnet.h>
#include <util/multi_threading_mgr.h>
#include <boost/lexical_cast.hpp>
#include <boost/make_shared.hpp>
#include <algorithm>
#include <limits>
#include <sstream>
using namespace isc::asiolink;
using namespace isc::data;
using namespace isc::dhcp;
using namespace isc::util;
using namespace std;
namespace {
/// @brief Function used in calls to std::upper_bound to check
/// if the specified prefix is lower than the first address a pool.
///
/// @return true if prefix is lower than the first address in the pool.
bool
prefixLessThanFirstAddress(const IOAddress& prefix,
const PoolPtr& pool) {
return (prefix < pool->getFirstAddress());
}
/// @brief Function used in calls to std::sort to compare first
/// prefixes of the two pools.
///
/// @param pool1 First pool.
/// @param pool2 Second pool.
///
/// @return true if first prefix of the first pool is smaller than
/// the first address of the second pool.
bool
comparePoolFirstAddress(const PoolPtr& pool1,
const PoolPtr& pool2) {
return (pool1->getFirstAddress() < pool2->getFirstAddress());
}
}
namespace isc {
namespace dhcp {
// This is an initial value of subnet-id. See comments in subnet.h for details.
SubnetID Subnet::static_id_ = 1;
Subnet::Subnet(const isc::asiolink::IOAddress& prefix, uint8_t len,
const SubnetID id)
: id_(id == 0 ? generateNextID() : id), prefix_(prefix),
prefix_len_(len),
shared_network_name_() {
if ((id == 0) && (id_ == 1)) {
// Emit a warning on the first auto-numbered subnet.
LOG_WARN(dhcpsrv_logger, DHCPSRV_CONFIGURED_SUBNET_WITHOUT_ID)
.arg(toText());
}
if ((prefix.isV6() && len > 128) ||
(prefix.isV4() && len > 32)) {
isc_throw(BadValue,
"Invalid prefix length specified for subnet: " << len);
}
}
bool
Subnet::inRange(const isc::asiolink::IOAddress& addr) const {
IOAddress first = firstAddrInPrefix(prefix_, prefix_len_);
IOAddress last = lastAddrInPrefix(prefix_, prefix_len_);
return ((first <= addr) && (addr <= last));
}
std::string
Subnet::toText() const {
std::stringstream tmp;
tmp << prefix_ << "/" << static_cast<unsigned int>(prefix_len_);
return (tmp.str());
}
uint128_t
Subnet::getPoolCapacity(Lease::Type type) const {
switch (type) {
case Lease::TYPE_V4:
case Lease::TYPE_NA:
return sumPoolCapacity(pools_);
case Lease::TYPE_TA:
return sumPoolCapacity(pools_ta_);
case Lease::TYPE_PD:
return sumPoolCapacity(pools_pd_);
default:
isc_throw(BadValue, "Unsupported pool type: "
<< static_cast<int>(type));
}
}
uint128_t
Subnet::getPoolCapacity(Lease::Type type,
const ClientClasses& client_classes) const {
switch (type) {
case Lease::TYPE_V4:
case Lease::TYPE_NA:
return sumPoolCapacity(pools_, client_classes);
case Lease::TYPE_TA:
return sumPoolCapacity(pools_ta_, client_classes);
case Lease::TYPE_PD:
return sumPoolCapacity(pools_pd_, client_classes);
default:
isc_throw(BadValue, "Unsupported pool type: "
<< static_cast<int>(type));
}
}
uint128_t
Subnet::getPoolCapacity(Lease::Type type,
const ClientClasses& client_classes,
Allocator::PrefixLenMatchType prefix_length_match,
uint8_t hint_prefix_length) const {
switch (type) {
case Lease::TYPE_V4:
case Lease::TYPE_NA:
return sumPoolCapacity(pools_, client_classes);
case Lease::TYPE_TA:
return sumPoolCapacity(pools_ta_, client_classes);
case Lease::TYPE_PD:
return sumPoolCapacity(pools_pd_, client_classes, prefix_length_match,
hint_prefix_length);
default:
isc_throw(BadValue, "Unsupported pool type: "
<< static_cast<int>(type));
}
}
uint128_t
Subnet::sumPoolCapacity(const PoolCollection& pools) const {
uint128_t sum(0);
for (auto const& p : pools) {
uint128_t const c(p->getCapacity());
// Check if we can add it. If sum + c > UINT128_MAX, then we would have
// overflown if we tried to add it.
