2
0
mirror of https://gitlab.isc.org/isc-projects/kea synced 2025-09-05 08:25:16 +00:00
Files
kea/src/bin/dhcp6/tests/dhcp6_srv_unittest.cc
Tomek Mrugalski f9abab4bd0 [5014_phase2] SimpleParser implemented, 4 parsers converted
- SimpleParser concept implemented
 - Converted 4 parsers (option data, option data list, option defintion,
   option definition list)
 - updated unit-tests
 - converted other parsers (HostReservationParser{4,6}, ClientClassDefParser)
   to use those new parsers
 - converted kea-dhcp{4,6} to use those new parsers

Conflicts:
	src/bin/dhcp6/json_config_parser.cc
	src/lib/dhcpsrv/parsers/dhcp_parsers.cc
2016-11-29 20:09:14 +01:00

2288 lines
84 KiB
C++

// Copyright (C) 2011-2016 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <asiolink/io_address.h>
#include <dhcp/dhcp6.h>
#include <dhcp/duid.h>
#include <dhcp/option.h>
#include <dhcp/option6_addrlst.h>
#include <dhcp/option6_ia.h>
#include <dhcp/option6_iaaddr.h>
#include <dhcp/option_int.h>
#include <dhcp/option_int_array.h>
#include <dhcp/option_string.h>
#include <dhcp/option_vendor.h>
#include <dhcp/option_vendor_class.h>
#include <dhcp/iface_mgr.h>
#include <dhcp6/json_config_parser.h>
#include <dhcp/dhcp6.h>
#include <dhcp/docsis3_option_defs.h>
#include <dhcp/tests/iface_mgr_test_config.h>
#include <dhcpsrv/cfgmgr.h>
#include <dhcpsrv/lease_mgr.h>
#include <dhcpsrv/lease_mgr_factory.h>
#include <dhcpsrv/host_mgr.h>
#include <dhcpsrv/utils.h>
#include <util/buffer.h>
#include <util/range_utilities.h>
#include <util/encode/hex.h>
#include <stats/stats_mgr.h>
#include <dhcp6/tests/dhcp6_test_utils.h>
#include <dhcp6/tests/dhcp6_client.h>
#include <dhcp/tests/pkt_captures.h>
#include <cc/command_interpreter.h>
#include <boost/pointer_cast.hpp>
#include <boost/scoped_ptr.hpp>
#include <gtest/gtest.h>
#include <unistd.h>
#include <fstream>
#include <iostream>
#include <sstream>
using namespace isc;
using namespace isc::data;
using namespace isc::asiolink;
using namespace isc::dhcp;
using namespace isc::dhcp::test;
using namespace isc::util;
using namespace std;
namespace {
const char* CONFIGS[] = {
// Configuration 0:
// - used in advertiseOptions
"{ \"interfaces-config\": {"
" \"interfaces\": [ \"*\" ]"
"},"
"\"preferred-lifetime\": 3000,"
"\"rebind-timer\": 2000, "
"\"renew-timer\": 1000, "
"\"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8:1::/64\" } ],"
" \"subnet\": \"2001:db8:1::/48\", "
" \"interface\": \"eth0\", "
" \"option-data\": [ {"
" \"name\": \"dns-servers\","
" \"data\": \"2001:db8:1234:FFFF::1, 2001:db8:1234:FFFF::2\""
" },"
" {"
" \"name\": \"subscriber-id\","
" \"data\": \"1234\","
" \"csv-format\": False"
" } ]"
" } ],"
"\"valid-lifetime\": 4000 }",
// Configuration 1:
// - a single subnet
// - MySQL host data source
"{ \"interfaces-config\": {"
" \"interfaces\": [ \"*\" ]"
"},"
"\"hosts-database\": {"
" \"type\": \"mysql\","
" \"name\": \"keatest\","
" \"user\": \"keatest\","
" \"password\": \"keatest\""
"},"
"\"preferred-lifetime\": 3000,"
"\"rebind-timer\": 2000, "
"\"renew-timer\": 1000, "
"\"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8:1::/64\" } ],"
" \"subnet\": \"2001:db8:1::/48\" "
" } ],"
"\"valid-lifetime\": 4000 }"
};
// This test verifies that incoming SOLICIT can be handled properly when
// there are no subnets configured.
//
// This test sends a SOLICIT and the expected response
// is an ADVERTISE with STATUS_NoAddrsAvail and no address provided in the
// response
TEST_F(NakedDhcpv6SrvTest, SolicitNoSubnet) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->addOption(generateIA(D6O_IA_NA, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr reply = srv.processSolicit(sol);
// check that we get the right NAK
checkNakResponse(reply, DHCPV6_ADVERTISE, 1234, STATUS_NoAddrsAvail,
0, 0);
}
// This test verifies that incoming REQUEST can be handled properly when
// there are no subnets configured.
//
// This test sends a REQUEST and the expected response
// is an REPLY with STATUS_NoAddrsAvail and no address provided in the
// response
TEST_F(NakedDhcpv6SrvTest, RequestNoSubnet) {
NakedDhcpv6Srv srv(0);
// Let's create a REQUEST
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 1234));
req->setRemoteAddr(IOAddress("fe80::abcd"));
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, 234, 1500, 3000);
// with a hint
IOAddress hint("2001:db8:1:1::dead:beef");
OptionPtr hint_opt(new Option6IAAddr(D6O_IAADDR, hint, 300, 500));
ia->addOption(hint_opt);
req->addOption(ia);
OptionPtr clientid = generateClientId();
req->addOption(clientid);
// server-id is mandatory in REQUEST
req->addOption(srv.getServerID());
// Pass it to the server and hope for a REPLY
Pkt6Ptr reply = srv.processRequest(req);
// check that we get the right NAK
checkNakResponse (reply, DHCPV6_REPLY, 1234, STATUS_NoAddrsAvail,
0, 0);
}
// This test verifies that incoming RENEW can be handled properly, even when
// no subnets are configured.
//
// This test sends a RENEW and the expected response
// is an REPLY with STATUS_NoBinding and no address provided in the
// response
TEST_F(NakedDhcpv6SrvTest, RenewNoSubnet) {
NakedDhcpv6Srv srv(0);
const IOAddress addr("2001:db8:1:1::cafe:babe");
const uint32_t iaid = 234;
// Generate client-id also duid_
OptionPtr clientid = generateClientId();
// Let's create a RENEW
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_RENEW, 1234));
req->setRemoteAddr(IOAddress("fe80::abcd"));
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, iaid, 1500, 3000);
OptionPtr renewed_addr_opt(new Option6IAAddr(D6O_IAADDR, addr, 300, 500));
ia->addOption(renewed_addr_opt);
req->addOption(ia);
req->addOption(clientid);
// Server-id is mandatory in RENEW
req->addOption(srv.getServerID());
// Pass it to the server and hope for a REPLY
Pkt6Ptr reply = srv.processRenew(req);
// check that we get the right NAK
checkNakResponse (reply, DHCPV6_REPLY, 1234, STATUS_NoBinding,
0, 0);
}
// This test verifies that incoming RELEASE can be handled properly, even when
// no subnets are configured.
//
// This test sends a RELEASE and the expected response
// is an REPLY with STATUS_NoBinding and no address provided in the
// response
TEST_F(NakedDhcpv6SrvTest, ReleaseNoSubnet) {
NakedDhcpv6Srv srv(0);
const IOAddress addr("2001:db8:1:1::cafe:babe");
const uint32_t iaid = 234;
// Generate client-id also duid_
OptionPtr clientid = generateClientId();
// Let's create a RELEASE
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_RELEASE, 1234));
req->setRemoteAddr(IOAddress("fe80::abcd"));
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, iaid, 1500, 3000);
OptionPtr released_addr_opt(new Option6IAAddr(D6O_IAADDR, addr, 300, 500));
ia->addOption(released_addr_opt);
req->addOption(ia);
req->addOption(clientid);
// Server-id is mandatory in RELEASE
req->addOption(srv.getServerID());
// Pass it to the server and hope for a REPLY
Pkt6Ptr reply = srv.processRelease(req);
// check that we get the right NAK
checkNakResponse (reply, DHCPV6_REPLY, 1234, STATUS_NoBinding, 0, 0);
}
// Test verifies that the Dhcpv6_srv class can be instantiated. It checks a mode
// without open sockets and with sockets opened on a high port (to not require
// root privileges).
TEST_F(Dhcpv6SrvTest, basic) {
boost::scoped_ptr<Dhcpv6Srv> srv;
ASSERT_NO_THROW( {
// Skip opening any sockets
srv.reset(new NakedDhcpv6Srv(0));
});
srv.reset();
ASSERT_NO_THROW({
// open an unprivileged port
srv.reset(new NakedDhcpv6Srv(DHCP6_SERVER_PORT + 10000));
});
}
// Test checks that DUID is generated properly
TEST_F(Dhcpv6SrvTest, DUID) {
boost::scoped_ptr<Dhcpv6Srv> srv;
ASSERT_NO_THROW( {
srv.reset(new NakedDhcpv6Srv(0));
});
OptionPtr srvid = srv->getServerID();
ASSERT_TRUE(srvid);
EXPECT_EQ(D6O_SERVERID, srvid->getType());
OutputBuffer buf(32);
srvid->pack(buf);
// length of the actual DUID
size_t len = buf.getLength() - srvid->getHeaderLen();
InputBuffer data(buf.getData(), buf.getLength());
// ignore first four bytes (standard DHCPv6 header)
data.readUint32();
uint16_t duid_type = data.readUint16();
cout << "Duid-type=" << duid_type << endl;
switch(duid_type) {
case DUID::DUID_LLT: {
// DUID must contain at least 6 bytes long MAC
// + 8 bytes of fixed header
EXPECT_GE(14, len);
uint16_t hw_type = data.readUint16();
// there's no real way to find out "correct"
// hardware type
EXPECT_GT(hw_type, 0);
// check that timer is counted since 1.1.2000,
// not from 1.1.1970.
uint32_t seconds = data.readUint32();
EXPECT_LE(seconds, DUID_TIME_EPOCH);
// this test will start failing after 2030.
