Files
libreoffice/bridges/source/cpp_uno/gcc3_linux_powerpc/cpp2uno.cxx

823 lines
28 KiB
C++
Raw Normal View History

/*************************************************************************
*
* $RCSfile: cpp2uno.cxx,v $
*
2002-10-02 10:41:24 +00:00
* $Revision: 1.3 $
*
2002-10-02 10:41:24 +00:00
* last change: $Author: mh $ $Date: 2002-10-02 11:41:20 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include <malloc.h>
#include <hash_map>
#include <rtl/alloc.h>
#include <osl/mutex.hxx>
#include <uno/data.h>
#include <typelib/typedescription.hxx>
#include <bridges/cpp_uno/bridge.hxx>
#include <bridges/cpp_uno/type_misc.hxx>
#include "share.hxx"
using namespace ::osl;
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace CPPU_CURRENT_NAMESPACE
{
//==================================================================================================
rtl_StandardModuleCount g_moduleCount = MODULE_COUNT_INIT;
//==================================================================================================
static typelib_TypeClass cpp2uno_call(
cppu_cppInterfaceProxy * pThis,
const typelib_TypeDescription * pMemberTypeDescr,
typelib_TypeDescriptionReference * pReturnTypeRef, // 0 indicates void return
sal_Int32 nParams, typelib_MethodParameter * pParams,
2002-10-02 10:41:24 +00:00
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
int ng = 0; //number of gpr registers used
int nf = 0; //number of fpr regsiters used
void ** pCppStack; //temporary stack pointer
// gpreg: [ret *], this, [gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
if (pReturnTypeRef)
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
void * pUnoReturn = 0;
void * pCppReturn = 0; // complex return ptr: if != 0 && != pUnoReturn, reconversion need
if (pReturnTypeDescr)
{
if (cppu_isSimpleType( pReturnTypeDescr ))
{
pUnoReturn = pRegisterReturn; // direct way for simple types
}
else // complex return via ptr (pCppReturn)
{
pCppReturn = *(void **)gpreg;
gpreg++;
ng++;
pUnoReturn = (cppu_relatesToInterface( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pCppReturn); // direct way
}
}
// pop this
gpreg++;
ng++;
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// parameters
void ** pUnoArgs = (void **)alloca( 4 * sizeof(void *) * nParams );
void ** pCppArgs = pUnoArgs + nParams;
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pUnoArgs + (2 * nParams));
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pUnoArgs + (3 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && cppu_isSimpleType( pParamTypeDescr )) // value
{
switch (pParamTypeDescr->eTypeClass)
{
case typelib_TypeClass_DOUBLE:
if (nf < 8) {
pCppArgs[nPos] = fpreg;
pUnoArgs[nPos] = fpreg;
nf++;
fpreg += 2;
} else {
if (((long)ovrflw) & 4) ovrflw++;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
}
break;
case typelib_TypeClass_FLOAT:
// fpreg are all double values so need to
// modify fpreg to be a single word float value
if (nf < 8) {
float tmp = (float) (*((double *)fpreg));
(*((float *) fpreg)) = tmp;
pCppArgs[nPos] = fpreg;
pUnoArgs[nPos] = fpreg;
nf++;
fpreg += 2;
} else {
#if 0 /* abi is not being followed correctly */
if (((long)ovrflw) & 4) ovrflw++;
float tmp = (float) (*((double *)ovrflw));
(*((float *) ovrflw)) = tmp;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
#else
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 1;
#endif
}
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
if (ng < 7) {
if (ng & 1) {
ng++;
gpreg++;
}
pCppArgs[nPos] = gpreg;
pUnoArgs[nPos] = gpreg;
ng += 2;
gpreg += 2;
} else {
if (((long)ovrflw) & 4) ovrflw++;
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw += 2;
}
break;
case typelib_TypeClass_BYTE:
case typelib_TypeClass_BOOLEAN:
if (ng < 8) {
pCppArgs[nPos] = (((char *)gpreg) + 3);
pUnoArgs[nPos] = (((char *)gpreg) + 3);
ng++;
gpreg++;
} else {
pCppArgs[nPos] = (((char *)ovrflw) + 3);
pUnoArgs[nPos] = (((char *)ovrflw) + 3);
ovrflw++;
}
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
if (ng < 8) {
pCppArgs[nPos] = (((char *)gpreg)+ 2);
pUnoArgs[nPos] = (((char *)gpreg)+ 2);
ng++;
gpreg++;
} else {
pCppArgs[nPos] = (((char *)ovrflw) + 2);
pUnoArgs[nPos] = (((char *)ovrflw) + 2);
ovrflw++;
}
break;
default:
if (ng < 8) {
pCppArgs[nPos] = gpreg;
pUnoArgs[nPos] = gpreg;
ng++;
gpreg++;
} else {
pCppArgs[nPos] = ovrflw;
pUnoArgs[nPos] = ovrflw;
ovrflw++;
}
2002-10-02 10:41:24 +00:00
break;
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (ng < 8) {
pCppArgs[nPos] = *(void **)gpreg;
pCppStack = gpreg;
ng++;
gpreg++;
} else {
pCppArgs[nPos] = *(void **)ovrflw;
pCppStack = ovrflw;
ovrflw++;
}
if (! rParam.bIn) // is pure out
{
// uno out is unconstructed mem!
pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize );
pTempIndizes[nTempIndizes] = nPos;
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (cppu_relatesToInterface( pParamTypeDescr ))
{
uno_copyAndConvertData( pUnoArgs[nPos] = alloca( pParamTypeDescr->nSize ),
*(void **)pCppStack, pParamTypeDescr,
&pThis->pBridge->aCpp2Uno );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
pUnoArgs[nPos] = *(void **)pCppStack;
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
}
}
// ExceptionHolder
uno_Any aUnoExc; // Any will be constructed by callee
uno_Any * pUnoExc = &aUnoExc;
// invoke uno dispatch call
(*pThis->pUnoI->pDispatcher)( pThis->pUnoI, pMemberTypeDescr, pUnoReturn, pUnoArgs, &pUnoExc );
// in case an exception occured...
if (pUnoExc)
{
// destruct temporary in/inout params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
if (pParams[nIndex].bIn) // is in/inout => was constructed
uno_destructData( pUnoArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], 0 );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
raiseException( &aUnoExc, &pThis->pBridge->aUno2Cpp ); // has to destruct the any
// is here for dummy
return typelib_TypeClass_VOID;
}
else // else no exception occured...
{
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bOut) // inout/out
{
// convert and assign
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
uno_copyAndConvertData( pCppArgs[nIndex], pUnoArgs[nIndex], pParamTypeDescr,
&pThis->pBridge->aUno2Cpp );
}
// destroy temp uno param
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return
if (pCppReturn) // has complex return
{
if (pUnoReturn != pCppReturn) // needs reconversion
{
uno_copyAndConvertData( pCppReturn, pUnoReturn, pReturnTypeDescr,
&pThis->pBridge->aUno2Cpp );
// destroy temp uno return
uno_destructData( pUnoReturn, pReturnTypeDescr, 0 );
}
// complex return ptr is set to return reg
*(void **)pRegisterReturn = pCppReturn;
}
if (pReturnTypeDescr)
{
typelib_TypeClass eRet = (typelib_TypeClass)pReturnTypeDescr->eTypeClass;
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
return eRet;
}
else
return typelib_TypeClass_VOID;
}
}
//==================================================================================================
static typelib_TypeClass cpp_mediate(
sal_Int32 nVtableCall,
void ** gpreg, void ** fpreg, void ** ovrflw,
sal_Int64 * pRegisterReturn /* space for register return */ )
{
OSL_ENSURE( sizeof(sal_Int32)==sizeof(void *), "### unexpected!" );
// gpreg: [ret *], this, [other gpr params]
// fpreg: [fpr params]
// ovrflw: [gpr or fpr params (properly aligned)]
// _this_ ptr is patched cppu_XInterfaceProxy object
cppu_cppInterfaceProxy * pCppI = NULL;
if( nVtableCall & 0x80000000 )
{
nVtableCall &= 0x7fffffff;
pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(gpreg +1);
}
else
{
pCppI = (cppu_cppInterfaceProxy *)(XInterface *)*(gpreg);
}
typelib_InterfaceTypeDescription * pTypeDescr = pCppI->pTypeDescr;
OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
if (nVtableCall >= pTypeDescr->nMapFunctionIndexToMemberIndex)
{
throw RuntimeException(
OUString::createFromAscii("illegal vtable index!"),
(XInterface *)pCppI );
}
// determine called method
OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
sal_Int32 nMemberPos = pTypeDescr->pMapFunctionIndexToMemberIndex[nVtableCall];
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### illegal member index!" );
TypeDescription aMemberDescr( pTypeDescr->ppAllMembers[nMemberPos] );
typelib_TypeClass eRet;
switch (aMemberDescr.get()->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
if (pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos] == nVtableCall)
{
// is GET method
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef,
0, 0, // no params
gpreg, fpreg, ovrflw, pRegisterReturn );
}
else
{
// is SET method
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)aMemberDescr.get())->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
0, // indicates void return
1, &aParam,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// is METHOD
switch (nVtableCall)
{
case 1: // acquire()
pCppI->acquireProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 2: // release()
pCppI->releaseProxy(); // non virtual call!
