Files
libreoffice/vcl/source/helper/canvastools.cxx

872 lines
36 KiB
C++
Raw Normal View History

/*************************************************************************
*
* $RCSfile: canvastools.cxx,v $
*
* $Revision: 1.2 $
*
* last change: $Author: obo $ $Date: 2004-03-17 13:56:54 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_REALSIZE2D_HPP__
#include <drafts/com/sun/star/geometry/RealSize2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_REALPOINT2D_HPP__
#include <drafts/com/sun/star/geometry/RealPoint2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_REALRECTANGLE2D_HPP__
#include <drafts/com/sun/star/geometry/RealRectangle2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_INTEGERSIZE2D_HPP__
#include <drafts/com/sun/star/geometry/IntegerSize2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_INTEGERPOINT2D_HPP__
#include <drafts/com/sun/star/geometry/IntegerPoint2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_INTEGERRECTANGLE2D_HPP__
#include <drafts/com/sun/star/geometry/IntegerRectangle2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_RENDERING_XGRAPHICDEVICE_HPP__
#include <drafts/com/sun/star/rendering/XGraphicDevice.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_RENDERING_XBITMAP_HPP__
#include <drafts/com/sun/star/rendering/XBitmap.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_RENDERING_XPOLYPOLYGON2D_HPP__
#include <drafts/com/sun/star/rendering/XPolyPolygon2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_GEOMETRY_REALBEZIERSEGMENT2D_HPP__
#include <drafts/com/sun/star/geometry/RealBezierSegment2D.hpp>
#endif
#ifndef _DRAFTS_COM_SUN_STAR_RENDERING_XINTEGERBITMAP_HPP__
#include <drafts/com/sun/star/rendering/XIntegerBitmap.hpp>
#endif
#ifndef _BGFX_MATRIX_B2DHOMMATRIX_HXX
#include <basegfx/matrix/b2dhommatrix.hxx>
#endif
#ifndef _BGFX_VECTOR_B2DSIZE_HXX
#include <basegfx/vector/b2dsize.hxx>
#endif
#ifndef _BGFX_POINT_B2DPOINT_HXX
#include <basegfx/point/b2dpoint.hxx>
#endif
#ifndef _BGFX_RANGE_B2DRECTANGLE_HXX
#include <basegfx/range/b2drectangle.hxx>
#endif
#ifndef _BGFX_VECTOR_B2ISIZE_HXX
#include <basegfx/vector/b2isize.hxx>
#endif
#ifndef _BGFX_POINT_B2IPOINT_HXX
#include <basegfx/point/b2ipoint.hxx>
#endif
#ifndef _BGFX_RANGE_B2IRECTANGLE_HXX
#include <basegfx/range/b2irectangle.hxx>
#endif
#include <tools/poly.hxx>
#include <salbtype.hxx>
#include <bmpacc.hxx>
#include <bitmapex.hxx>
#include <canvastools.hxx>
using namespace ::drafts::com::sun::star;
using namespace ::com::sun::star;
namespace vcl
{
namespace unotools
{
namespace
{
uno::Sequence< geometry::RealBezierSegment2D > bezierSequenceFromPolygon( const ::Polygon& inputPolygon )
{
int i;
// fetch preliminary polygon size
int nCurrSize = inputPolygon.GetSize();
// adapt polygon size. As we store bezier end
// and control point in a combined data structure,
// every control point reduces the number of sequence
// elements by one.