// Hopefully we will be at BIND12 by then.
// MAC must not be zeros
vector<uint8_t> mac(len-8);
vector<uint8_t> zeros(len-8, 0);
data.readVector(mac, len-8);
EXPECT_TRUE(mac != zeros);
break;
}
case DUID::DUID_EN: {
// there's not much we can check. Just simple
// check if it is not all zeros
vector<uint8_t> content(len-2);
data.readVector(content, len-2);
EXPECT_FALSE(isRangeZero(content.begin(), content.end()));
break;
}
case DUID::DUID_LL: {
// not supported yet
cout << "Test not implemented for DUID-LL." << endl;
// No failure here. There's really no way for test LL DUID. It doesn't
// even make sense to check if that Link Layer is actually present on
// a physical interface. RFC3315 says a server should write its DUID
// and keep it despite hardware changes.
break;
}
case DUID::DUID_UUID: // not supported yet
default:
ADD_FAILURE() << "Not supported duid type=" << duid_type << endl;
break;
}
}
// This test checks if Option Request Option (ORO) is parsed correctly
// and the requested options are actually assigned.
TEST_F(Dhcpv6SrvTest, advertiseOptions) {
IfaceMgrTestConfig test_config(true);
ConstElementPtr x;
ASSERT_NO_THROW(configure(CONFIGS[0]));
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
sol->addOption(generateIA(D6O_IA_NA, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr adv = srv_.processSolicit(sol);
// check if we get response at all
ASSERT_TRUE(adv);
// We have not requested any options so they should not
// be included in the response.
ASSERT_FALSE(adv->getOption(D6O_SUBSCRIBER_ID));
ASSERT_FALSE(adv->getOption(D6O_NAME_SERVERS));
// Let's now request some options. We expect that the server
// will include them in its response.
boost::shared_ptr<OptionIntArray<uint16_t> >
option_oro(new OptionIntArray<uint16_t>(Option::V6, D6O_ORO));
// Create vector with two option codes.
std::vector<uint16_t> codes(2);
codes[0] = D6O_SUBSCRIBER_ID;
codes[1] = D6O_NAME_SERVERS;
// Pass this code to option.
option_oro->setValues(codes);
// Append ORO to SOLICIT message.
sol->addOption(option_oro);
// Need to process SOLICIT again after requesting new option.
adv = srv_.processSolicit(sol);
ASSERT_TRUE(adv);
OptionPtr tmp = adv->getOption(D6O_NAME_SERVERS);
ASSERT_TRUE(tmp);
boost::shared_ptr<Option6AddrLst> reply_nameservers =
boost::dynamic_pointer_cast<Option6AddrLst>(tmp);
ASSERT_TRUE(reply_nameservers);
Option6AddrLst::AddressContainer addrs = reply_nameservers->getAddresses();
ASSERT_EQ(2, addrs.size());
EXPECT_TRUE(addrs[0] == IOAddress("2001:db8:1234:FFFF::1"));
EXPECT_TRUE(addrs[1] == IOAddress("2001:db8:1234:FFFF::2"));
// There is a dummy option with code 1000 we requested from a server.
// Expect that this option is in server's response.
tmp = adv->getOption(D6O_SUBSCRIBER_ID);
ASSERT_TRUE(tmp);
// Check that the option contains valid data (from configuration).
std::vector<uint8_t> data = tmp->getData();
ASSERT_EQ(2, data.size());
const uint8_t foo_expected[] = {
0x12, 0x34
};
EXPECT_EQ(0, memcmp(&data[0], foo_expected, 2));
// more checks to be implemented
}
// There are no dedicated tests for Dhcpv6Srv::handleIA_NA and Dhcpv6Srv::assignLeases
// as they are indirectly tested in Solicit and Request tests.
// This test verifies that incoming SOLICIT can be handled properly, that an
// ADVERTISE is generated, that the response has an address and that address
// really belongs to the configured pool.
//
// This test sends a SOLICIT without any hint in IA_NA.
//
// constructed very simple SOLICIT message with:
// - client-id option (mandatory)
// - IA option (a request for address, without any addresses)
//
// expected returned ADVERTISE message:
// - copy of client-id
// - server-id
// - IA that includes IAADDR
TEST_F(Dhcpv6SrvTest, SolicitBasic) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
sol->addOption(generateIA(D6O_IA_NA, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr reply = srv.processSolicit(sol);
// check if we get response at all
checkResponse(reply, DHCPV6_ADVERTISE, 1234);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr = checkIA_NA(reply, 234, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr);
// Check that the assigned address is indeed from the configured pool
checkIAAddr(addr, addr->getAddress(), Lease::TYPE_NA);
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
}
// This test verifies that incoming SOLICIT can be handled properly, that an
// ADVERTISE is generated, that the response has a prefix and that prefix
// really belongs to the configured pool.
//
// This test sends a SOLICIT without any hint in IA_PD.
//
// constructed very simple SOLICIT message with:
// - client-id option (mandatory)
// - IA option (a request for address, without any addresses)
//
// expected returned ADVERTISE message:
// - copy of client-id
// - server-id
// - IA that includes IAPREFIX
TEST_F(Dhcpv6SrvTest, pdSolicitBasic) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
sol->addOption(generateIA(D6O_IA_PD, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr reply = srv.processSolicit(sol);
// check if we get response at all
checkResponse(reply, DHCPV6_ADVERTISE, 1234);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAPrefix> prefix = checkIA_PD(reply, 234, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(prefix);
// Check that the assigned prefix is indeed from the configured pool
checkIAAddr(prefix, prefix->getAddress(), Lease::TYPE_PD);
EXPECT_EQ(pd_pool_->getLength(), prefix->getLength());
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
}
// This test verifies that incoming SOLICIT can be handled properly, that an
// ADVERTISE is generated, that the response has an address and that address
// really belongs to the configured pool.
//
// This test sends a SOLICIT with IA_NA that contains a valid hint.
//
// constructed very simple SOLICIT message with:
// - client-id option (mandatory)
// - IA option (a request for address, with an address that belongs to the
// configured pool, i.e. is valid as hint)
//
// expected returned ADVERTISE message:
// - copy of client-id
// - server-id
// - IA that includes IAADDR
TEST_F(Dhcpv6SrvTest, SolicitHint) {
NakedDhcpv6Srv srv(0);
// Let's create a SOLICIT
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, 234, 1500, 3000);
// with a valid hint
IOAddress hint("2001:db8:1:1::dead:beef");
ASSERT_TRUE(subnet_->inPool(Lease::TYPE_NA, hint));
OptionPtr hint_opt(new Option6IAAddr(D6O_IAADDR, hint, 300, 500));
ia->addOption(hint_opt);
sol->addOption(ia);
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr reply = srv.processSolicit(sol);
// check if we get response at all
checkResponse(reply, DHCPV6_ADVERTISE, 1234);
OptionPtr tmp = reply->getOption(D6O_IA_NA);
ASSERT_TRUE(tmp);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr = checkIA_NA(reply, 234, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr);
// check that we've got the address we requested
checkIAAddr(addr, hint, Lease::TYPE_NA);
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
}
// This test verifies that incoming SOLICIT can be handled properly, that an
// ADVERTISE is generated, that the response has an address and that address
// really belongs to the configured pool.
//
// This test sends a SOLICIT with IA_NA that contains an invalid hint.
//
// constructed very simple SOLICIT message with:
// - client-id option (mandatory)
// - IA option (a request for address, with an address that does not
// belong to the configured pool, i.e. is valid as hint)
//
// expected returned ADVERTISE message:
// - copy of client-id
// - server-id
// - IA that includes IAADDR
TEST_F(Dhcpv6SrvTest, SolicitInvalidHint) {
NakedDhcpv6Srv srv(0);
// Let's create a SOLICIT
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, 234, 1500, 3000);
IOAddress hint("2001:db8:1::cafe:babe");
ASSERT_FALSE(subnet_->inPool(Lease::TYPE_NA, hint));
OptionPtr hint_opt(new Option6IAAddr(D6O_IAADDR, hint, 300, 500));
ia->addOption(hint_opt);
sol->addOption(ia);
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr reply = srv.processSolicit(sol);
// check if we get response at all
checkResponse(reply, DHCPV6_ADVERTISE, 1234);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr = checkIA_NA(reply, 234, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr);
// Check that the assigned address is indeed from the configured pool
checkIAAddr(addr, addr->getAddress(), Lease::TYPE_NA);
EXPECT_TRUE(subnet_->inPool(Lease::TYPE_NA, addr->getAddress()));
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
}
/// @todo: Add a test that client sends hint that is in pool, but currently
/// being used by a different client.
// This test checks that the server is offering different addresses to different
// clients in ADVERTISEs. Please note that ADVERTISE is not a guarantee that such
// an address will be assigned. Had the pool was very small and contained only
// 2 addresses, the third client would get the same advertise as the first one
// and this is a correct behavior. It is REQUEST that will fail for the third
// client. ADVERTISE is basically saying "if you send me a request, you will
// probably get an address like this" (there are no guarantees).