eRet = typelib_TypeClass_VOID;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( gpreg[2] )->getTypeLibType() );
if (pTD)
{
XInterface * pInterface = 0;
(*pCppI->pBridge->pCppEnv->getRegisteredInterface)(
pCppI->pBridge->pCppEnv,
(void **)&pInterface, pCppI->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( gpreg[0] ),
&pInterface, pTD, cpp_acquire );
pInterface->release();
TYPELIB_DANGER_RELEASE( pTD );
*(void **)pRegisterReturn = gpreg[0];
eRet = typelib_TypeClass_ANY;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
eRet = cpp2uno_call(
pCppI, aMemberDescr.get(),
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->nParams,
((typelib_InterfaceMethodTypeDescription *)aMemberDescr.get())->pParams,
gpreg, fpreg, ovrflw, pRegisterReturn );
}
break;
}
default:
{
throw RuntimeException(
OUString::createFromAscii("no member description found!"),
(XInterface *)pCppI );
// is here for dummy
eRet = typelib_TypeClass_VOID;
}
}
return eRet;
}
//==================================================================================================
/**
* is called on incoming vtable calls
* (called by asm snippets)
*/
static void cpp_vtable_call( int nTableEntry, void** gpregptr, void** fpregptr, void** ovrflw)
{
sal_Int32 gpreg[8];
double fpreg[8];
memcpy( gpreg, gpregptr, 32);
memcpy( fpreg, fpregptr, 64);
volatile long nRegReturn[2];
sal_Bool bComplex = nTableEntry & 0x80000000 ? sal_True : sal_False;
typelib_TypeClass aType =
cpp_mediate( nTableEntry, (void**)gpreg, (void**)fpreg, ovrflw, (sal_Int64*)nRegReturn );
switch( aType )
{
// move return value into register space
// (will be loaded by machine code snippet)
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
__asm__( "lbz 3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
__asm__( "lhz 3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
case typelib_TypeClass_FLOAT:
__asm__( "lfs 1,%0\n\t" : :
"m" (*((float*)nRegReturn)) );
break;
case typelib_TypeClass_DOUBLE:
__asm__( "lfd 1,%0\n\t" : :
"m" (*((double*)nRegReturn)) );
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
__asm__( "lwz 4,%0\n\t" : :
"m"(nRegReturn[1]) ); // fall through
default:
__asm__( "lwz 3,%0\n\t" : :
"m"(nRegReturn[0]) );
break;
}
}
//__________________________________________________________________________________________________
void flush_icache(char *addr)
{
__asm__ volatile (
"dcbf 0,%0;"
"sync;"
"icbi 0,%0;"
"sync;"
"isync;"
: : "r"(addr) : "memory");
}
void flush_range(char * addr1, int size)
{
#define MIN_LINE_SIZE 16
int i;
for (i = 0; i < size; i += MIN_LINE_SIZE)
flush_icache(addr1+i);
flush_icache(addr1+size-1);
}
//==================================================================================================
class MediateClassData
{
typedef ::std::hash_map< OUString, void *, OUStringHash > t_classdata_map;
t_classdata_map m_map;
Mutex m_mutex;
public:
void const * get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () );
inline MediateClassData() SAL_THROW( () )
{}
~MediateClassData() SAL_THROW( () );
};
//__________________________________________________________________________________________________
