2
0
mirror of https://gitlab.isc.org/isc-projects/kea synced 2025-09-05 00:15:17 +00:00
Files
kea/src/lib/dns/tests/time_utils_unittest.cc
2025-03-26 16:00:00 +01:00

148 lines
5.8 KiB
C++

#include <config.h>
#include <dns/time_utils.h>
#include <ctime>
#include <gtest/gtest.h>
#include <string>
using namespace std;
using namespace isc::util;
// See time_utilities.cc
namespace isc {
namespace util {
namespace detail {
extern int64_t (*getTimeFunction)();
}
} // namespace util
} // namespace isc
namespace {
class DNSSECTimeTest : public ::testing::Test {
protected:
~DNSSECTimeTest() {
detail::getTimeFunction = 0;
}
};
TEST_F(DNSSECTimeTest, fromText) {
// In most cases (in practice) the 32-bit and 64-bit versions should
// behave identically, so we'll mainly test the 32-bit version, which
// will be more commonly used in actual code (because many of the wire
// format time field are 32-bit). The subtle cases where these two
// return different values will be tested at the end of this test case.
// These are bogus and should be rejected
EXPECT_THROW(timeFromText32("2011 101120000"), InvalidTime);
EXPECT_THROW(timeFromText32("201101011200-0"), InvalidTime);
// Short length (or "decimal integer" version of representation;
// it's valid per RFC4034, but is not supported in this implementation)
EXPECT_THROW(timeFromText32("20100223"), InvalidTime);
// Leap year checks
EXPECT_THROW(timeFromText32("20110229120000"), InvalidTime);
EXPECT_THROW(timeFromText32("21000229120000"), InvalidTime);
EXPECT_NO_THROW(timeFromText32("20000229120000"));
EXPECT_NO_THROW(timeFromText32("20120229120000"));
// unusual case: this implementation allows SS=60 for "leap seconds"
EXPECT_NO_THROW(timeFromText32("20110101120060"));
// Out of range parameters
EXPECT_THROW(timeFromText32("19100223214617"), InvalidTime); // YY<1970
EXPECT_THROW(timeFromText32("20110001120000"), InvalidTime); // MM=00
EXPECT_THROW(timeFromText32("20111301120000"), InvalidTime); // MM=13
EXPECT_THROW(timeFromText32("20110100120000"), InvalidTime); // DD=00
EXPECT_THROW(timeFromText32("20110132120000"), InvalidTime); // DD=32
EXPECT_THROW(timeFromText32("20110431120000"), InvalidTime); // 'Apr31'
EXPECT_THROW(timeFromText32("20110101250000"), InvalidTime); // HH=25
EXPECT_THROW(timeFromText32("20110101126000"), InvalidTime); // mm=60
EXPECT_THROW(timeFromText32("20110101120061"), InvalidTime); // SS=61
// Feb 7, 06:28:15 UTC 2106 is the possible maximum time that can be
// represented as an unsigned 32bit integer without overflow.
EXPECT_EQ(4294967295LU, timeFromText32("21060207062815"));
// After that, timeFromText32() should start returning the second count
// modulo 2^32.
EXPECT_EQ(0, timeFromText32("21060207062816"));
EXPECT_EQ(10, timeFromText32("21060207062826"));
// On the other hand, the 64-bit version should return monotonically
// increasing counters.
EXPECT_EQ(4294967296LLU, timeFromText64("21060207062816"));
EXPECT_EQ(4294967306LLU, timeFromText64("21060207062826"));
}
// This helper templated function tells timeToText32 a faked current time.
// The template parameter is that faked time in the form of int64_t seconds
// since epoch.
template <int64_t NOW>
int64_t
testGetTime() {
return (NOW);
}
// Seconds since epoch for the year 10K eve. Commonly used in some tests
// below.
constexpr uint64_t YEAR10K_EVE = 253402300799LL;
TEST_F(DNSSECTimeTest, toText) {
// Check a basic case with the default (normal) getTimeFunction
// based on the "real current time".
// Note: this will fail after year 2078, but at that point we won't use
// this program anyway:-)
EXPECT_EQ("20100311233000", timeToText32(1268350200));
// Set the current time to: Feb 18 09:04:14 UTC 2012 (an arbitrary choice
// in the range of the first half of uint32 since epoch).
detail::getTimeFunction = testGetTime<1329555854LL>;
// Test the "year 2038" problem.
// Check the result of toText() for "INT_MIN" in int32_t. It's in the
// 68-year range from the faked current time, so the result should be
// in year 2038, instead of 1901.
EXPECT_EQ("20380119031408", timeToText64(0x80000000L));
EXPECT_EQ("20380119031408", timeToText32(0x80000000L));
// A controversial case: what should we do with "-1"? It's out of range
// in future, but according to RFC time before epoch doesn't seem to be
// considered "in-range" either. Our toText() implementation handles
// this range as a special case and always treats them as future time
// until year 2038. This won't be a real issue in practice, though,
// since such too large values won't be used in actual deployment by then.
EXPECT_EQ("21060207062815", timeToText32(0xffffffffL));
// After the singular point of year 2038, the first half of uint32 can
// point to a future time.
// Set the current time to: Apr 1 00:00:00 UTC 2038:
detail::getTimeFunction = testGetTime<2153692800LL>;
// then time "10" is Feb 7 06:28:26 UTC 2106
EXPECT_EQ("21060207062826", timeToText32(10));
// in 64-bit, it's 2^32 + 10
EXPECT_EQ("21060207062826", timeToText64(0x10000000aLL));
// After year 2106, the upper half of uint32 can point to past time
// (as it should).
detail::getTimeFunction = testGetTime<0x10000000aLL>;
EXPECT_EQ("21060207062815", timeToText32(0xffffffffL));
// Try very large time value. Actually it's the possible farthest time
// that can be represented in the form of YYYYMMDDHHmmSS.
EXPECT_EQ("99991231235959", timeToText64(YEAR10K_EVE));
detail::getTimeFunction = testGetTime<YEAR10K_EVE - 10>;
EXPECT_EQ("99991231235959", timeToText32(4294197631LU));
}
TEST_F(DNSSECTimeTest, overflow) {
// Jan 1, Year 10,000.
EXPECT_THROW(timeToText64(253402300800LL), InvalidTime);
detail::getTimeFunction = testGetTime<YEAR10K_EVE - 10>;
EXPECT_THROW(timeToText32(4294197632LU), InvalidTime);
}
} // namespace