if (c > numeric_limits<uint128_t>::max() - sum) {
return (numeric_limits<uint128_t>::max());
}
sum += c;
}
return (sum);
}
uint128_t
Subnet::sumPoolCapacity(const PoolCollection& pools,
const ClientClasses& client_classes) const {
uint128_t sum(0);
for (auto const& p : pools) {
if (!p->clientSupported(client_classes)) {
continue;
}
uint128_t const c(p->getCapacity());
// Check if we can add it. If sum + c > UINT128_MAX, then we would have
// overflown if we tried to add it.
if (c > numeric_limits<uint128_t>::max() - sum) {
return (numeric_limits<uint128_t>::max());
}
sum += c;
}
return (sum);
}
uint128_t
Subnet::sumPoolCapacity(const PoolCollection& pools,
const ClientClasses& client_classes,
Allocator::PrefixLenMatchType prefix_length_match,
uint8_t hint_prefix_length) const {
uint128_t sum(0);
for (auto const& p : pools) {
if (!p->clientSupported(client_classes)) {
continue;
}
if (!Allocator::isValidPrefixPool(prefix_length_match, p,
hint_prefix_length)) {
continue;
}
uint128_t const c(p->getCapacity());
// Check if we can add it. If sum + c > UINT128_MAX, then we would have
// overflown if we tried to add it.
if (c > numeric_limits<uint128_t>::max() - sum) {
return (numeric_limits<uint128_t>::max());
}
sum += c;
}
return (sum);
}
std::pair<IOAddress, uint8_t>
Subnet::parsePrefixCommon(const std::string& prefix) {
auto pos = prefix.find('/');
if ((pos == std::string::npos) ||
(pos == prefix.size() - 1) ||
(pos == 0)) {
isc_throw(BadValue, "unable to parse invalid prefix " << prefix);
}
try {
IOAddress address(prefix.substr(0, pos));
int length = boost::lexical_cast<int>(prefix.substr(pos + 1));
return (std::make_pair(address, static_cast<int>(length)));
} catch (...) {
isc_throw(BadValue, "unable to parse invalid prefix " << prefix);
}
}
void Subnet4::checkType(Lease::Type type) const {
if (type != Lease::TYPE_V4) {
isc_throw(BadValue, "Only TYPE_V4 is allowed for Subnet4");
}
}
Subnet4::Subnet4(const IOAddress& prefix, uint8_t length,
const Triplet<uint32_t>& t1,
const Triplet<uint32_t>& t2,
const Triplet<uint32_t>& valid_lifetime,
const SubnetID id)
: Subnet(prefix, length, id), Network4() {
if (!prefix.isV4()) {
isc_throw(BadValue, "Non IPv4 prefix " << prefix.toText()
<< " specified in subnet4");
}
// Timers.
setT1(t1);
setT2(t2);
setValid(valid_lifetime);
}
Subnet4Ptr
Subnet4::create(const IOAddress& prefix, uint8_t length,
const Triplet<uint32_t>& t1,
const Triplet<uint32_t>& t2,
const Triplet<uint32_t>& valid_lifetime,
const SubnetID id) {
Subnet4Ptr subnet = boost::make_shared<Subnet4>
(prefix, length, t1, t2, valid_lifetime, id);
subnet->setAllocator(Lease::TYPE_V4,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_V4, subnet));
subnet->setAllocationState(Lease::TYPE_V4,
SubnetIterativeAllocationState::create(subnet));
return (subnet);
}
Subnet4Ptr
Subnet4::getNextSubnet(const Subnet4Ptr& first_subnet) const {
SharedNetwork4Ptr network;
getSharedNetwork(network);
if (network) {
return (network->getNextSubnet(first_subnet, getID()));
}
return (Subnet4Ptr());
}
Subnet4Ptr
Subnet4::getNextSubnet(const Subnet4Ptr& first_subnet,
const ClientClasses& client_classes) const {
SharedNetwork4Ptr network;
getSharedNetwork(network);
// We can only get next subnet if shared network has been defined for
// the current subnet.
if (network) {
Subnet4Ptr subnet;
do {
// Use subnet identifier of this subnet if this is the first
// time we're calling getNextSubnet. Otherwise, use the
// subnet id of the previously returned subnet.