MediateClassData::~MediateClassData() SAL_THROW( () )
{
OSL_TRACE( "> calling ~MediateClassData(): freeing mediate vtables." );
for ( t_classdata_map::const_iterator iPos( m_map.begin() ); iPos != m_map.end(); ++iPos )
{
::rtl_freeMemory( iPos->second );
}
}
//--------------------------------------------------------------------------------------------------
static inline void codeSnippet( long * code, sal_uInt32 vtable_pos, bool simple_ret_type ) SAL_THROW( () )
{
if (! simple_ret_type)
vtable_pos |= 0x80000000;
OSL_ASSERT( sizeof (long) == 4 );
/* generate this code */
// # so first save gpr 3 to gpr 10 (aligned to 4)
// stw r3, -512(r1)
// stw r4, -508(r1)
// stw r5, -504(r1)
// stw r6, -500(r1)
// stw r7, -496(r1)
// stw r8, -492(r1)
// stw r9, -488(r1)
// stw r10,-484(r1)
// # next save fpr 1 to fpr 8 (aligned to 8)
// stfd f1, -480(r1)
// stfd f2, -472(r1)
// stfd f3, -464(r1)
// stfd f4, -456(r1)
// stfd f5, -448(r1)
// stfd f6, -440(r1)
// stfd f7, -432(r1)
// stfd f8, -424(r1)
// # now here is where cpp_vtable_call must go
// lis r3,0xdead
// ori r3,r3,0xbeef
// mtctr r3
// # now load up the the table entry number
// lis r3, 0xdead
// ori r3,r3,0xbeef
// #now load up the pointer to the saved gpr registers
// addi r4,r1,-512
// #now load up the pointer to the saved fpr registers
// addi r5,r1,-480
// #now load up the pointer to the overflow call stack
// addi r6,r1,8 # frame pointer plus 8
// bctr
* code++ = 0x9061fe00;
* code++ = 0x9081fe04;
* code++ = 0x90a1fe08;
* code++ = 0x90c1fe0c;
* code++ = 0x90e1fe10;
* code++ = 0x9101fe14;
* code++ = 0x9121fe18;
* code++ = 0x9141fe1c;
* code++ = 0xd821fe20;
* code++ = 0xd841fe28;
* code++ = 0xd861fe30;
* code++ = 0xd881fe38;
* code++ = 0xd8a1fe40;
* code++ = 0xd8c1fe48;
* code++ = 0xd8e1fe50;
* code++ = 0xd901fe58;
* code++ = 0x3c600000 | (((unsigned long)cpp_vtable_call) >> 16);
* code++ = 0x60630000 | (((unsigned long)cpp_vtable_call) & 0x0000FFFF);
* code++ = 0x7c6903a6;
* code++ = 0x3c600000 | (vtable_pos >> 16);
* code++ = 0x60630000 | (vtable_pos & 0x0000FFFF);
* code++ = 0x3881fe00;
* code++ = 0x38a1fe20;
* code++ = 0x38c10008;
* code++ = 0x4e800420;
// don't forget to flush the data and instruction caches after calling this routine
// otherwise the self-modifying code we wrote will not be processed properly
// remove any possible stale instruction cache data
}
//__________________________________________________________________________________________________
void const * MediateClassData::get_vtable( typelib_InterfaceTypeDescription * pTD ) SAL_THROW( () )
{
void * buffer;
const int nSnippetSize = 100;
// avoiding locked counts
OUString const & unoName = *(OUString const *)&((typelib_TypeDescription *)pTD)->pTypeName;
{
MutexGuard aGuard( m_mutex );
t_classdata_map::const_iterator iFind( m_map.find( unoName ) );
if (iFind == m_map.end())
{
// create new vtable
sal_Int32 nSlots = pTD->nMapFunctionIndexToMemberIndex;
buffer = ::rtl_allocateMemory( ((2+ nSlots) * sizeof (void *)) + (nSlots *nSnippetSize) );
::std::pair< t_classdata_map::iterator, bool > insertion(