for( i=0; i<nCurrSize; ++i )
{
if( inputPolygon.GetFlags(i) == POLY_CONTROL )
--nCurrSize;
}
// make room
uno::Sequence< geometry::RealBezierSegment2D > outputSequence( nCurrSize );
// fill sequence from polygon
i=0;
int nOutPos=0;
while( i<nCurrSize )
{
DBG_ASSERT( nCurrSize > nOutPos,
"bezierSequenceFromPolygon(): output size calculated incorrectly");
if( i+2 < nCurrSize )
{
// we have at least two more point to process
// - control points allowed here
if( inputPolygon.GetFlags(i) != POLY_CONTROL &&
inputPolygon.GetFlags(i+1) == POLY_CONTROL &&
inputPolygon.GetFlags(i+2) == POLY_CONTROL )
{
// start of a bezier segment
outputSequence[nOutPos++] = geometry::RealBezierSegment2D( inputPolygon[i].X(),
inputPolygon[i].Y(),
inputPolygon[i+1].X(),
inputPolygon[i+1].Y(),
inputPolygon[i+2].X(),
inputPolygon[i+2].Y() );
i += 3;
}
else
{
// no bezier segment at all - add
// degenerated bezier point (i.e. straight line)
outputSequence[nOutPos++] = geometry::RealBezierSegment2D( inputPolygon[i].X(),
inputPolygon[i].Y(),
inputPolygon[i].X(),
inputPolygon[i].Y(),
inputPolygon[i].X(),
inputPolygon[i].Y() );
i += 1;
}
}
else if( i+1 < nCurrSize )
{
DBG_ASSERT( inputPolygon.GetFlags(i) != POLY_CONTROL,
"bezierSequenceFromPolygon(): Invalid point sequence in Polygon");
// can't have any bezier segments here
// (not enough points left) - add
// degenerated bezier point (i.e. straight
// line)
outputSequence[nOutPos++] = geometry::RealBezierSegment2D( inputPolygon[i].X(),
inputPolygon[i].Y(),
inputPolygon[i].X(),
inputPolygon[i].Y(),
inputPolygon[i].X(),
inputPolygon[i].Y() );
i += 1;
}
else
{
// this is the last point - no control points
// allowed any more
DBG_ASSERT( inputPolygon.GetFlags(i) != POLY_CONTROL,
"bezierSequenceFromPolygon(): Invalid point sequence in Polygon");
outputSequence[nOutPos++] = geometry::RealBezierSegment2D( inputPolygon[i].X(),
inputPolygon[i].Y(),
0.0, 0.0,
0.0, 0.0 );
i += 1;
}
}
return outputSequence;
}
uno::Sequence< geometry::RealPoint2D > pointSequenceFromPolygon( const ::Polygon& inputPolygon )
{
int i;
// fetch preliminary polygon size
const int nSize = inputPolygon.GetSize();
// make room
uno::Sequence< geometry::RealPoint2D > outputSequence( nSize );
// fill sequence from polygon
for( i=0; i<nSize; ++i )
{
outputSequence[i] = geometry::RealPoint2D( inputPolygon[i].X(),
inputPolygon[i].Y() );
}
return outputSequence;
}
}
//---------------------------------------------------------------------------------------
uno::Reference< rendering::XPolyPolygon2D > xPolyPolygonFromPolygon( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const ::Polygon& inputPolygon )
{
if( !xGraphicDevice.is() )
return uno::Reference< rendering::XPolyPolygon2D >();
if( inputPolygon.HasFlags() )
{
uno::Sequence< uno::Sequence< geometry::RealBezierSegment2D > > outputSequence( 1 );
outputSequence[0] = bezierSequenceFromPolygon( inputPolygon );
return uno::Reference< rendering::XPolyPolygon2D >(
xGraphicDevice->createCompatibleBezierPolyPolygon( outputSequence ),
uno::UNO_QUERY );
}
else
{
uno::Sequence< uno::Sequence< geometry::RealPoint2D > > outputSequence( 1 );
outputSequence[0] = pointSequenceFromPolygon( inputPolygon );
return uno::Reference< rendering::XPolyPolygon2D >(
xGraphicDevice->createCompatibleLinePolyPolygon( outputSequence ),
uno::UNO_QUERY );
}
}
//---------------------------------------------------------------------------------------
uno::Reference< rendering::XPolyPolygon2D > xPolyPolygonFromPolyPolygon( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const ::PolyPolygon& inputPolyPolygon )
{
if( !xGraphicDevice.is() )
return uno::Reference< rendering::XPolyPolygon2D >();
const int nNumPolys( inputPolyPolygon.Count() );
int i;
bool needBeziers( false );
for( i=0; i<nNumPolys && !needBeziers; ++i )
{
// TODO: maybe perform a deep search here, and only revert
// to beziers when at least one control point is
// encountered
if( inputPolyPolygon[i].HasFlags() )
needBeziers = true;
}
if( needBeziers )
{
uno::Sequence< uno::Sequence< geometry::RealBezierSegment2D > > outputSequence( nNumPolys );