SubnetID subnet_id = subnet ? subnet->getID() : getID();
subnet = network->getNextSubnet(first_subnet, subnet_id);
// If client classes match the subnet, return it. Otherwise,
// try another subnet.
if (subnet && subnet->clientSupported(client_classes)) {
return (subnet);
}
} while (subnet);
}
// No subnet found.
return (Subnet4Ptr());
}
bool
Subnet4::clientSupported(const isc::dhcp::ClientClasses& client_classes) const {
NetworkPtr network;
getSharedNetwork(network);
if (network && !network->clientSupported(client_classes)) {
return (false);
}
return (Network4::clientSupported(client_classes));
}
const PoolCollection& Subnet::getPools(Lease::Type type) const {
// check if the type is valid (and throw if it isn't)
checkType(type);
switch (type) {
case Lease::TYPE_V4:
case Lease::TYPE_NA:
return (pools_);
case Lease::TYPE_TA:
return (pools_ta_);
case Lease::TYPE_PD:
return (pools_pd_);
default:
isc_throw(BadValue, "Unsupported pool type: "
<< static_cast<int>(type));
}
}
PoolCollection& Subnet::getPoolsWritable(Lease::Type type) {
// check if the type is valid (and throw if it isn't)
checkType(type);
switch (type) {
case Lease::TYPE_V4:
case Lease::TYPE_NA:
return (pools_);
case Lease::TYPE_TA:
return (pools_ta_);
case Lease::TYPE_PD:
return (pools_pd_);
default:
isc_throw(BadValue, "Invalid pool type specified: "
<< static_cast<int>(type));
}
}
AllocatorPtr
Subnet::getAllocator(Lease::Type type) const {
auto alloc = allocators_.find(type);
if (alloc == allocators_.end()) {
isc_throw(BadValue, "no allocator initialized for pool type "
<< Lease::typeToText(type));
}
return (alloc->second);
}
void
Subnet::setAllocator(Lease::Type type, const AllocatorPtr& allocator) {
allocators_[type] = allocator;
}
SubnetAllocationStatePtr
Subnet::getAllocationState(Lease::Type type) const {
auto state = allocation_states_.find(type);
if (state == allocation_states_.end()) {
isc_throw(BadValue, "no allocation state initialized for pool type "
<< Lease::typeToText(type));
}
return (state->second);
}
void
Subnet::setAllocationState(Lease::Type type, const SubnetAllocationStatePtr& allocation_state) {
allocation_states_[type] = allocation_state;
}
const PoolPtr Subnet::getPool(Lease::Type type, const isc::asiolink::IOAddress& hint,
bool anypool /* true */) const {
// check if the type is valid (and throw if it isn't)
checkType(type);
const auto& pools = getPools(type);
PoolPtr candidate;
if (!pools.empty()) {
// Pools are sorted by their first prefixes. For example: 2001::,
// 2001::db8::, 3000:: etc. If our hint is 2001:db8:5:: we want to
// find the pool with the longest matching prefix, so: 2001:db8::,
// rather than 2001::. upper_bound returns the first pool with a prefix
// that is greater than 2001:db8:5::, i.e. 3000::. To find the longest
// matching prefix we use decrement operator to go back by one item.
// If returned iterator points to begin it means that prefixes in all
// pools are greater than out prefix, and thus there is no match.
auto ub =
std::upper_bound(pools.begin(), pools.end(), hint,
prefixLessThanFirstAddress);
if (ub != pools.begin()) {
--ub;
if ((*ub)->inRange(hint)) {
candidate = *ub;
}
}
// If we don't find anything better, then let's just use the first pool
if (!candidate && anypool) {
candidate = *pools.begin();
}
}
// Return a pool or NULL if no match found.