m_map.insert( t_classdata_map::value_type( unoName, buffer ) ) );
OSL_ENSURE( insertion.second, "### inserting new vtable buffer failed?!" );
void ** slots = (void **)buffer;
*slots++ = 0;
*slots++ = 0; // rtti
char * code = (char *)(slots + nSlots);
sal_uInt32 vtable_pos = 0;
sal_Int32 nAllMembers = pTD->nAllMembers;
typelib_TypeDescriptionReference ** ppAllMembers = pTD->ppAllMembers;
for ( sal_Int32 nPos = 0; nPos < nAllMembers; ++nPos )
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, ppAllMembers[ nPos ] );
OSL_ASSERT( pTD );
if (typelib_TypeClass_INTERFACE_ATTRIBUTE == pTD->eTypeClass)
{
bool simple_ret = cppu_isSimpleType(
((typelib_InterfaceAttributeTypeDescription *)pTD)->pAttributeTypeRef->eTypeClass );
// get method
*slots = code;
codeSnippet( (long *)code, vtable_pos++, simple_ret );
2002-10-02 10:41:24 +00:00
flush_range( code, nSnippetSize );
code += nSnippetSize;
slots++;
if (! ((typelib_InterfaceAttributeTypeDescription *)pTD)->bReadOnly)
{
// set method
*slots = code;
codeSnippet( (long *)code, vtable_pos++, true );
2002-10-02 10:41:24 +00:00
flush_range( code, nSnippetSize );
code += nSnippetSize;
slots++;
}
}
else
{
bool simple_ret = cppu_isSimpleType(
((typelib_InterfaceMethodTypeDescription *)pTD)->pReturnTypeRef->eTypeClass );
*slots = code;
codeSnippet( (long *)code, vtable_pos++, simple_ret );
2002-10-02 10:41:24 +00:00
flush_range( code, nSnippetSize );
code += nSnippetSize;
slots++;
}
TYPELIB_DANGER_RELEASE( pTD );
}
OSL_ASSERT( vtable_pos == nSlots );
}
else
{
buffer = iFind->second;
}
}
return ((void **)buffer +2);
}
//==================================================================================================
void SAL_CALL cppu_cppInterfaceProxy_patchVtable(
XInterface * pCppI, typelib_InterfaceTypeDescription * pTypeDescr ) throw ()
{
static MediateClassData * s_pMediateClassData = 0;
if (! s_pMediateClassData)
{
MutexGuard aGuard( Mutex::getGlobalMutex() );
if (! s_pMediateClassData)
{
#ifdef LEAK_STATIC_DATA
s_pMediateClassData = new MediateClassData();
#else
static MediateClassData s_aMediateClassData;
s_pMediateClassData = &s_aMediateClassData;
#endif
}
}
*(void const **)pCppI = s_pMediateClassData->get_vtable( pTypeDescr );
}
}
extern "C"
{
//##################################################################################################
sal_Bool SAL_CALL component_canUnload( TimeValue * pTime )
SAL_THROW_EXTERN_C()
{
return CPPU_CURRENT_NAMESPACE::g_moduleCount.canUnload(
&CPPU_CURRENT_NAMESPACE::g_moduleCount, pTime );
}
//##################################################################################################
void SAL_CALL uno_initEnvironment( uno_Environment * pCppEnv )
SAL_THROW_EXTERN_C()
{
CPPU_CURRENT_NAMESPACE::cppu_cppenv_initEnvironment(
pCppEnv );
}
//##################################################################################################
void SAL_CALL uno_ext_getMapping(
uno_Mapping ** ppMapping, uno_Environment * pFrom, uno_Environment * pTo )
SAL_THROW_EXTERN_C()
{
CPPU_CURRENT_NAMESPACE::cppu_ext_getMapping(
ppMapping, pFrom, pTo );
}
}