for( i=0; i<nNumPolys; ++i )
{
outputSequence[i] = bezierSequenceFromPolygon( inputPolyPolygon[i] );
}
return uno::Reference< rendering::XPolyPolygon2D >(
xGraphicDevice->createCompatibleBezierPolyPolygon( outputSequence ),
uno::UNO_QUERY );
}
else
{
uno::Sequence< uno::Sequence< geometry::RealPoint2D > > outputSequence( nNumPolys );
for( i=0; i<nNumPolys; ++i )
{
outputSequence[i] = pointSequenceFromPolygon( inputPolyPolygon[i] );
}
return uno::Reference< rendering::XPolyPolygon2D >(
xGraphicDevice->createCompatibleLinePolyPolygon( outputSequence ),
uno::UNO_QUERY );
}
}
//---------------------------------------------------------------------------------------
::Polygon polygonFromPoint2DSequence( const uno::Sequence< geometry::RealPoint2D >& points )
{
const int nCurrSize( points.getLength() );
::Polygon aPoly( nCurrSize );
int nCurrPoint;
for( nCurrPoint=0; nCurrPoint<nCurrSize; ++nCurrPoint )
aPoly[nCurrPoint] = pointFromRealPoint2D( points[nCurrPoint] );
return aPoly;
}
//---------------------------------------------------------------------------------------
::PolyPolygon polyPolygonFromPoint2DSequenceSequence( const uno::Sequence< uno::Sequence< geometry::RealPoint2D > >& points )
{
::PolyPolygon aRes;
int nCurrPoly;
for( nCurrPoly=0; nCurrPoly<points.getLength(); ++nCurrPoly )
{
aRes.Insert( polygonFromPoint2DSequence( points[nCurrPoly] ) );
}
return aRes;
}
//---------------------------------------------------------------------------------------
::Polygon polygonFromBezier2DSequence( const uno::Sequence< geometry::RealBezierSegment2D >& curves )
{
const int nSize( curves.getLength() );
int i, nCurrSize;
// determine size
for( i=0, nCurrSize=0; i<nSize; ++i )
{
const geometry::RealBezierSegment2D aCurrSegment( curves[i] );
if( aCurrSegment.Px == aCurrSegment.C1x &&
aCurrSegment.Px == aCurrSegment.C2x &&
aCurrSegment.Py == aCurrSegment.C1y &&
aCurrSegment.Py == aCurrSegment.C2y )
{
nCurrSize += 1;
}
else
{
nCurrSize += 3;
}
}
::Polygon aPoly( nCurrSize );
int nCurrPoint;
for( nCurrPoint=0, i=0; nCurrPoint<nCurrSize; ++nCurrPoint )
{
const geometry::RealBezierSegment2D aCurrSegment( curves[i] );
if( aCurrSegment.Px == aCurrSegment.C1x &&
aCurrSegment.Px == aCurrSegment.C2x &&
aCurrSegment.Py == aCurrSegment.C1y &&
aCurrSegment.Py == aCurrSegment.C2y )
{
aPoly[i++] = Point( FRound( aCurrSegment.Px ),
FRound( aCurrSegment.Py ) );
}
else
{
aPoly[i] = Point( FRound( aCurrSegment.Px ),
FRound( aCurrSegment.Py ) );
aPoly.SetFlags(i++, POLY_NORMAL);
aPoly[i] = Point( FRound( aCurrSegment.C1x ),
FRound( aCurrSegment.C1y ) );
aPoly.SetFlags(i++, POLY_CONTROL);
aPoly[i] = Point( FRound( aCurrSegment.C2x ),
FRound( aCurrSegment.C2y ) );
aPoly.SetFlags(i++, POLY_CONTROL);
}
}
return aPoly;
}
//---------------------------------------------------------------------------------------
::PolyPolygon polyPolygonFromBezier2DSequenceSequence( const uno::Sequence< uno::Sequence< geometry::RealBezierSegment2D > >& curves )
{
::PolyPolygon aRes;
int nCurrPoly;
for( nCurrPoly=0; nCurrPoly<curves.getLength(); ++nCurrPoly )
{
aRes.Insert( polygonFromBezier2DSequence( curves[nCurrPoly] ) );
}
return aRes;
}
//---------------------------------------------------------------------------------------
uno::Reference< rendering::XBitmap > xBitmapFromBitmap( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const ::Bitmap& inputBitmap )
{
if( !xGraphicDevice.is() )
return uno::Reference< rendering::XBitmap >();
const Size aPixelSize( inputBitmap.GetSizePixel() );
uno::Reference< rendering::XBitmap >
xBitmap( xGraphicDevice->createCompatibleBitmap(
integerSize2DFromSize( aPixelSize ) ) );
uno::Reference< rendering::XIntegerBitmap >
xIntegerBitmap( xBitmap,
uno::UNO_QUERY );
::Bitmap copyOfInputBitmap( inputBitmap );
ScopedBitmapReadAccess pAcc( copyOfInputBitmap.AcquireReadAccess(),
copyOfInputBitmap );
const int nPixel( aPixelSize.Width() * aPixelSize.Height() );
uno::Sequence< sal_Int8 > bmpData( nPixel*4 );
// TODO: can we handle this more generically?