TEST_F(Dhcpv6SrvTest, ManySolicits) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr sol1 = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
Pkt6Ptr sol2 = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 2345));
Pkt6Ptr sol3 = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 3456));
sol1->setRemoteAddr(IOAddress("fe80::abcd"));
sol2->setRemoteAddr(IOAddress("fe80::1223"));
sol3->setRemoteAddr(IOAddress("fe80::3467"));
sol1->setIface("eth0");
sol2->setIface("eth0");
sol3->setIface("eth0");
sol1->addOption(generateIA(D6O_IA_NA, 1, 1500, 3000));
sol2->addOption(generateIA(D6O_IA_NA, 2, 1500, 3000));
sol3->addOption(generateIA(D6O_IA_NA, 3, 1500, 3000));
// different client-id sizes
OptionPtr clientid1 = generateClientId(12);
OptionPtr clientid2 = generateClientId(14);
OptionPtr clientid3 = generateClientId(16);
sol1->addOption(clientid1);
sol2->addOption(clientid2);
sol3->addOption(clientid3);
// Pass it to the server and get an advertise
Pkt6Ptr reply1 = srv.processSolicit(sol1);
Pkt6Ptr reply2 = srv.processSolicit(sol2);
Pkt6Ptr reply3 = srv.processSolicit(sol3);
// check if we get response at all
checkResponse(reply1, DHCPV6_ADVERTISE, 1234);
checkResponse(reply2, DHCPV6_ADVERTISE, 2345);
checkResponse(reply3, DHCPV6_ADVERTISE, 3456);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr1 = checkIA_NA(reply1, 1, subnet_->getT1(),
subnet_->getT2());
boost::shared_ptr<Option6IAAddr> addr2 = checkIA_NA(reply2, 2, subnet_->getT1(),
subnet_->getT2());
boost::shared_ptr<Option6IAAddr> addr3 = checkIA_NA(reply3, 3, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr1);
ASSERT_TRUE(addr2);
ASSERT_TRUE(addr3);
// Check that the assigned address is indeed from the configured pool
checkIAAddr(addr1, addr1->getAddress(), Lease::TYPE_NA);
checkIAAddr(addr2, addr2->getAddress(), Lease::TYPE_NA);
checkIAAddr(addr3, addr3->getAddress(), Lease::TYPE_NA);
// check DUIDs
checkServerId(reply1, srv.getServerID());
checkServerId(reply2, srv.getServerID());
checkServerId(reply3, srv.getServerID());
checkClientId(reply1, clientid1);
checkClientId(reply2, clientid2);
checkClientId(reply3, clientid3);
// Finally check that the addresses offered are different
EXPECT_NE(addr1->getAddress(), addr2->getAddress());
EXPECT_NE(addr2->getAddress(), addr3->getAddress());
EXPECT_NE(addr3->getAddress(), addr1->getAddress());
cout << "Offered address to client1=" << addr1->getAddress() << endl;
cout << "Offered address to client2=" << addr2->getAddress() << endl;
cout << "Offered address to client3=" << addr3->getAddress() << endl;
}
// This test verifies that incoming REQUEST can be handled properly, that a
// REPLY is generated, that the response has an address and that address
// really belongs to the configured pool.
//
// This test sends a REQUEST with IA_NA that contains a valid hint.
//
// constructed very simple REQUEST message with:
// - client-id option (mandatory)
// - IA option (a request for address, with an address that belongs to the
// configured pool, i.e. is valid as hint)
//
// expected returned REPLY message:
// - copy of client-id
// - server-id
// - IA that includes IAADDR
TEST_F(Dhcpv6SrvTest, RequestBasic) {
NakedDhcpv6Srv srv(0);
// Let's create a REQUEST
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 1234));
req->setRemoteAddr(IOAddress("fe80::abcd"));
req->setIface("eth0");
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_NA, 234, 1500, 3000);
// with a valid hint
IOAddress hint("2001:db8:1:1::dead:beef");
ASSERT_TRUE(subnet_->inPool(Lease::TYPE_NA, hint));
OptionPtr hint_opt(new Option6IAAddr(D6O_IAADDR, hint, 300, 500));
ia->addOption(hint_opt);
req->addOption(ia);
OptionPtr clientid = generateClientId();
req->addOption(clientid);
// server-id is mandatory in REQUEST
req->addOption(srv.getServerID());
// Pass it to the server and hope for a REPLY
Pkt6Ptr reply = srv.processRequest(req);
// check if we get response at all
checkResponse(reply, DHCPV6_REPLY, 1234);
OptionPtr tmp = reply->getOption(D6O_IA_NA);
ASSERT_TRUE(tmp);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr = checkIA_NA(reply, 234,
subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr);
// check that we've got the address we requested
checkIAAddr(addr, hint, Lease::TYPE_NA);
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
// check that the lease is really in the database
Lease6Ptr l = checkLease(duid_, reply->getOption(D6O_IA_NA), addr);
EXPECT_TRUE(l);
LeaseMgrFactory::instance().deleteLease(addr->getAddress());
}
// This test verifies that incoming REQUEST can be handled properly, that a
// REPLY is generated, that the response has a prefix and that prefix
// really belongs to the configured pool.
//
// This test sends a REQUEST with IA_PD that contains a valid hint.
//
// constructed very simple REQUEST message with:
// - client-id option (mandatory)
// - IA option (a request for address, with an address that belongs to the
// configured pool, i.e. is valid as hint)
//
// expected returned REPLY message:
// - copy of client-id
// - server-id
// - IA that includes IAPREFIX
TEST_F(Dhcpv6SrvTest, pdRequestBasic) {
NakedDhcpv6Srv srv(0);
// Let's create a REQUEST
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 1234));
req->setRemoteAddr(IOAddress("fe80::abcd"));
req->setIface("eth0");
boost::shared_ptr<Option6IA> ia = generateIA(D6O_IA_PD, 234, 1500, 3000);
// with a valid hint
IOAddress hint("2001:db8:1:2:f::");
ASSERT_TRUE(subnet_->inPool(Lease::TYPE_PD, hint));
OptionPtr hint_opt(new Option6IAPrefix(D6O_IAPREFIX, hint, 64, 300, 500));
ia->addOption(hint_opt);
req->addOption(ia);
OptionPtr clientid = generateClientId();
req->addOption(clientid);
// server-id is mandatory in REQUEST
req->addOption(srv.getServerID());
// Pass it to the server and hope for a REPLY
Pkt6Ptr reply = srv.processRequest(req);
// check if we get response at all
checkResponse(reply, DHCPV6_REPLY, 1234);
OptionPtr tmp = reply->getOption(D6O_IA_PD);
ASSERT_TRUE(tmp);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAPrefix> prf = checkIA_PD(reply, 234,
subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(prf);
// check that we've got the address we requested
checkIAAddr(prf, hint, Lease::TYPE_PD);
EXPECT_EQ(pd_pool_->getLength(), prf->getLength());
// check DUIDs
checkServerId(reply, srv.getServerID());
checkClientId(reply, clientid);
// check that the lease is really in the database
Lease6Ptr l = checkPdLease(duid_, reply->getOption(D6O_IA_PD), prf);
EXPECT_TRUE(l);
EXPECT_TRUE(LeaseMgrFactory::instance().deleteLease(prf->getAddress()));
}
// This test checks that the server is offering different addresses to different
// clients in REQUEST. Please note that ADVERTISE is not a guarantee that such
// and address will be assigned. Had the pool was very small and contained only
// 2 addresses, the third client would get the same advertise as the first one
// and this is a correct behavior. It is REQUEST that will fail for the third
// client. ADVERTISE is basically saying "if you send me a request, you will
// probably get an address like this" (there are no guarantees).
TEST_F(Dhcpv6SrvTest, ManyRequests) {
NakedDhcpv6Srv srv(0);
ASSERT_TRUE(subnet_);
Pkt6Ptr req1 = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 1234));
Pkt6Ptr req2 = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 2345));
Pkt6Ptr req3 = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 3456));
req1->setRemoteAddr(IOAddress("fe80::abcd"));
req2->setRemoteAddr(IOAddress("fe80::1223"));
req3->setRemoteAddr(IOAddress("fe80::3467"));
req1->setIface("eth0");
req2->setIface("eth0");
req3->setIface("eth0");
req1->addOption(generateIA(D6O_IA_NA, 1, 1500, 3000));
req2->addOption(generateIA(D6O_IA_NA, 2, 1500, 3000));
req3->addOption(generateIA(D6O_IA_NA, 3, 1500, 3000));
// different client-id sizes
OptionPtr clientid1 = generateClientId(12);
OptionPtr clientid2 = generateClientId(14);
OptionPtr clientid3 = generateClientId(16);
req1->addOption(clientid1);
req2->addOption(clientid2);
req3->addOption(clientid3);
// server-id is mandatory in REQUEST
req1->addOption(srv.getServerID());
req2->addOption(srv.getServerID());
req3->addOption(srv.getServerID());
// Pass it to the server and get an advertise
Pkt6Ptr reply1 = srv.processRequest(req1);
Pkt6Ptr reply2 = srv.processRequest(req2);
Pkt6Ptr reply3 = srv.processRequest(req3);
// check if we get response at all
checkResponse(reply1, DHCPV6_REPLY, 1234);
checkResponse(reply2, DHCPV6_REPLY, 2345);
checkResponse(reply3, DHCPV6_REPLY, 3456);
// check that IA_NA was returned and that there's an address included
boost::shared_ptr<Option6IAAddr> addr1 = checkIA_NA(reply1, 1, subnet_->getT1(),
subnet_->getT2());
boost::shared_ptr<Option6IAAddr> addr2 = checkIA_NA(reply2, 2, subnet_->getT1(),
subnet_->getT2());
boost::shared_ptr<Option6IAAddr> addr3 = checkIA_NA(reply3, 3, subnet_->getT1(),
subnet_->getT2());
ASSERT_TRUE(addr1);
ASSERT_TRUE(addr2);
ASSERT_TRUE(addr3);
// Check that the assigned address is indeed from the configured pool
checkIAAddr(addr1, addr1->getAddress(), Lease::TYPE_NA);
checkIAAddr(addr2, addr2->getAddress(), Lease::TYPE_NA);
checkIAAddr(addr3, addr3->getAddress(), Lease::TYPE_NA);
// check DUIDs
checkServerId(reply1, srv.getServerID());
checkServerId(reply2, srv.getServerID());
checkServerId(reply3, srv.getServerID());
checkClientId(reply1, clientid1);
checkClientId(reply2, clientid2);
checkClientId(reply3, clientid3);
// Finally check that the addresses offered are different
EXPECT_NE(addr1->getAddress(), addr2->getAddress());
EXPECT_NE(addr2->getAddress(), addr3->getAddress());
EXPECT_NE(addr3->getAddress(), addr1->getAddress());
cout << "Assigned address to client1=" << addr1->getAddress() << endl;
cout << "Assigned address to client2=" << addr2->getAddress() << endl;
cout << "Assigned address to client3=" << addr3->getAddress() << endl;
}
// This test verifies that incoming (positive) RENEW can be handled properly, that a
// REPLY is generated, that the response has an address and that address
// really belongs to the configured pool and that lease is actually renewed.