return (candidate);
}
void
Subnet::initAllocatorsAfterConfigure() {
for (const auto& allocator : allocators_) {
allocator.second->initAfterConfigure();
}
}
const PoolPtr Subnet::getPool(Lease::Type type,
const ClientClasses& client_classes,
const isc::asiolink::IOAddress& hint) const {
// check if the type is valid (and throw if it isn't)
checkType(type);
const auto& pools = getPools(type);
PoolPtr candidate;
if (!pools.empty()) {
auto ub =
std::upper_bound(pools.begin(), pools.end(), hint,
prefixLessThanFirstAddress);
if (ub != pools.begin()) {
--ub;
if ((*ub)->inRange(hint) &&
(*ub)->clientSupported(client_classes)) {
candidate = *ub;
}
}
}
// Return a pool or NULL if no match found.
return (candidate);
}
void
Subnet::addPool(const PoolPtr& pool) {
// check if the type is valid (and throw if it isn't)
checkType(pool->getType());
// Check that the pool is in range with a subnet only if this is
// not a pool of IPv6 prefixes. The IPv6 prefixes delegated for
// the particular subnet don't need to match the prefix of the
// subnet.
if (pool->getType() != Lease::TYPE_PD) {
if (!inRange(pool->getFirstAddress()) || !inRange(pool->getLastAddress())) {
isc_throw(BadValue, "a pool of type "
<< Lease::typeToText(pool->getType())
<< ", with the following address range: "
<< pool->getFirstAddress() << "-"
<< pool->getLastAddress() << " does not match"
<< " the prefix of a subnet: "
<< prefix_ << "/" << static_cast<int>(prefix_len_)
<< " to which it is being added");
}
}
bool overlaps = false;
if (pool->getType() == Lease::TYPE_V4) {
overlaps = poolOverlaps(Lease::TYPE_V4, pool);
} else {
overlaps =
poolOverlaps(Lease::TYPE_NA, pool) ||
poolOverlaps(Lease::TYPE_PD, pool) ||
poolOverlaps(Lease::TYPE_TA, pool);
}
if (overlaps) {
isc_throw(BadValue,"a pool of type "
<< Lease::typeToText(pool->getType())
<< ", with the following address range: "
<< pool->getFirstAddress() << "-"
<< pool->getLastAddress() << " overlaps with "
"an existing pool in the subnet: "
<< prefix_ << "/" << static_cast<int>(prefix_len_)
<< " to which it is being added");
}
PoolCollection& pools_writable = getPoolsWritable(pool->getType());
// Add the pool to the appropriate pools collection
pools_writable.push_back(pool);
// Sort pools by first address.
std::sort(pools_writable.begin(), pools_writable.end(),
comparePoolFirstAddress);
}
void
Subnet::delPools(Lease::Type type) {
getPoolsWritable(type).clear();
}
bool
Subnet::inPool(Lease::Type type, const isc::asiolink::IOAddress& addr) const {
// Let's start with checking if it even belongs to that subnet.
if ((type != Lease::TYPE_PD) && !inRange(addr)) {
return (false);
}
const auto& pools = getPools(type);
for (const auto& pool : pools) {
if (pool->inRange(addr)) {
return (true);
}
}
// There's no pool that address belongs to
return (false);
}
bool
Subnet::inPool(Lease::Type type,
const isc::asiolink::IOAddress& addr,
const ClientClasses& client_classes) const {
// Let's start with checking if it even belongs to that subnet.
if ((type != Lease::TYPE_PD) && !inRange(addr)) {
return (false);
}
const auto& pools = getPools(type);
for (const auto& pool : pools) {
if (!pool->clientSupported(client_classes)) {
continue;
}
if (pool->inRange(addr)) {
return (true);
}
}
// There's no pool that address belongs to
return (false);
}
bool
Subnet::poolOverlaps(const Lease::Type& pool_type, const PoolPtr& pool) const {
const auto& pools = getPools(pool_type);
// If no pools, we don't overlap. Nothing to do.
if (pools.empty()) {
return (false);
}
// We're going to insert a new pool, likely between two existing pools.
// So we're going to end up with the following case:
// |<---- pool1 ---->| |<-------- pool2 ------>| |<-- pool3 -->|
// F1 L1 F2 L2 F3 L3
// where pool1 and pool3 are existing pools, pool2 is a pool being
// inserted and "F"/"L" mark first and last address in the pools
// respectively. So the following conditions must be fulfilled:
// F2 > L1 and L2 < F3. Obviously, for any pool: F < L.