// arrayToSequence comes to mind, or other templatized
// algos.
// TODO: handle the other types here!
// TODO: handle bitmap layout, too!
if( pAcc.get() &&
xIntegerBitmap.is() )
{
BitmapColor aCol;
// read from bitmap
// =======================
int x, y, i;
for( y=0, i=0; y<aPixelSize.Height(); ++y )
{
for( x=0; x<aPixelSize.Width(); ++x )
{
// yes. x and y are swapped on Get/SetPixel
aCol = pAcc->GetColor(y,x);
// store as RGBA
// TODO: differentiate between alpha and non-alpha
// bitmaps. Maybe we even need a
// createCompatibleAlphaBitmap on the XGraphicDevice
bmpData[i++] = aCol.GetBlue();
bmpData[i++] = aCol.GetGreen();
bmpData[i++] = aCol.GetRed();
bmpData[i++] = static_cast<sal_uInt8>(255);
}
}
}
xIntegerBitmap->setData( bmpData,
geometry::IntegerRectangle2D(0,0,
aPixelSize.Width(),
aPixelSize.Height()) );
return uno::Reference< rendering::XBitmap >( xIntegerBitmap,
uno::UNO_QUERY );
}
//---------------------------------------------------------------------------------------
uno::Reference< rendering::XBitmap > xBitmapFromBitmapEx( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const ::BitmapEx& inputBitmap )
{
if( !xGraphicDevice.is() )
return uno::Reference< rendering::XBitmap >();
const Size aPixelSize( inputBitmap.GetSizePixel() );
uno::Reference< rendering::XBitmap >
xBitmap( xGraphicDevice->createCompatibleBitmap(
integerSize2DFromSize( aPixelSize ) ) );
uno::Reference< rendering::XIntegerBitmap >
xIntegerBitmap( xBitmap,
uno::UNO_QUERY );
Bitmap aBitmap( inputBitmap.GetBitmap() );
ScopedBitmapReadAccess pAcc( aBitmap.AcquireReadAccess(),
aBitmap );
const int nPixel( aPixelSize.Width() * aPixelSize.Height() );
uno::Sequence< sal_Int8 > bmpData( nPixel*4 );
// TODO: can we handle this more generically?
// arrayToSequence comes to mind, or other templatized
// algos.
// TODO: handle the other types here!
// TODO: handle bitmap layout, too!
if( pAcc.get() &&
xIntegerBitmap.is() )
{
BitmapColor aCol;
if( inputBitmap.IsTransparent() )
{
if( inputBitmap.IsAlpha() )
{
// read from alpha bitmap
// ======================
Bitmap aAlpha( inputBitmap.GetAlpha().GetBitmap() );
ScopedBitmapReadAccess pAlphaAcc( aAlpha.AcquireReadAccess(),
aAlpha );
if( pAlphaAcc.get() )
{
int x, y, i;
for( y=0, i=0; y<aPixelSize.Height(); ++y )
{
for( x=0; x<aPixelSize.Width(); ++x )
{
// yes. x and y are swapped on Get/SetPixel
aCol = pAcc->GetColor(y,x);
bmpData[i++] = aCol.GetBlue();
bmpData[i++] = aCol.GetGreen();
bmpData[i++] = aCol.GetRed();
// out notion of alpha is different from the rest of the world's
bmpData[i++] = 255 - (BYTE)pAlphaAcc->GetPixel(y,x);
}
}
}
}
else
{
// read from masked bitmap
// =======================
Bitmap aMask( inputBitmap.GetMask() );
ScopedBitmapReadAccess pMaskAcc( aMask.AcquireReadAccess(),
aMask );
if( pMaskAcc.get() )
{
int x, y, i;
for( y=0, i=0; y<aPixelSize.Height(); ++y )
{
for( x=0; x<aPixelSize.Width(); ++x )
{
// yes. x and y are swapped on Get/SetPixel
aCol = pAcc->GetColor(y,x);
// store as RGBA
bmpData[i++] = aCol.GetBlue();
bmpData[i++] = aCol.GetGreen();
bmpData[i++] = aCol.GetRed();
bmpData[i++] = ((BYTE)pMaskAcc->GetPixel(y,x)) ? 0 : 255;
}
}
}
}
}
else
{
// read plain bitmap
// =================
int x, y, i;
for( y=0, i=0; y<aPixelSize.Height(); ++y )
{
for( x=0; x<aPixelSize.Width(); ++x )
{
// yes. x and y are swapped on Get/SetPixel
aCol = pAcc->GetColor(y,x);
// store as RGBA
// TODO: differentiate between alpha and non-alpha