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_NA that includes IAADDR
// - lease is actually renewed in LeaseMgr
TEST_F(Dhcpv6SrvTest, renewBasic) {
testRenewBasic(Lease::TYPE_NA, "2001:db8:1:1::cafe:babe",
"2001:db8:1:1::cafe:babe", 128);
}
// This test verifies that incoming (positive) PD RENEW can be handled properly,
// that a REPLY is generated, that the response has a prefix and that prefix
// really belongs to the configured pool and that lease is actually renewed.
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_PD that includes IAPREFIX
// - lease is actually renewed in LeaseMgr
TEST_F(Dhcpv6SrvTest, pdRenewBasic) {
testRenewBasic(Lease::TYPE_PD, "2001:db8:1:2::",
"2001:db8:1:2::", pd_pool_->getLength());
}
// This test verifies that incoming (invalid) RENEW with an address
// can be handled properly. This has changed with #3565. The server
// is now able to allocate a lease in Renew if it's available.
// Previous testRenewReject is now split into 3 tests.
//
// This test checks the first scenario: There is no lease at all.
// The server will try to assign it. Since it is not used by anyone else,
// the server will assign it. This is convenient for various types
// of recoveries, e.g. when the server lost its database.
TEST_F(Dhcpv6SrvTest, RenewUnknown) {
// False means that the lease should not be created before renewal attempt
testRenewBasic(Lease::TYPE_NA, "2001:db8:1:1::abc", "2001:db8:1:1::abc",
128, false);
}
// This test checks that a client that renews existing lease, but uses
// a wrong IAID, will be processed correctly. As there is no lease for
// this (duid, type, iaid) tuple, this is treated as a new IA, regardless
// if the client inserted an address that is used in a different IA.
// After #3565 was implemented, the server will attempt to assign a lease.
// The one that client requested is already used with different IAID, so
// it will just pick a different lease. This is the second out of three
// scenarios tests by old RenewReject test.
TEST_F(Dhcpv6SrvTest, RenewWrongIAID) {
testRenewWrongIAID(Lease::TYPE_NA, IOAddress("2001:db8:1:1::abc"));
}
// This test checks whether client A can renew an address that is currently
// leased by client B. The server should detect that the lease belong to
// someone else and assign a different lease. This is the third out of three
// scenarios tests by old RenewReject test.
TEST_F(Dhcpv6SrvTest, RenewSomeoneElesesLease) {
testRenewSomeoneElsesLease(Lease::TYPE_NA, IOAddress("2001:db8::1"));
}
// This test verifies that incoming (positive) RELEASE with address can be
// handled properly, that a REPLY is generated, that the response has status
// code and that the lease is indeed removed from the database.
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_NA that does not include an IAADDR
// - lease is actually removed from LeaseMgr
// - assigned-nas stats counter is properly decremented
TEST_F(Dhcpv6SrvTest, ReleaseBasic) {
testReleaseBasic(Lease::TYPE_NA, IOAddress("2001:db8:1:1::cafe:babe"),
IOAddress("2001:db8:1:1::cafe:babe"));
}
// This test verifies that incoming (positive) RELEASE with prefix can be
// handled properly, that a REPLY is generated, that the response has
// status code and that the lease is indeed removed from the database.
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_PD that does not include an IAPREFIX
// - lease is actually removed from LeaseMgr
// - assigned-pds stats counter is properly decremented
TEST_F(Dhcpv6SrvTest, pdReleaseBasic) {
testReleaseBasic(Lease::TYPE_PD, IOAddress("2001:db8:1:2::"),
IOAddress("2001:db8:1:2::"));
}
// This test verifies that incoming (invalid) RELEASE with an address
// can be handled properly.
//
// This test checks 3 scenarios:
// 1. there is no such lease at all
// 2. there is such a lease, but it is assigned to a different IAID
// 3. there is such a lease, but it belongs to a different client
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_NA that includes STATUS-CODE
// - No lease in LeaseMgr
// - assigned-nas stats counter is properly not decremented
TEST_F(Dhcpv6SrvTest, ReleaseReject) {
testReleaseReject(Lease::TYPE_NA, IOAddress("2001:db8:1:1::dead"));
}
// This test verifies that incoming (invalid) RELEASE with a prefix
// can be handled properly.
//
// This test checks 3 scenarios:
// 1. there is no such lease at all
// 2. there is such a lease, but it is assigned to a different IAID
// 3. there is such a lease, but it belongs to a different client
//
// expected:
// - returned REPLY message has copy of client-id
// - returned REPLY message has server-id
// - returned REPLY message has IA_PD that includes STATUS-CODE
// - No lease in LeaseMgr
// - assigned-pds stats counter is properly not decremented
TEST_F(Dhcpv6SrvTest, pdReleaseReject) {
testReleaseReject(Lease::TYPE_PD, IOAddress("2001:db8:1:2::"));
}
// This test verifies if the sanityCheck() really checks options presence.
TEST_F(Dhcpv6SrvTest, sanityCheck) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
// Set link-local sender address, so appropriate subnet can be
// selected for this packet.
pkt->setRemoteAddr(IOAddress("fe80::abcd"));
// client-id is optional for information-request, so
EXPECT_NO_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::OPTIONAL, Dhcpv6Srv::OPTIONAL));
// empty packet, no client-id, no server-id
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::FORBIDDEN),
RFCViolation);
// This doesn't make much sense, but let's check it for completeness
EXPECT_NO_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::FORBIDDEN, Dhcpv6Srv::FORBIDDEN));
OptionPtr clientid = generateClientId();
pkt->addOption(clientid);
// client-id is mandatory, server-id is forbidden (as in SOLICIT or REBIND)
EXPECT_NO_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::FORBIDDEN));
pkt->addOption(srv.getServerID());
// both client-id and server-id are mandatory (as in REQUEST, RENEW, RELEASE, DECLINE)
EXPECT_NO_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::MANDATORY));
// sane section ends here, let's do some negative tests as well
pkt->addOption(clientid);
pkt->addOption(clientid);
// with more than one client-id it should throw, no matter what
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::OPTIONAL, Dhcpv6Srv::OPTIONAL),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::OPTIONAL),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::OPTIONAL, Dhcpv6Srv::MANDATORY),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::MANDATORY),
RFCViolation);
pkt->delOption(D6O_CLIENTID);
pkt->delOption(D6O_CLIENTID);
// again we have only one client-id
// let's try different type of insanity - several server-ids
pkt->addOption(srv.getServerID());
pkt->addOption(srv.getServerID());
// with more than one server-id it should throw, no matter what
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::OPTIONAL, Dhcpv6Srv::OPTIONAL),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::OPTIONAL),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::OPTIONAL, Dhcpv6Srv::MANDATORY),
RFCViolation);
EXPECT_THROW(srv.sanityCheck(pkt, Dhcpv6Srv::MANDATORY, Dhcpv6Srv::MANDATORY),
RFCViolation);
}
// Check that the server is testing if server identifier received in the
// query, matches server identifier used by the server.
TEST_F(Dhcpv6SrvTest, testServerID) {
NakedDhcpv6Srv srv(0);
Pkt6Ptr req = Pkt6Ptr(new Pkt6(DHCPV6_REQUEST, 1234));
std::vector<uint8_t> bin;
// duid_llt constructed with: time = 0, macaddress = 00:00:00:00:00:00
// it's necessary to generate server identifier option
isc::util::encode::decodeHex("0001000100000000000000000000", bin);
// Now create server identifier option
OptionPtr serverid = OptionPtr(new Option(Option::V6, D6O_SERVERID, bin));
// Server identifier option is MANDATORY in Request message.
// Add server identifier option with different value from one that
// server is using.
req->addOption(serverid);
// Message should be dropped
EXPECT_FALSE(srv.testServerID(req));
// Delete server identifier option and add new one, with same value as
// server's server identifier.
req->delOption(D6O_SERVERID);
req->addOption(srv.getServerID());
// With proper server identifier we expect true
EXPECT_TRUE(srv.testServerID(req));
// server-id MUST NOT appear in Solicit, so check if server is
// not dropping a message without server id.
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
EXPECT_TRUE(srv.testServerID(req));
}
// Test that some messages are discarded by the server if they are sent to
// unicast address.