// Search for pool3. We use F2 and upper_bound to find the F3 (upper_bound
// returns first pool in the sorted container which first address is
// greater than F2). prefixLessThanPoolAddress with the first argument
// set to "true" is the custom comparison function for upper_bound, which
// compares F2 with the first addresses of the existing pools.
const auto pool3_it =
std::upper_bound(pools.begin(), pools.end(), pool->getFirstAddress(),
prefixLessThanFirstAddress);
// The upper_bound function returns a first pool which first address is
// greater than the address F2. However, it is also possible that there is a
// pool which first address is equal to F2. Such pool is also in conflict
// with a new pool. If the returned value is pools.begin() it means that all
// pools have greater first address than F2, thus none of the pools can have
// first address equal to F2. Otherwise, we'd need to check them for
// equality. However any pool has first address <= last address, so checking
// that the new pool first address is greater than the pool before pool3
// last address is enough. We now have to find the pool1. This pool should
// be right before the pool3 if there is any pool before pool3.
if (pool3_it != pools.begin()) {
PoolPtr pool1 = *(pool3_it - 1);
// F2 must be greater than L1, otherwise pools will overlap.
if (pool->getFirstAddress() <= pool1->getLastAddress()) {
return (true);
}
}
// If returned value is unequal pools.end() it means that there is a pool3,
// with F3 > F2.
if (pool3_it != pools.end()) {
// Let's store the pointer to this pool.
PoolPtr pool3 = *pool3_it;
// F3 must be greater than L2, otherwise pools will overlap.
if (pool3->getFirstAddress() <= pool->getLastAddress()) {
return (true);
}
}
return (false);
}
Subnet6::Subnet6(const IOAddress& prefix, uint8_t length,
const Triplet<uint32_t>& t1,
const Triplet<uint32_t>& t2,
const Triplet<uint32_t>& preferred_lifetime,
const Triplet<uint32_t>& valid_lifetime,
const SubnetID id)
: Subnet(prefix, length, id), Network6() {
if (!prefix.isV6()) {
isc_throw(BadValue, "Non IPv6 prefix " << prefix
<< " specified in subnet6");
}
// Timers.
setT1(t1);
setT2(t2);
setPreferred(preferred_lifetime);
setValid(valid_lifetime);
}
Subnet6Ptr
Subnet6::create(const IOAddress& prefix, uint8_t length,
const Triplet<uint32_t>& t1,
const Triplet<uint32_t>& t2,
const Triplet<uint32_t>& preferred_lifetime,
const Triplet<uint32_t>& valid_lifetime,
const SubnetID id) {
Subnet6Ptr subnet = boost::make_shared<Subnet6>
(prefix, length, t1, t2, preferred_lifetime, valid_lifetime, id);
// IA_NA
subnet->setAllocator(Lease::TYPE_NA,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_NA, subnet));
subnet->setAllocationState(Lease::TYPE_NA,
SubnetIterativeAllocationState::create(subnet));
// IA_TA
subnet->setAllocator(Lease::TYPE_TA,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_TA, subnet));
subnet->setAllocationState(Lease::TYPE_TA,
SubnetIterativeAllocationState::create(subnet));
// IA_PD
subnet->setAllocator(Lease::TYPE_PD,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_PD, subnet));
subnet->setAllocationState(Lease::TYPE_PD,
SubnetIterativeAllocationState::create(subnet));
return (subnet);
}
void Subnet6::checkType(Lease::Type type) const {
if ((type != Lease::TYPE_NA) && (type != Lease::TYPE_TA) && (type != Lease::TYPE_PD)) {
isc_throw(BadValue, "Invalid Pool type: " << Lease::typeToText(type)
<< "(" << static_cast<int>(type)
<< "), must be TYPE_NA, TYPE_TA or TYPE_PD for Subnet6");
}
}
Subnet6Ptr
Subnet6::getNextSubnet(const Subnet6Ptr& first_subnet) const {
SharedNetwork6Ptr network;
getSharedNetwork(network);
if (network) {
return (network->getNextSubnet(first_subnet, getID()));
}
return (Subnet6Ptr());
}
Subnet6Ptr
Subnet6::getNextSubnet(const Subnet6Ptr& first_subnet,
const ClientClasses& client_classes) const {
SharedNetwork6Ptr network;
getSharedNetwork(network);
// We can only get next subnet if shared network has been defined for
// the current subnet.
if (network) {
Subnet6Ptr subnet;
do {
// Use subnet identifier of this subnet if this is the first
// time we're calling getNextSubnet. Otherwise, use the
// subnet id of the previously returned subnet.