// bitmaps. Maybe we even need a
// createCompatibleAlphaBitmap on the XGraphicDevice
bmpData[i++] = aCol.GetBlue();
bmpData[i++] = aCol.GetGreen();
bmpData[i++] = aCol.GetRed();
bmpData[i++] = static_cast<sal_uInt8>(255);
}
}
}
}
xIntegerBitmap->setData( bmpData,
geometry::IntegerRectangle2D(0,0,
aPixelSize.Width(),
aPixelSize.Height()) );
return uno::Reference< rendering::XBitmap >( xIntegerBitmap,
uno::UNO_QUERY );
}
//---------------------------------------------------------------------------------------
::BitmapEx bitmapExFromXBitmap( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const uno::Reference< rendering::XIntegerBitmap >& xInputBitmap )
{
if( !xGraphicDevice.is() || !xInputBitmap.is() )
return ::BitmapEx();
const Size aPixelSize( sizeFromIntegerSize2D( xInputBitmap->getSize() ) );
const uno::Sequence< sal_Int8 > data( xInputBitmap->getData(
geometry::IntegerRectangle2D(0,0,aPixelSize.Width(),aPixelSize.Height()) ) );
::Bitmap aBitmap( aPixelSize, 24 ); // create 24bpp Bitmap
::Bitmap aAlpha( aPixelSize, 8 ); // create 8bpp alpha Bitmap
{
ScopedBitmapWriteAccess pWriteAccess( aBitmap.AcquireWriteAccess(),
aBitmap );
ScopedBitmapWriteAccess pAlphaWriteAccess( aAlpha.AcquireWriteAccess(),
aAlpha );
if( pWriteAccess.get() != NULL &&
pAlphaWriteAccess.get() != NULL )
{
// for the time being, always read as BGRA
int nCurrPos(0);
for( int y=0; y<aPixelSize.Height(); ++y )
{
for( int x=0; x<aPixelSize.Width(); ++x )
{
pWriteAccess->SetPixel( y, x, BitmapColor( data[ nCurrPos+2 ],
data[ nCurrPos+1 ],
data[ nCurrPos ] ) );
nCurrPos += 3;
pAlphaWriteAccess->SetPixel( y, x, BitmapColor( 255 - data[ nCurrPos++ ] ) );
}
}
}
}
return ::BitmapEx( aBitmap,
AlphaMask( aAlpha ) );
}
//---------------------------------------------------------------------------------------
uno::Sequence< double > colorToDoubleSequence( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const Color& rColor )
{
// TODO: handle color space conversions, when defined on canvas/graphicDevice
uno::Sequence< double > aRet(4);
aRet[0] = rColor.GetRed() / 255.0;
aRet[1] = rColor.GetGreen() / 255.0;
aRet[2] = rColor.GetBlue() / 255.0;
// out notion of alpha is different from the rest of the world's
aRet[3] = 1.0 - rColor.GetTransparency() / 255.0;
return aRet;
}
uno::Sequence< sal_Int8 > colorToIntSequence( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const Color& rColor )
{
// TODO: handle color space conversions, when defined on canvas/graphicDevice
uno::Sequence< sal_Int8 > aRet(4);
aRet[0] = rColor.GetRed();
aRet[1] = rColor.GetGreen();
aRet[2] = rColor.GetBlue();
// out notion of alpha is different from the rest of the world's
aRet[3] = 255 - rColor.GetTransparency();
return aRet;
}
Color sequenceToColor( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const uno::Sequence< sal_Int8 >& rColor )
{
OSL_ENSURE( rColor.getLength() > 2, "sequenceToColor: need at least three channels" );
// TODO: handle color space conversions, when defined on canvas/graphicDevice
Color aColor;
aColor.SetRed ( rColor[0] );
aColor.SetGreen( rColor[1] );
aColor.SetBlue ( rColor[2] );
if( rColor.getLength() > 3 )
{
// out notion of alpha is different from the rest of the world's
aColor.SetTransparency( 255 - rColor[3] );
}
return aColor;
}
Color sequenceToColor( const uno::Reference< rendering::XGraphicDevice >& xGraphicDevice,
const uno::Sequence< double >& rColor )
{