TEST_F(Dhcpv6SrvTest, testUnicast) {
NakedDhcpv6Srv srv(0);
// Explicitly list client's message types which must be discarded if
// sent to unicast address.
const uint8_t not_allowed_unicast[] = {
DHCPV6_SOLICIT,
DHCPV6_CONFIRM,
DHCPV6_REBIND,
DHCPV6_INFORMATION_REQUEST
};
// Iterate over these messages and make sure they are discarded.
for (int i = 0; i < sizeof(not_allowed_unicast); ++i) {
Pkt6Ptr msg = Pkt6Ptr(new Pkt6(not_allowed_unicast[i], 1234));
msg->setLocalAddr(IOAddress("2001:db8:1::1"));
EXPECT_FALSE(srv.testUnicast(msg))
<< "server accepts message type "
<< static_cast<int>(not_allowed_unicast[i])
<< "being sent to unicast address; this message should"
" be discarded according to section 15 of RFC3315";
}
// Explicitly list client/relay message types which are allowed to
// be sent to unicast.
const uint8_t allowed_unicast[] = {
DHCPV6_REQUEST,
DHCPV6_RENEW,
DHCPV6_RELEASE,
DHCPV6_DECLINE,
DHCPV6_RELAY_FORW
};
// Iterate over these messages and check that they are accepted being
// sent to unicast.
for (int i = 0; i < sizeof(allowed_unicast); ++i) {
Pkt6Ptr msg = Pkt6Ptr(new Pkt6(allowed_unicast[i], 1234));
msg->setLocalAddr(IOAddress("2001:db8:1::1"));
msg->addOption(srv.getServerID());
EXPECT_TRUE(srv.testUnicast(msg))
<< "server doesn't accept message type "
<< static_cast<int>(allowed_unicast[i])
<< "being sent to unicast address";
}
}
// This test verifies if selectSubnet() selects proper subnet for a given
// source address.
TEST_F(Dhcpv6SrvTest, selectSubnetAddr) {
NakedDhcpv6Srv srv(0);
Subnet6Ptr subnet1(new Subnet6(IOAddress("2001:db8:1::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet2(new Subnet6(IOAddress("2001:db8:2::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet3(new Subnet6(IOAddress("2001:db8:3::"), 48, 1, 2, 3, 4));
// CASE 1: We have only one subnet defined and we received local traffic.
// The only available subnet used to be picked, but not anymore
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
pkt->setRemoteAddr(IOAddress("fe80::abcd"));
// The clause for assuming local subnet if there is only one subnet is was
// removed.
EXPECT_FALSE(srv.selectSubnet(pkt));
// CASE 2: We have only one subnet defined and we received relayed traffic.
// We should NOT select it.
// Identical steps as in case 1, but repeated for clarity
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
pkt->setRemoteAddr(IOAddress("2001:db8:abcd::2345"));
Subnet6Ptr selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
// CASE 3: We have three subnets defined and we received local traffic.
// Nothing should be selected.
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->setRemoteAddr(IOAddress("fe80::abcd"));
selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
// CASE 4: We have three subnets defined and we received relayed traffic
// that came out of subnet 2. We should select subnet2 then
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->setRemoteAddr(IOAddress("2001:db8:2::baca"));
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// CASE 5: We have three subnets defined and we received relayed traffic
// that came out of undefined subnet. We should select nothing
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->setRemoteAddr(IOAddress("2001:db8:4::baca"));
EXPECT_FALSE(srv.selectSubnet(pkt));
}
// This test verifies if selectSubnet() selects proper subnet for a given
// network interface name.
TEST_F(Dhcpv6SrvTest, selectSubnetIface) {
NakedDhcpv6Srv srv(0);
Subnet6Ptr subnet1(new Subnet6(IOAddress("2001:db8:1::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet2(new Subnet6(IOAddress("2001:db8:2::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet3(new Subnet6(IOAddress("2001:db8:3::"), 48, 1, 2, 3, 4));
subnet1->setIface("eth0");
subnet3->setIface("wifi1");
// CASE 1: We have only one subnet defined and it is available via eth0.
// Packet came from eth0. The only available subnet should be selected
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
pkt->setIface("eth0");
Subnet6Ptr selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet1);
// CASE 2: We have only one subnet defined and it is available via eth0.
// Packet came from eth1. We should not select it
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
pkt->setIface("eth1");
selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
// CASE 3: We have only 3 subnets defined, one over eth0, one remote and
// one over wifi1.
// Packet came from eth1. We should not select it
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->setIface("eth0");
EXPECT_EQ(subnet1, srv.selectSubnet(pkt));
pkt->setIface("eth3"); // no such interface
EXPECT_EQ(Subnet6Ptr(), srv.selectSubnet(pkt)); // nothing selected
pkt->setIface("wifi1");
EXPECT_EQ(subnet3, srv.selectSubnet(pkt));
}
// This test verifies if selectSubnet() selects proper subnet for a given
// linkaddr in RELAY-FORW message
TEST_F(Dhcpv6SrvTest, selectSubnetRelayLinkaddr) {
NakedDhcpv6Srv srv(0);
Subnet6Ptr subnet1(new Subnet6(IOAddress("2001:db8:1::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet2(new Subnet6(IOAddress("2001:db8:2::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet3(new Subnet6(IOAddress("2001:db8:3::"), 48, 1, 2, 3, 4));
Pkt6::RelayInfo relay;
relay.linkaddr_ = IOAddress("2001:db8:2::1234");
relay.peeraddr_ = IOAddress("fe80::1");
// CASE 1: We have only one subnet defined and we received relayed traffic.
// The only available subnet should NOT be selected.
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
pkt->relay_info_.push_back(relay);
Subnet6Ptr selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
// CASE 2: We have three subnets defined and we received relayed traffic
// that came out of subnet 2. We should select subnet2 then
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// Source of the packet should have no meaning. Selection is based
// on linkaddr field in the relay
pkt->setRemoteAddr(IOAddress("2001:db8:1::baca"));
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// But not when this linkaddr field is not usable.
Pkt6::RelayInfo relay2;
relay2.peeraddr_ = IOAddress("fe80::1");
pkt->relay_info_.clear();
pkt->relay_info_.push_back(relay2);
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet1);
// CASE 3: We have three subnets defined and we received relayed traffic
// that came out a layer 2 relay on subnet 2. We should select subnet2 then
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->relay_info_.clear();
pkt->relay_info_.push_back(relay);
relay2.hop_count_ = 1;
pkt->relay_info_.push_back(relay2);
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// The number of level 2 relay doesn't matter
pkt->relay_info_.clear();
Pkt6::RelayInfo relay20;
relay20.peeraddr_ = IOAddress("fe80::1");
pkt->relay_info_.push_back(relay20);
Pkt6::RelayInfo relay21;
relay21.peeraddr_ = IOAddress("fe80::1");
relay21.hop_count_ = 1;
pkt->relay_info_.push_back(relay21);
relay.hop_count_ = 2;
pkt->relay_info_.push_back(relay);
Pkt6::RelayInfo relay22;
relay22.peeraddr_ = IOAddress("fe80::1");
relay22.hop_count_ = 3;
pkt->relay_info_.push_back(relay22);
Pkt6::RelayInfo relay23;
relay23.peeraddr_ = IOAddress("fe80::1");
relay23.hop_count_ = 4;
pkt->relay_info_.push_back(relay23);
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// Only the inner/last relay with a usable address matters
pkt->relay_info_.clear();
pkt->relay_info_.push_back(relay20);
pkt->relay_info_.push_back(relay21);
pkt->relay_info_.push_back(relay);
pkt->relay_info_.push_back(relay22);
Pkt6::RelayInfo relay3;
relay3.linkaddr_ = IOAddress("2001:db8:3::1234");
relay3.peeraddr_ = IOAddress("fe80::1");
relay3.hop_count_ = 4;
pkt->relay_info_.push_back(relay3);
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet3);
// CASE 4: We have three subnets defined and we received relayed traffic
// that came out of undefined subnet. We should select nothing
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
pkt->relay_info_.clear();
relay.hop_count_ = 0;
relay.linkaddr_ = IOAddress("2001:db8:4::1234");
pkt->relay_info_.push_back(relay);
selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
}
// This test verifies if selectSubnet() selects proper subnet for a given
// interface-id option
TEST_F(Dhcpv6SrvTest, selectSubnetRelayInterfaceId) {
NakedDhcpv6Srv srv(0);
Subnet6Ptr subnet1(new Subnet6(IOAddress("2001:db8:1::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet2(new Subnet6(IOAddress("2001:db8:2::"), 48, 1, 2, 3, 4));
Subnet6Ptr subnet3(new Subnet6(IOAddress("2001:db8:3::"), 48, 1, 2, 3, 4));
subnet1->setInterfaceId(generateInterfaceId("relay1"));
subnet2->setInterfaceId(generateInterfaceId("relay2"));
// CASE 1: We have only one subnet defined and it is for interface-id "relay1"
// Packet came with interface-id "relay2". We should not select subnet1
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1); // just a single subnet
CfgMgr::instance().commit();
Pkt6Ptr pkt = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
Pkt6::RelayInfo relay;
relay.linkaddr_ = IOAddress("2001:db8:2::1234");
relay.peeraddr_ = IOAddress("fe80::1");
OptionPtr opt = generateInterfaceId("relay2");
relay.options_.insert(make_pair(opt->getType(), opt));
pkt->relay_info_.push_back(relay);
// There is only one subnet configured and we are outside of that subnet
Subnet6Ptr selected = srv.selectSubnet(pkt);
EXPECT_FALSE(selected);
// CASE 2: We have only one subnet defined and it is for interface-id "relay2"
// Packet came with interface-id "relay2". We should select it
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2); // just a single subnet
CfgMgr::instance().commit();
selected = srv.selectSubnet(pkt);
EXPECT_EQ(selected, subnet2);
// CASE 3: We have only 3 subnets defined: one remote for interface-id "relay1",
// one remote for interface-id "relay2" and third local
// packet comes with interface-id "relay2". We should select subnet2
CfgMgr::instance().clear();
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet1);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet2);
CfgMgr::instance().getStagingCfg()->getCfgSubnets6()->add(subnet3);
CfgMgr::instance().commit();
EXPECT_EQ(subnet2, srv.selectSubnet(pkt));
}
// Checks if server responses are sent to the proper port.