SubnetID subnet_id = subnet ? subnet->getID() : getID();
subnet = network->getNextSubnet(first_subnet, subnet_id);
// If client classes match the subnet, return it. Otherwise,
// try another subnet.
if (subnet && subnet->clientSupported(client_classes)) {
return (subnet);
}
} while (subnet);
}
// No subnet found.
return (Subnet6Ptr());
}
bool
Subnet6::clientSupported(const isc::dhcp::ClientClasses& client_classes) const {
NetworkPtr network;
getSharedNetwork(network);
if (network && !network->clientSupported(client_classes)) {
return (false);
}
return (Network6::clientSupported(client_classes));
}
data::ElementPtr
Subnet::toElement() const {
ElementPtr map = Element::createMap();
// Add user-context
contextToElement(map);
// Set subnet id
SubnetID id = getID();
map->set("id", Element::create(static_cast<long long>(id)));
// Set subnet
map->set("subnet", Element::create(toText()));
return (map);
}
void
Subnet4::createAllocators() {
auto allocator_type = getAllocatorType();
if (allocator_type.empty()) {
allocator_type = getDefaultAllocatorType();
}
if (allocator_type == "random") {
setAllocator(Lease::TYPE_V4,
boost::make_shared<RandomAllocator>
(Lease::TYPE_V4, shared_from_this()));
setAllocationState(Lease::TYPE_V4, SubnetAllocationStatePtr());
for (auto pool : pools_) {
pool->setAllocationState(PoolRandomAllocationState::create(pool));
}
} else if (allocator_type == "flq") {
setAllocator(Lease::TYPE_V4,
boost::make_shared<FreeLeaseQueueAllocator>
(Lease::TYPE_V4, shared_from_this()));
setAllocationState(Lease::TYPE_V4, SubnetAllocationStatePtr());
for (auto pool : pools_) {
pool->setAllocationState(PoolFreeLeaseQueueAllocationState::create(pool));
}
} else {
setAllocator(Lease::TYPE_V4,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_V4, shared_from_this()));
setAllocationState(Lease::TYPE_V4,
SubnetIterativeAllocationState::create(shared_from_this()));
for (auto pool : pools_) {
pool->setAllocationState(PoolIterativeAllocationState::create(pool));
}
}
}
data::ElementPtr
Subnet4::toElement() const {
// Prepare the map
ElementPtr map = Subnet::toElement();
ElementPtr network_map = Network4::toElement();
merge(map, network_map);
// Set DHCP4o6
const Cfg4o6& d4o6 = get4o6();
isc::data::merge(map, d4o6.toElement());
// Set pools
const auto& pools = getPools(Lease::TYPE_V4);
ElementPtr pool_list = Element::createList();
for (const auto& pool : pools) {
// Add the formatted pool to the list
pool_list->add(pool->toElement());
}
map->set("pools", pool_list);
return (map);
}
std::pair<IOAddress, uint8_t>
Subnet4::parsePrefix(const std::string& prefix) {
std::pair<IOAddress, uint8_t> parsed = Subnet::parsePrefixCommon(prefix);
if (!parsed.first.isV4() || parsed.first.isV4Zero() ||
(parsed.second > 32) || (parsed.second == 0)) {
isc_throw(BadValue, "unable to parse invalid IPv4 prefix " << prefix);
}
return (parsed);
}
void
Subnet6::createAllocators() {
auto allocator_type = getAllocatorType();
if (allocator_type.empty()) {
allocator_type = getDefaultAllocatorType();
}
if (allocator_type == "random") {
setAllocator(Lease::TYPE_NA,
boost::make_shared<RandomAllocator>
(Lease::TYPE_NA, shared_from_this()));
setAllocator(Lease::TYPE_TA,
boost::make_shared<RandomAllocator>
(Lease::TYPE_TA, shared_from_this()));
setAllocationState(Lease::TYPE_NA, SubnetAllocationStatePtr());
setAllocationState(Lease::TYPE_TA, SubnetAllocationStatePtr());
} else if (allocator_type == "flq") {
isc_throw(BadValue, "Free Lease Queue allocator is not supported for IPv6 address pools");
} else {
setAllocator(Lease::TYPE_NA,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_NA, shared_from_this()));
setAllocationState(Lease::TYPE_NA, SubnetIterativeAllocationState::create(shared_from_this()));
setAllocationState(Lease::TYPE_TA, SubnetIterativeAllocationState::create(shared_from_this()));
}
auto pd_allocator_type = getPdAllocatorType();
if (pd_allocator_type.empty()) {
pd_allocator_type = getDefaultPdAllocatorType();
}
// Repeat the same for the delegated prefix allocator.