OSL_ENSURE( rColor.getLength() > 2, "sequenceToColor: need at least three channels" );
// TODO: handle color space conversions, when defined on canvas/graphicDevice
Color aColor;
aColor.SetRed ( static_cast<UINT8>( 255*rColor[0] + .5 ) );
aColor.SetGreen( static_cast<UINT8>( 255*rColor[1] + .5 ) );
aColor.SetBlue ( static_cast<UINT8>( 255*rColor[2] + .5 ) );
if( rColor.getLength() > 3 )
{
// out notion of alpha is different from the rest of the world's
aColor.SetTransparency( static_cast<UINT8>( 255 - 255*rColor[3] + .5 ) );
}
return aColor;
}
//---------------------------------------------------------------------------------------
geometry::RealSize2D size2DFromSize( const Size& rSize )
{
return geometry::RealSize2D( rSize.Width(),
rSize.Height() );
}
geometry::RealPoint2D point2DFromPoint( const Point& rPoint )
{
return geometry::RealPoint2D( rPoint.X(),
rPoint.Y() );
}
geometry::RealRectangle2D rectangle2DFromRectangle( const Rectangle& rRect )
{
return geometry::RealRectangle2D( rRect.Left(), rRect.Top(),
rRect.Right(), rRect.Bottom() );
}
Size sizeFromRealSize2D( const geometry::RealSize2D& rSize )
{
return Size( static_cast<long>(rSize.Width + .5),
static_cast<long>(rSize.Height + .5) );
}
Point pointFromRealPoint2D( const geometry::RealPoint2D& rPoint )
{
return Point( static_cast<long>(rPoint.X + .5),
static_cast<long>(rPoint.Y + .5) );
}
Rectangle rectangleFromRealRectangle2D( const geometry::RealRectangle2D& rRect )
{
return Rectangle( static_cast<long>(rRect.X1 + .5),
static_cast<long>(rRect.Y1 + .5),
static_cast<long>(rRect.X2 + .5),
static_cast<long>(rRect.Y2 + .5) );
}
::Size sizeFromB2DSize( const ::basegfx::B2DVector& rVec )
{
return ::Size( FRound( rVec.getX() ),
FRound( rVec.getY() ) );
}
::Point pointFromB2DPoint( const ::basegfx::B2DPoint& rPoint )
{
return ::Point( FRound( rPoint.getX() ),
FRound( rPoint.getY() ) );
}
::Rectangle rectangleFromB2DRectangle( const ::basegfx::B2DRange& rRect )
{
return ::Rectangle( FRound( rRect.getMinX() ),
FRound( rRect.getMinY() ),
FRound( rRect.getMaxX() ),
FRound( rRect.getMaxY() ) );
}
::basegfx::B2DVector b2DSizeFromSize( const ::Size& rSize )
{
return ::basegfx::B2DVector( rSize.Width(),
rSize.Height() );
}
::basegfx::B2DPoint b2DPointFromPoint( const ::Point& rPoint )
{
return ::basegfx::B2DPoint( rPoint.X(),
rPoint.Y() );
}
::basegfx::B2DRange b2DRectangleFromRectangle( const ::Rectangle& rRect )
{
return ::basegfx::B2DRange( rRect.Left(),
rRect.Top(),
rRect.Right(),
rRect.Bottom() );
}
geometry::IntegerSize2D integerSize2DFromSize( const Size& rSize )
{
return geometry::IntegerSize2D( rSize.Width(),
rSize.Height() );
}
geometry::IntegerPoint2D integerPoint2DFromPoint( const Point& rPoint )
{
return geometry::IntegerPoint2D( rPoint.X(),
rPoint.Y() );
}
geometry::IntegerRectangle2D integerRectangle2DFromRectangle( const Rectangle& rRectangle )
{
return geometry::IntegerRectangle2D( rRectangle.Left(), rRectangle.Top(),
rRectangle.Right(), rRectangle.Bottom() );
}
Size sizeFromIntegerSize2D( const geometry::IntegerSize2D& rSize )
{
return Size( rSize.Width,
rSize.Height );
}
Point pointFromIntegerPoint2D( const geometry::IntegerPoint2D& rPoint )
{
return Point( rPoint.X,
rPoint.Y );
}
Rectangle rectangleFromIntegerRectangle2D( const geometry::IntegerRectangle2D& rRectangle )
{
return Rectangle( rRectangle.X1, rRectangle.Y1,
rRectangle.X2, rRectangle.Y2 );
}
} // namespace vcltools
} // namespace canvas