Files
libreoffice/slideshow/source/engine/activities/activitybase.cxx

279 lines
9.9 KiB
C++
Raw Normal View History

/*************************************************************************
*
* OpenOffice.org - a multi-platform office productivity suite
*
* $RCSfile: activitybase.cxx,v $
*
* $Revision: 1.5 $
*
* last change: $Author: obo $ $Date: 2005-10-11 08:39:10 $
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
*
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2005 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
************************************************************************/
// must be first
#include <canvas/debug.hxx>
#include <canvas/verbosetrace.hxx>
#include <activitybase.hxx>
namespace presentation
{
namespace internal
{
// TODO(P1): Elide some virtual function calls, by templifying this
// static hierarchy
ActivityBase::ActivityBase( const ActivityParameters& rParms ) :
mpEndEvent( rParms.mrEndEvent ),
mrEventQueue( rParms.mrEventQueue ),
mpShape(),
mpAttributeLayer(),
maRepeats( rParms.mrRepeats ),
mnAccelerationFraction( rParms.mnAccelerationFraction ),
mnDecelerationFraction( rParms.mnDecelerationFraction ),
mbAutoReverse( rParms.mbAutoReverse ),
mbFirstPerformCall( true ),
mbIsActive( true ) {}
void ActivityBase::dispose()
{
// deactivate
mbIsActive = false;
// dispose event
if( mpEndEvent.get() )
mpEndEvent->dispose();
// release references
mpEndEvent.reset();
mpShape.reset();
mpAttributeLayer.reset();
}
double ActivityBase::calcTimeLag() const
{
// TODO(Q1): implement different init process!
if (isActive() && mbFirstPerformCall)
{
mbFirstPerformCall = false;
// notify derived classes that we're
// starting now
const_cast<ActivityBase *>(this)->startAnimation();
}
return 0.0;
}
bool ActivityBase::perform()
{
// still active?
if( !isActive() )
return false; // no, early exit.
OSL_ASSERT( ! mbFirstPerformCall );
return true;
}
bool ActivityBase::isActive() const
{
return mbIsActive;
}
bool ActivityBase::needsScreenUpdate() const
{
// animations, while active, _do_ need screen updates
// after perform() calls. This is because
// e.g. SlideChanger internally uses XCustomSprites,
// which don't repaint by themselves.
//
// What is actually a feature, because then, the
// activities thread can issue synchronized repaints,
// updating all visible sprites at once.
// FIXME(P1):
// Since by definition, the animation must not change the
// sprite when it is no longer active, we could possibly
// return true here only as long as mbIsActive is true.
// Unfortunately, the ActivitiesQueue asks for necessary
// screen updates after the perform calls, and this is a
// problem for the very last perform call of an activity
// (the one that ends the activity): this last one usually
// _does_ need a screen update, but has already set
// mbIsActive to false. I would consider delayed false returns
// here a hack, since it relies on call order. For the time
// being, we thus return true here, always (note that a
// finished Activity will normally be not queried for screen
// updates, anyway, since it's removed from the queues).
return true;
}
void ActivityBase::setTargets( const AnimatableShapeSharedPtr& rShape,
const ShapeAttributeLayerSharedPtr& rAttrLayer )
{
ENSURE_AND_THROW( rShape.get(),
"ActivityBase::setTargets(): Invalid shape" );
ENSURE_AND_THROW( rAttrLayer.get(),
"ActivityBase::setTargets(): Invalid attribute layer" );
mpShape = rShape;
mpAttributeLayer = rAttrLayer;
}
void ActivityBase::endActivity()
{
// this is a regular activity end
mbIsActive = false;
// Activity is ending, queue event, then
if( mpEndEvent.get() )
mrEventQueue.addEvent( mpEndEvent );
// release references
mpEndEvent.reset();
}
void ActivityBase::dequeued()
{
// xxx todo:
// // ignored here, if we're still active. Discrete
// // activities are dequeued after every perform() call,
// // thus, the call is only significant when isActive() ==
// // false.
if( !isActive() )
endAnimation();
}
void ActivityBase::end()
{
if (!mbIsActive || isDisposed())
return;
// assure animation is started:
if (mbFirstPerformCall) {
mbFirstPerformCall = false;
// notify derived classes that we're starting now
this->startAnimation();
}
performEnd(); // calling private virtual
endAnimation();
endActivity();
}
double ActivityBase::calcAcceleratedTime( double nT ) const
{
// Handle acceleration/deceleration
// ================================
// clamp nT to permissible [0,1] range
nT = ::std::max( 0.0, ::std::min( 1.0, nT ) );
// take acceleration/deceleration into account. if the sum
// of mnAccelerationFraction and mnDecelerationFraction
// exceeds 1.0, ignore both (that's according to SMIL spec)
if( (mnAccelerationFraction > 0.0 ||
mnDecelerationFraction > 0.0) &&
mnAccelerationFraction + mnDecelerationFraction <= 1.0 )
{
// calc accelerated/decelerated time.
//
// We have three intervals:
// 1 [0,a]
// 2 [a,d]
// 3 [d,1] (with a and d being acceleration/deceleration
// fraction, resp.)
//
// The change rate during interval 1 is constantly
// increasing, reaching 1 at a. It then stays at 1,
// starting a linear decrease at d, ending with 0 at
// time 1. The integral of this function is the
// required new time nT'.
//
// As we arbitrarily assumed 1 as the upper value of
// the change rate, the integral must be normalized to
// reach nT'=1 at the end of the interval. This
// normalization constant is:
//
// c = 1 - 0.5a - 0.5d
//
// The integral itself then amounts to:
//
// 0.5 nT^2 / a + (nT-a) + (nT - 0.5 nT^2 / d)
//
// (where each of the three summands correspond to the
// three intervals above, and are applied only if nT
// has reached the corresponding interval)
//
// The graph of the change rate is a trapezoid:
//
// |
// 1| /--------------\
// | / \
// | / \
// | / \
// -----------------------------
// 0 a d 1
//
//
const double nC( 1.0 - 0.5*mnAccelerationFraction - 0.5*mnDecelerationFraction );
// this variable accumulates the new time value
double nTPrime(0.0);
if( nT < mnAccelerationFraction )
{
nTPrime += 0.5*nT*nT/mnAccelerationFraction; // partial first interval
}
else
{
nTPrime += 0.5*mnAccelerationFraction; // full first interval
if( nT <= 1.0-mnDecelerationFraction )
{
nTPrime += nT-mnAccelerationFraction; // partial second interval
}
else
{
nTPrime += 1.0 - mnAccelerationFraction - mnDecelerationFraction; // full second interval
const double nTRelative( nT - 1.0 + mnDecelerationFraction );
nTPrime += nTRelative - 0.5*nTRelative*nTRelative / mnDecelerationFraction;
}
}
// normalize, and assign to work variable
nT = nTPrime / nC;
}
return nT;
}
}
}