Files
libreoffice/sc/source/core/tool/interpr3.cxx

3655 lines
102 KiB
C++
Raw Normal View History

2000-09-18 23:16:46 +00:00
/*************************************************************************
*
* $RCSfile: interpr3.cxx,v $
*
* $Revision: 1.12 $
2000-09-18 23:16:46 +00:00
*
* last change: $Author: obo $ $Date: 2004-11-15 16:35:44 $
2000-09-18 23:16:46 +00:00
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#ifdef PCH
#include "core_pch.hxx"
#endif
#pragma hdrstop
// INCLUDE ---------------------------------------------------------------
#include <tools/solar.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "interpre.hxx"
#include "global.hxx"
#include "compiler.hxx"
#include "cell.hxx"
#include "document.hxx"
#include "dociter.hxx"
#include "scmatrix.hxx"
#include "globstr.hrc"
// STATIC DATA -----------------------------------------------------------
#define SCdEpsilon 1.0E-7
#define SC_MAX_ITERATION_COUNT 20
#define MAX_ANZ_DOUBLE_FOR_SORT 100000
// PI jetzt als F_PI aus solar.h
//#define PI 3.1415926535897932
//-----------------------------------------------------------------------------
class ScDistFunc
{
public:
virtual double GetValue(double x) const = 0;
};
// iteration for inverse distributions
//template< class T > double lcl_IterateInverse( const T& rFunction, double x0, double x1, BOOL& rConvError )
double lcl_IterateInverse( const ScDistFunc& rFunction, double x0, double x1, BOOL& rConvError )
{
rConvError = FALSE;
double fEps = 1.0E-7;
DBG_ASSERT(x0<x1, "IterateInverse: wrong interval");
// find enclosing interval
double f0 = rFunction.GetValue(x0);
double f1 = rFunction.GetValue(x1);
double xs;
USHORT i;
for (i = 0; i < 1000 && f0*f1 > 0.0; i++)
{
if (fabs(f0) <= fabs(f1))
{
xs = x0;
x0 += 2.0 * (x0 - x1);
if (x0 < 0.0)
x0 = 0.0;
x1 = xs;
f1 = f0;
f0 = rFunction.GetValue(x0);
}
else
{
xs = x1;
x1 += 2.0 * (x1 - x0);
x0 = xs;
f0 = f1;
f1 = rFunction.GetValue(x1);
}
}
if (f0 == 0.0)
return x0;
if (f1 == 0.0)
return x1;
// simple iteration
double x00 = x0;
double x11 = x1;
double fs;
for (i = 0; i < 100; i++)
{
xs = 0.5*(x0+x1);
if (fabs(f1-f0) >= fEps)
{
fs = rFunction.GetValue(xs);
if (f0*fs <= 0.0)
{
x1 = xs;
f1 = fs;
}
else
{
x0 = xs;
f0 = fs;
}
}
else
{
// add one step of regula falsi to improve precision
if ( x0 != x1 )
{
double regxs = (f1-f0)/(x1-x0);
if ( regxs != 0.0)
{
double regx = x1 - f1/regxs;
if (regx >= x00 && regx <= x11)
{
double regfs = rFunction.GetValue(regx);
if ( fabs(regfs) < fabs(fs) )
xs = regx;
}
}
}
return xs;
}
}
rConvError = TRUE;
return 0.0;
}
2000-09-18 23:16:46 +00:00
//-----------------------------------------------------------------------------
// Allgemeine Funktionen
//-----------------------------------------------------------------------------
void ScInterpreter::ScNoName()
{
SetError(errNoName);
}
double ScInterpreter::phi(double x)
{
return 0.39894228040143268 * exp(-(x * x) / 2.0);
}
double ScInterpreter::taylor(double* pPolynom, USHORT nMax, double x)
{
double nVal = pPolynom[nMax];
for (short i = nMax-1; i >= 0; i--)
{
nVal = pPolynom[i] + (nVal * x);
}
return nVal;
}
double ScInterpreter::gauss(double x)