TEST_F(Dhcpv6SrvTest, portsDirectTraffic) {
NakedDhcpv6Srv srv(0);
// Let's create a simple SOLICIT
Pkt6Ptr sol = PktCaptures::captureSimpleSolicit();
// Simulate that we have received that traffic
srv.fakeReceive(sol);
// Server will now process to run its normal loop, but instead of calling
// IfaceMgr::receive6(), it will read all packets from the list set by
// fakeReceive()
srv.run();
// Get Advertise...
ASSERT_FALSE(srv.fake_sent_.empty());
Pkt6Ptr adv = srv.fake_sent_.front();
ASSERT_TRUE(adv);
// This is sent back to client directly, should be port 546
EXPECT_EQ(DHCP6_CLIENT_PORT, adv->getRemotePort());
}
// Checks if server responses are sent to the proper port.
TEST_F(Dhcpv6SrvTest, portsRelayedTraffic) {
NakedDhcpv6Srv srv(0);
// Let's create a simple SOLICIT
Pkt6Ptr sol = PktCaptures::captureRelayedSolicit();
// Simulate that we have received that traffic
srv.fakeReceive(sol);
// Server will now process to run its normal loop, but instead of calling
// IfaceMgr::receive6(), it will read all packets from the list set by
// fakeReceive()
srv.run();
// Get Advertise...
ASSERT_FALSE(srv.fake_sent_.empty());
Pkt6Ptr adv = srv.fake_sent_.front();
ASSERT_TRUE(adv);
// This is sent back to relay, so port is 547
EXPECT_EQ(DHCP6_SERVER_PORT, adv->getRemotePort());
}
// Checks if server is able to handle a relayed traffic from DOCSIS3.0 modems
// @todo Uncomment this test as part of #3180 work.
// Kea code currently fails to handle docsis traffic.
TEST_F(Dhcpv6SrvTest, docsisTraffic) {
NakedDhcpv6Srv srv(0);
// Let's get a traffic capture from DOCSIS3.0 modem
Pkt6Ptr sol = PktCaptures::captureDocsisRelayedSolicit();
// Simulate that we have received that traffic
srv.fakeReceive(sol);
// Server will now process to run its normal loop, but instead of calling
// IfaceMgr::receive6(), it will read all packets from the list set by
// fakeReceive()
srv.run();
// We should have an Advertise in response
ASSERT_FALSE(srv.fake_sent_.empty());
Pkt6Ptr adv = srv.fake_sent_.front();
ASSERT_TRUE(adv);
}
// Checks if server is able to handle a relayed traffic from DOCSIS3.0 modems
TEST_F(Dhcpv6SrvTest, docsisVendorOptionsParse) {
// Let's get a traffic capture from DOCSIS3.0 modem
Pkt6Ptr sol = PktCaptures::captureDocsisRelayedSolicit();
EXPECT_NO_THROW(sol->unpack());
// Check if the packet contain
OptionPtr opt = sol->getOption(D6O_VENDOR_OPTS);
ASSERT_TRUE(opt);
boost::shared_ptr<OptionVendor> vendor = boost::dynamic_pointer_cast<OptionVendor>(opt);
ASSERT_TRUE(vendor);
EXPECT_TRUE(vendor->getOption(DOCSIS3_V6_ORO));
EXPECT_TRUE(vendor->getOption(36));
EXPECT_TRUE(vendor->getOption(35));
EXPECT_TRUE(vendor->getOption(DOCSIS3_V6_DEVICE_TYPE));
EXPECT_TRUE(vendor->getOption(3));
EXPECT_TRUE(vendor->getOption(4));
EXPECT_TRUE(vendor->getOption(5));
EXPECT_TRUE(vendor->getOption(6));
EXPECT_TRUE(vendor->getOption(7));
EXPECT_TRUE(vendor->getOption(8));
EXPECT_TRUE(vendor->getOption(9));
EXPECT_TRUE(vendor->getOption(DOCSIS3_V6_VENDOR_NAME));
EXPECT_TRUE(vendor->getOption(15));
EXPECT_FALSE(vendor->getOption(20));
EXPECT_FALSE(vendor->getOption(11));
EXPECT_FALSE(vendor->getOption(17));
}
// Checks if server is able to parse incoming docsis option and extract suboption 1 (docsis ORO)
TEST_F(Dhcpv6SrvTest, docsisVendorORO) {
NakedDhcpv6Srv srv(0);
// Let's get a traffic capture from DOCSIS3.0 modem
Pkt6Ptr sol = PktCaptures::captureDocsisRelayedSolicit();
ASSERT_NO_THROW(sol->unpack());
// Check if the packet contains vendor options option
OptionPtr opt = sol->getOption(D6O_VENDOR_OPTS);
ASSERT_TRUE(opt);
boost::shared_ptr<OptionVendor> vendor = boost::dynamic_pointer_cast<OptionVendor>(opt);
ASSERT_TRUE(vendor);
opt = vendor->getOption(DOCSIS3_V6_ORO);
ASSERT_TRUE(opt);
OptionUint16ArrayPtr oro = boost::dynamic_pointer_cast<OptionUint16Array>(opt);
EXPECT_TRUE(oro);
}
// This test checks if Option Request Option (ORO) in docsis (vendor-id=4491)
// vendor options is parsed correctly and the requested options are actually assigned.
TEST_F(Dhcpv6SrvTest, vendorOptionsORO) {
IfaceMgrTestConfig test_config(true);
string config = "{ \"interfaces-config\": {"
" \"interfaces\": [ \"*\" ]"
"},"
"\"preferred-lifetime\": 3000,"
"\"rebind-timer\": 2000, "
"\"renew-timer\": 1000, "
" \"option-def\": [ {"
" \"name\": \"config-file\","
" \"code\": 33,"
" \"type\": \"string\","
" \"space\": \"vendor-4491\""
" } ],"
" \"option-data\": [ {"
" \"name\": \"config-file\","
" \"space\": \"vendor-4491\","
" \"data\": \"normal_erouter_v6.cm\""
" }],"
"\"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8:1::/64\" } ],"
" \"subnet\": \"2001:db8:1::/48\", "
" \"renew-timer\": 1000, "
" \"rebind-timer\": 1000, "
" \"preferred-lifetime\": 3000,"
" \"valid-lifetime\": 4000,"
" \"interface-id\": \"\","
" \"interface\": \"eth0\""
" } ],"
"\"valid-lifetime\": 4000 }";
ASSERT_NO_THROW(configure(config));
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("fe80::abcd"));
sol->setIface("eth0");
sol->addOption(generateIA(D6O_IA_NA, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Pass it to the server and get an advertise
Pkt6Ptr adv = srv_.processSolicit(sol);
// check if we get response at all
ASSERT_TRUE(adv);
// We did not include any vendor opts in SOLICIT, so there should be none
// in ADVERTISE.
ASSERT_FALSE(adv->getOption(D6O_VENDOR_OPTS));
// Let's add a vendor-option (vendor-id=4491) with a single sub-option.
// That suboption has code 1 and is a docsis ORO option.
boost::shared_ptr<OptionUint16Array> vendor_oro(new OptionUint16Array(Option::V6,
DOCSIS3_V6_ORO));
vendor_oro->addValue(DOCSIS3_V6_CONFIG_FILE); // Request option 33
OptionPtr vendor(new OptionVendor(Option::V6, 4491));
vendor->addOption(vendor_oro);
sol->addOption(vendor);
// Need to process SOLICIT again after requesting new option.
adv = srv_.processSolicit(sol);
ASSERT_TRUE(adv);
// Check if there is vendor option response
OptionPtr tmp = adv->getOption(D6O_VENDOR_OPTS);
ASSERT_TRUE(tmp);
// The response should be OptionVendor object
boost::shared_ptr<OptionVendor> vendor_resp =
boost::dynamic_pointer_cast<OptionVendor>(tmp);
ASSERT_TRUE(vendor_resp);
OptionPtr docsis33 = vendor_resp->getOption(33);
ASSERT_TRUE(docsis33);
OptionStringPtr config_file = boost::dynamic_pointer_cast<OptionString>(docsis33);
ASSERT_TRUE(config_file);
EXPECT_EQ("normal_erouter_v6.cm", config_file->getValue());
}
// Test checks whether it is possible to use option definitions defined in
// src/lib/dhcp/docsis3_option_defs.h.
TEST_F(Dhcpv6SrvTest, vendorOptionsDocsisDefinitions) {
ConstElementPtr x;
string config_prefix = "{ \"interfaces-config\": {"
" \"interfaces\": [ ]"
"},"
"\"preferred-lifetime\": 3000,"
"\"rebind-timer\": 2000, "
"\"renew-timer\": 1000, "
" \"option-data\": [ {"
" \"name\": \"config-file\","
" \"space\": \"vendor-4491\","
" \"code\": ";
string config_postfix = ","
" \"data\": \"normal_erouter_v6.cm\","
" \"csv-format\": True"
" }],"
"\"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8:1::/64\" } ],"
" \"subnet\": \"2001:db8:1::/48\", "
" \"renew-timer\": 1000, "
" \"rebind-timer\": 1000, "
" \"preferred-lifetime\": 3000,"
" \"valid-lifetime\": 4000,"
" \"interface-id\": \"\","
" \"interface\": \"\""
" } ],"
"\"valid-lifetime\": 4000 }";
// There is docsis3 (vendor-id=4491) vendor option 33, which is a
// config-file. Its format is a single string.
string config_valid = config_prefix + "33" + config_postfix;
// There is no option 99 defined in vendor-id=4491. As there is no
// definition, the config should fail.
string config_bogus = config_prefix + "99" + config_postfix;
ElementPtr json_bogus = Element::fromJSON(config_bogus);
ElementPtr json_valid = Element::fromJSON(config_valid);
NakedDhcpv6Srv srv(0);
// This should fail (missing option definition)
EXPECT_NO_THROW(x = configureDhcp6Server(srv, json_bogus));
ASSERT_TRUE(x);
comment_ = isc::config::parseAnswer(rcode_, x);
ASSERT_EQ(1, rcode_);
// This should work (option definition present)
EXPECT_NO_THROW(x = configureDhcp6Server(srv, json_valid));
ASSERT_TRUE(x);
comment_ = isc::config::parseAnswer(rcode_, x);
ASSERT_EQ(0, rcode_);
}
// This test checks that the server will handle a Solicit with the Vendor Class
// having a length of 4 (enterprise-id only).