if (pd_allocator_type == "random") {
setAllocator(Lease::TYPE_PD,
boost::make_shared<RandomAllocator>
(Lease::TYPE_PD, shared_from_this()));
setAllocationState(Lease::TYPE_PD, SubnetAllocationStatePtr());
} else if (pd_allocator_type == "flq") {
setAllocator(Lease::TYPE_PD,
boost::make_shared<FreeLeaseQueueAllocator>
(Lease::TYPE_PD, shared_from_this()));
setAllocationState(Lease::TYPE_PD, SubnetAllocationStatePtr());
} else {
setAllocator(Lease::TYPE_PD,
boost::make_shared<IterativeAllocator>
(Lease::TYPE_PD, shared_from_this()));
setAllocationState(Lease::TYPE_PD, SubnetIterativeAllocationState::create(shared_from_this()));
}
// Create allocation states for NA pools.
for (auto pool : pools_) {
if (allocator_type == "random") {
pool->setAllocationState(PoolRandomAllocationState::create(pool));
} else {
pool->setAllocationState(PoolIterativeAllocationState::create(pool));
}
}
// Create allocation states for TA pools.
for (auto pool : pools_ta_) {
if (allocator_type == "random") {
pool->setAllocationState(PoolRandomAllocationState::create(pool));
} else {
pool->setAllocationState(PoolIterativeAllocationState::create(pool));
}
}
// Create allocation states for PD pools.
for (auto pool : pools_pd_) {
if (pd_allocator_type == "random") {
pool->setAllocationState(PoolRandomAllocationState::create(pool));
} else if (pd_allocator_type == "flq") {
pool->setAllocationState(PoolFreeLeaseQueueAllocationState::create(pool));
} else {
pool->setAllocationState(PoolIterativeAllocationState::create(pool));
}
}
}
data::ElementPtr
Subnet6::toElement() const {
// Prepare the map
ElementPtr map = Subnet::toElement();
ElementPtr network_map = Network6::toElement();
merge(map, network_map);
// Set pools
const auto& pools = getPools(Lease::TYPE_NA);
ElementPtr pool_list = Element::createList();
for (const auto& pool : pools) {
// Add the formatted pool to the list
pool_list->add(pool->toElement());
}
map->set("pools", pool_list);
// Set pd-pools
const auto& pdpools = getPools(Lease::TYPE_PD);
ElementPtr pdpool_list = Element::createList();
for (const auto& pool : pdpools) {
// Add the formatted pool to the list
pdpool_list->add(pool->toElement());
}
map->set("pd-pools", pdpool_list);
return (map);
}
std::pair<IOAddress, uint8_t>
Subnet6::parsePrefix(const std::string& prefix) {
std::pair<IOAddress, uint8_t> parsed = Subnet::parsePrefixCommon(prefix);
if (!parsed.first.isV6() || parsed.first.isV6Zero() ||
(parsed.second > 128) || (parsed.second == 0)) {
isc_throw(BadValue, "unable to parse invalid IPv6 prefix " << prefix);
}
return (parsed);
}
} // namespace dhcp
} // namespace isc