TEST_F(Dhcpv6SrvTest, cableLabsShortVendorClass) {
NakedDhcpv6Srv srv(0);
// Create a simple Solicit with the 4-byte long vendor class option.
Pkt6Ptr sol = PktCaptures::captureCableLabsShortVendorClass();
// Simulate that we have received that traffic
srv.fakeReceive(sol);
// Server will now process to run its normal loop, but instead of calling
// IfaceMgr::receive6(), it will read all packets from the list set by
// fakeReceive()
srv.run();
// Get Advertise...
ASSERT_FALSE(srv.fake_sent_.empty());
Pkt6Ptr adv = srv.fake_sent_.front();
ASSERT_TRUE(adv);
// This is sent back to client, so port is 546
EXPECT_EQ(DHCP6_CLIENT_PORT, adv->getRemotePort());
}
// Checks if relay IP address specified in the relay-info structure in
// subnet6 is being used properly.
TEST_F(Dhcpv6SrvTest, relayOverride) {
// We have 2 subnets defined. Note that both have a relay address
// defined. Both are not belonging to the subnets. That is
// important, because if the relay belongs to the subnet, there's
// no need to specify relay override.
string config = "{ \"interfaces-config\": {"
" \"interfaces\": [ \"*\" ]"
"},"
"\"preferred-lifetime\": 3000,"
"\"rebind-timer\": 2000, "
"\"renew-timer\": 1000, "
"\"subnet6\": [ "
" { \"pools\": [ { \"pool\": \"2001:db8:1::/64\" } ],"
" \"subnet\": \"2001:db8:1::/48\", "
" \"relay\": { "
" \"ip-address\": \"2001:db8:3::1\""
" }"
" }, "
" { \"pools\": [ { \"pool\": \"2001:db8:2::/64\" } ],"
" \"subnet\": \"2001:db8:2::/48\", "
" \"relay\": { "
" \"ip-address\": \"2001:db8:3::2\""
" }"
" } "
"],"
"\"valid-lifetime\": 4000 }";
// Use this config to set up the server
ASSERT_NO_THROW(configure(config));
// Let's get the subnet configuration objects
const Subnet6Collection* subnets =
CfgMgr::instance().getCurrentCfg()->getCfgSubnets6()->getAll();
ASSERT_EQ(2, subnets->size());
// Let's get them for easy reference
Subnet6Ptr subnet1 = (*subnets)[0];
Subnet6Ptr subnet2 = (*subnets)[1];
ASSERT_TRUE(subnet1);
ASSERT_TRUE(subnet2);
Pkt6Ptr sol = Pkt6Ptr(new Pkt6(DHCPV6_SOLICIT, 1234));
sol->setRemoteAddr(IOAddress("2001:db8:1::3"));
sol->addOption(generateIA(D6O_IA_NA, 234, 1500, 3000));
OptionPtr clientid = generateClientId();
sol->addOption(clientid);
// Now pretend the packet came via one relay.
Pkt6::RelayInfo relay;
relay.linkaddr_ = IOAddress("2001:db8:1::1");
relay.peeraddr_ = IOAddress("fe80::1");
sol->relay_info_.push_back(relay);
// This is just a sanity check, we're using regular method: the relay
// belongs to the first (2001:db8:1::/64) subnet, so it's an easy decision.
EXPECT_TRUE(subnet1 == srv_.selectSubnet(sol));
// Relay belongs to the second subnet, so it should be selected.
sol->relay_info_.back().linkaddr_ = IOAddress("2001:db8:2::1");
EXPECT_TRUE(subnet2 == srv_.selectSubnet(sol));
// Now let's check if the relay override for the first subnets works
sol->relay_info_.back().linkaddr_ = IOAddress("2001:db8:3::1");
EXPECT_TRUE(subnet1 == srv_.selectSubnet(sol));
// Now repeat that for relay matching the second subnet.
sol->relay_info_.back().linkaddr_ = IOAddress("2001:db8:3::2");
EXPECT_TRUE(subnet2 == srv_.selectSubnet(sol));
// Finally, let's check that completely mismatched relay will not get us
// anything
sol->relay_info_.back().linkaddr_ = IOAddress("2001:db8:1234::1");
EXPECT_FALSE(srv_.selectSubnet(sol));
}
/// @brief Creates RSOO option with suboptions
///
/// Creates Relay-Supplied Options option that includes nested options. The
/// codes of those nested options are specified in codes parameter. Content of
/// the options is controlled with payload parameter. When it is zero, option
/// code will be used (e.g. option 100 will contain repeating bytes of value 100).
/// When non-zero is used, payload will be used. Each suboption length is always
/// set to the arbitrarily chosen value of 10.
///
/// @param codes a vector of option codes to be created
/// @param payload specified payload (0 = fill payload with repeating option code)
/// @return RSOO with nested options
OptionPtr createRSOO(const std::vector<uint16_t>& codes, uint8_t payload = 0) {
OptionDefinitionPtr def = LibDHCP::getOptionDef(DHCP6_OPTION_SPACE, D6O_RSOO);
if (!def) {
isc_throw(BadValue, "Can't find RSOO definition");
}
OptionPtr rsoo_container(new OptionCustom(*def, Option::V6));
for (size_t i = 0; i < codes.size(); ++i) {
OptionBuffer buf(10, payload ? payload : codes[i]); // let's make the option 10 bytes long
rsoo_container->addOption(OptionPtr(new Option(Option::V6, codes[i], buf)));
}
return (rsoo_container);
}
// Test that the server processes RSOO (Relay Supplied Options option) correctly,
// i.e. it includes in its response the options that are inserted by the relay.
// The server must do this only for options that are RSOO-enabled.
TEST_F(Dhcpv6SrvTest, rsoo) {
Dhcp6Client client;
string config =
"{"
" \"relay-supplied-options\": [ \"110\", \"120\", \"130\" ],"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Now pretend the packet came via one relay.
Pkt6::RelayInfo relay;
relay.msg_type_ = DHCPV6_RELAY_FORW;
relay.hop_count_ = 1;
relay.linkaddr_ = IOAddress("2001:db8::1");
relay.peeraddr_ = IOAddress("fe80::1");
vector<uint16_t> rsoo1;
rsoo1.push_back(109);
rsoo1.push_back(110);
rsoo1.push_back(111);
// The relay will request echoing back 3 options: 109, 110, 111.
// The configuration allows echoing back only 110.
OptionPtr opt = createRSOO(rsoo1);
relay.options_.insert(make_pair(opt->getType(), opt));
client.relay_info_.push_back(relay);
client.doSARR();
// Option 110 should be copied to the client
EXPECT_FALSE(client.config_.options_.find(110) == client.config_.options_.end());
// Options 109 and 111 should not be copied (they are not RSOO-enabled)
EXPECT_TRUE(client.config_.options_.find(109) == client.config_.options_.end());
EXPECT_TRUE(client.config_.options_.find(111) == client.config_.options_.end());
}
// Test that the server processes RSOO (Relay Supplied Options option) correctly
// when there are more relays. In particular, the following case is tested:
// if relay1 inserts option A and B, relay2 inserts option B and C, the response
// should include options A, B and C. The server must use instance of option B
// that comes from the first relay, not the second one.
TEST_F(Dhcpv6SrvTest, rsoo2relays) {
Dhcp6Client client;
string config =
"{"
" \"relay-supplied-options\": [ \"110\", \"120\", \"130\" ],"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Now pretend the packet came via two relays.
// This situation reflects the following case:
// client----relay1----relay2----server
// Fabricate the first relay.
Pkt6::RelayInfo relay1;
relay1.msg_type_ = DHCPV6_RELAY_FORW;
relay1.hop_count_ = 1;
relay1.linkaddr_ = IOAddress("2001:db8::1");
relay1.peeraddr_ = IOAddress("fe80::1");
vector<uint16_t> rsoo1;
rsoo1.push_back(110); // The relay1 will send 2 options: 110, 120
rsoo1.push_back(120);
OptionPtr opt = createRSOO(rsoo1, 1); // use 0x1 as payload
relay1.options_.insert(make_pair(opt->getType(), opt));
// Now the second relay.
Pkt6::RelayInfo relay2;
relay2.msg_type_ = DHCPV6_RELAY_FORW;
relay2.hop_count_ = 2;
relay2.linkaddr_ = IOAddress("2001:db8::2");
relay2.peeraddr_ = IOAddress("fe80::2");
vector<uint16_t> rsoo2;
rsoo2.push_back(120); // The relay2 will send 2 options: 120, 130
rsoo2.push_back(130);
opt = createRSOO(rsoo2, 2); // use 0x2 as payload
relay2.options_.insert(make_pair(opt->getType(), opt));
// The relays encapsulate packet in this order: relay1, relay2,
// but the server decapsulates the packet in reverse order.
client.relay_info_.push_back(relay2);
client.relay_info_.push_back(relay1);
// There's a conflict here. Both relays want the server to echo back option
// 120. According to RFC6422, section 6:
//
// When such a conflict exists, the DHCP server MUST choose no more than
// one of these options to forward to the client. The DHCP server MUST
// NOT forward more than one of these options to the client.
//
// By default, the DHCP server MUST choose the innermost value -- the
// value supplied by the relay agent closest to the DHCP client -- to
// forward to the DHCP client.
// Let the client do his thing.
client.doSARR();
int count110 = 0; // Let's count how many times option 110 was echoed back
int count120 = 0; // Let's count how many times option 120 was echoed back
int count130 = 0; // Let's count how many times option 130 was echoed back
OptionPtr opt120;
for (OptionCollection::const_iterator it = client.config_.options_.begin();
it != client.config_.options_.end(); ++it) {
switch (it->second->getType()) {
case 110:
count110++;
break;
case 120:
count120++;
opt120 = it->second;
break;
case 130:
count130++;
break;
default:
break;
}
}
// We expect to have exactly one instance of each option code.
EXPECT_EQ(1, count110);
EXPECT_EQ(1, count120);
EXPECT_EQ(1, count130);
// Now, let's check if the proper instance of option 120 was sent. It should
// match the content of what the first relay had sent.
ASSERT_TRUE(opt120);
vector<uint8_t> expected(10, 1);
EXPECT_TRUE(expected == opt120->getData());
}
// This test verifies that the server will send the option for which it
// has a candidate, rather than the option sent by the relay in the RSOO.
TEST_F(Dhcpv6SrvTest, rsooOverride) {
Dhcp6Client client;
// The client will be requesting specific options.
client.useORO(true);
// The following configuration enables RSOO options: 110 and 120.
// It also configures the server with option 120 which should
// "override" the option 120 sent in the RSOO by the relay.
string config =
"{"
" \"relay-supplied-options\": [ \"110\", \"120\" ],"
" \"option-def\": [ {"
" \"name\": \"foo\","
" \"code\": 120,"
" \"csv-format\": false,"
" \"type\": \"binary\""
" } ],"
" \"option-data\": [ {"
" \"code\": 120,"
" \"csv-format\": false,"
" \"data\": \"05\""
" } ],"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Fabricate the relay.
Pkt6::RelayInfo relay;
relay.msg_type_ = DHCPV6_RELAY_FORW;
relay.hop_count_ = 1;
relay.linkaddr_ = IOAddress("2001:db8::1");
relay.peeraddr_ = IOAddress("fe80::1");
vector<uint16_t> rsoo;
// The relay will send 2 options: 110, 120
rsoo.push_back(110);
rsoo.push_back(120);
// Use 0x1 as payload
OptionPtr opt = createRSOO(rsoo, 1);
relay.options_.insert(make_pair(opt->getType(), opt));
client.relay_info_.push_back(relay);
// Client should request option 120 in the ORO so as the server
// sends the configured option 120 to the client.
client.requestOption(120);
client.doSARR();
// The option 110 should be the one injected by the relay.
opt = client.config_.findOption(110);
ASSERT_TRUE(opt);
// We check that this is the option injected by the relay by
// checking option length. It should have 10 bytes long payload.
ASSERT_EQ(10, opt->getData().size());
// The second option should be the one configured on the server,
// rather than the one injected by the relay.
opt = client.config_.findOption(120);
ASSERT_TRUE(opt);
// It should have the size of 1.
ASSERT_EQ(1, opt->getData().size());
}
// Test checks if pkt6-advertise-received is bumped up correctly.
// Note that in properly configured network the server never receives Advertise
// messages.
TEST_F(Dhcpv6SrvTest, receiveAdvertiseStat) {
testReceiveStats(DHCPV6_ADVERTISE, "pkt6-advertise-received");
}
// Test checks if pkt6-reply-received is bumped up correctly.
// Note that in properly configured network the server never receives Reply
// messages.
TEST_F(Dhcpv6SrvTest, receiveReplyStat) {
testReceiveStats(DHCPV6_REPLY, "pkt6-reply-received");
}
// Test checks if pkt6-dhcpv4-response-received is bumped up correctly.
// Note that in properly configured network the server never receives
// Dhcpv4-Response messages.
TEST_F(Dhcpv6SrvTest, receiveDhcpv4ResponseStat) {
testReceiveStats(DHCPV6_DHCPV4_RESPONSE, "pkt6-dhcpv4-response-received");
}
// Test checks if pkt6-unknown-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveUnknownStat) {
testReceiveStats(123, "pkt6-unknown-received");
}
// Test checks if pkt6-renew-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveRenewStat) {
testReceiveStats(DHCPV6_RENEW, "pkt6-renew-received");
}
// Test checks if pkt6-rebind-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveRebindStat) {
testReceiveStats(DHCPV6_REBIND, "pkt6-rebind-received");
}
// Test checks if pkt6-release-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveReleaseStat) {
testReceiveStats(DHCPV6_RELEASE, "pkt6-release-received");
}
// Test checks if pkt6-decline-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveDeclineStat) {
testReceiveStats(DHCPV6_DECLINE, "pkt6-decline-received");
}
// Test checks if pkt6-dhcpv4-query-received is bumped up correctly.
TEST_F(Dhcpv6SrvTest, receiveDhcpv4QueryStat) {
testReceiveStats(DHCPV6_DHCPV4_QUERY, "pkt6-dhcpv4-query-received");
}
// Test checks if reception of a malformed packet increases pkt-parse-failed
// and pkt6-receive-drop
TEST_F(Dhcpv6SrvTest, receiveParseFailedStat) {
using namespace isc::stats;
StatsMgr& mgr = StatsMgr::instance();
NakedDhcpv6Srv srv(0);
// Let's get a simple SOLICIT...
Pkt6Ptr pkt = PktCaptures::captureSimpleSolicit();
// And pretend it's packet is only 3 bytes long.
pkt->data_.resize(3);
// Check that those statistics are not set before the test
ObservationPtr pkt6_rcvd = mgr.getObservation("pkt6-received");
ObservationPtr parse_fail = mgr.getObservation("pkt6-parse-failed");
ObservationPtr recv_drop = mgr.getObservation("pkt6-receive-drop");
EXPECT_FALSE(pkt6_rcvd);
EXPECT_FALSE(parse_fail);
EXPECT_FALSE(recv_drop);
// Simulate that we have received that traffic
srv.fakeReceive(pkt);
// Server will now process to run its normal loop, but instead of calling
// IfaceMgr::receive6(), it will read all packets from the list set by
// fakeReceive()
srv.run();
// All expected statistics must be present.
pkt6_rcvd = mgr.getObservation("pkt6-received");
parse_fail = mgr.getObservation("pkt6-parse-failed");
recv_drop = mgr.getObservation("pkt6-receive-drop");
ASSERT_TRUE(pkt6_rcvd);
ASSERT_TRUE(parse_fail);
ASSERT_TRUE(recv_drop);
// They also must have expected values.
EXPECT_EQ(1, pkt6_rcvd->getInteger().first);
EXPECT_EQ(1, parse_fail->getInteger().first);
EXPECT_EQ(1, recv_drop->getInteger().first);
}
// This test verifies that the server is able to handle an empty DUID (client-id)
// in incoming client message.
TEST_F(Dhcpv6SrvTest, emptyClientId) {
Dhcp6Client client;
// The following configuration enables RSOO options: 110 and 120.
// It also configures the server with option 120 which should
// "override" the option 120 sent in the RSOO by the relay.
string config =
"{"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Tell the client to not send client-id on its own.
client.useClientId(false);
// Instead, tell him to send this extra option, which happens to be
// an empty client-id.
OptionPtr empty_client_id(new Option(Option::V6, D6O_CLIENTID));
client.addExtraOption(empty_client_id);
// Let's check whether the server is able to process this packet without
// throwing any exceptions. We don't care whether the server sent any
// responses or not. The goal is to check that the server didn't throw
// any exceptions.
EXPECT_NO_THROW(client.doSARR());
}
// This test verifies that the server is able to handle an empty DUID (server-id)
// in incoming client message.
TEST_F(Dhcpv6SrvTest, emptyServerId) {
Dhcp6Client client;
// The following configuration enables RSOO options: 110 and 120.
// It also configures the server with option 120 which should
// "override" the option 120 sent in the RSOO by the relay.
string config =
"{"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Tell the client to use this specific server-id.
OptionPtr empty_server_id(new Option(Option::V6, D6O_SERVERID));
client.useServerId(empty_server_id);
// Let's check whether the server is able to process this packet without
// throwing any exceptions. We don't care whether the server sent any
// responses or not. The goal is to check that the server didn't throw
// any exceptions.
EXPECT_NO_THROW(client.doSARR());
}
// This test verifies that the server is able to handle a too large DUID (server-id)
// in incoming client message.
TEST_F(Dhcpv6SrvTest, tooLongServerId) {
Dhcp6Client client;
// The following configuration enables RSOO options: 110 and 120.
// It also configures the server with option 120 which should
// "override" the option 120 sent in the RSOO by the relay.
string config =
"{"
" \"preferred-lifetime\": 3000,"
" \"rebind-timer\": 2000, "
" \"renew-timer\": 1000, "
" \"subnet6\": [ { "
" \"pools\": [ { \"pool\": \"2001:db8::/64\" } ],"
" \"subnet\": \"2001:db8::/48\" "
" } ],"
" \"valid-lifetime\": 4000"
"}";
EXPECT_NO_THROW(configure(config, *client.getServer()));
// Tell the client to use this specific server-id.
std::vector<uint8_t> data(250, 250);
OptionPtr long_server_id(new Option(Option::V6, D6O_SERVERID, data));
client.useServerId(long_server_id);
// Let's check whether the server is able to process this packet without
// throwing any exceptions. We don't care whether the server sent any
// responses or not. The goal is to check that the server didn't throw
// any exceptions.
EXPECT_NO_THROW(client.doSARR());
}
/// @todo: Add more negative tests for processX(), e.g. extend sanityCheck() test
/// to call processX() methods.
/// @todo: Implement proper tests for MySQL lease/host database,
/// see ticket #4214.
} // end of anonymous namespace