{
double t0[] =
{ 0.39894228040143268, -0.06649038006690545, 0.00997355701003582,
-0.00118732821548045, 0.00011543468761616, -0.00000944465625950,
0.00000066596935163, -0.00000004122667415, 0.00000000227352982,
0.00000000011301172, 0.00000000000511243, -0.00000000000021218 };
double t2[] =
{ 0.47724986805182079, 0.05399096651318805, -0.05399096651318805,
0.02699548325659403, -0.00449924720943234, -0.00224962360471617,
0.00134977416282970, -0.00011783742691370, -0.00011515930357476,
0.00003704737285544, 0.00000282690796889, -0.00000354513195524,
0.00000037669563126, 0.00000019202407921, -0.00000005226908590,
-0.00000000491799345, 0.00000000366377919, -0.00000000015981997,
-0.00000000017381238, 0.00000000002624031, 0.00000000000560919,
-0.00000000000172127, -0.00000000000008634, 0.00000000000007894 };
double t4[] =
{ 0.49996832875816688, 0.00013383022576489, -0.00026766045152977,
0.00033457556441221, -0.00028996548915725, 0.00018178605666397,
-0.00008252863922168, 0.00002551802519049, -0.00000391665839292,
-0.00000074018205222, 0.00000064422023359, -0.00000017370155340,
0.00000000909595465, 0.00000000944943118, -0.00000000329957075,
0.00000000029492075, 0.00000000011874477, -0.00000000004420396,
0.00000000000361422, 0.00000000000143638, -0.00000000000045848 };
double asympt[] = { -1.0, 1.0, -3.0, 15.0, -105.0 };
double xAbs = fabs(x);
USHORT xShort = (USHORT)::rtl::math::approxFloor(xAbs);
2000-09-18 23:16:46 +00:00
double nVal = 0.0;
if (xShort == 0)
nVal = taylor(t0, 11, (xAbs * xAbs)) * xAbs;
else if ((xShort >= 1) && (xShort <= 2))
nVal = taylor(t2, 23, (xAbs - 2.0));
else if ((xShort >= 3) && (xShort <= 4))
nVal = taylor(t4, 20, (xAbs - 4.0));
else
nVal = 0.5 + phi(xAbs) * taylor(asympt, 4, 1.0 / (xAbs * xAbs)) / xAbs;
if (x < 0.0)
return -nVal;
else
return nVal;
}
#if defined(WIN) && defined(MSC)
#pragma optimize("",off)
#endif
double ScInterpreter::gaussinv(double x)
{
double c0, c1, c2, d1, d2, d3, q, t, z;
c0 = 2.515517;
c1 = 0.802853;
c2 = 0.010328;
d1 = 1.432788;
d2 = 0.189269;
d3 = 0.001308;
if (x < 0.5)
q = x;
else
q = 1.0-x;
t = sqrt(-log(q*q));
z = t - (c0 + t*(c1 + t*c2)) / (1.0 + t*(d1 + t*(d2 + t*d3)));
if (x < 0.5)
z *= -1.0;
return z;
}
#if defined(WIN) && defined(MSC)
#pragma optimize("",on)
#endif
double ScInterpreter::Fakultaet(double x)
{
x = ::rtl::math::approxFloor(x);
2000-09-18 23:16:46 +00:00
if (x < 0.0)
return 0.0;
else if (x == 0.0)
return 1.0;
else if (x <= 170.0)
{
double fTemp = x;
while (fTemp > 2.0)
{
fTemp--;
x *= fTemp;
}
}
else
SetError(errNoValue);
/* // Stirlingsche Naeherung zu ungenau
else
x = pow(x/exp(1), x) * sqrt(x) * SQRT_2_PI * (1.0 + 1.0 / (12.0 * x));
*/
return x;
}
double ScInterpreter::BinomKoeff(double n, double k)
{
double nVal = 0.0;
k = ::rtl::math::approxFloor(k);
2000-09-18 23:16:46 +00:00
if (n < k)
nVal = 0.0;
else if (k == 0.0)
nVal = 1.0;
else
{
nVal = n/k;
n--;
k--;
while (k > 0.0)
{
nVal *= n/k;
k--;
n--;
}
/*
double f1 = n; // Zaehler
double f2 = k; // Nenner
n--;
k--;
while (k > 0.0)
{
f2 *= k;
f1 *= n;
k--;
n--;
}
nVal = f1 / f2;
*/
}
return nVal;
}
double ScInterpreter::GammaHelp(double& x, BOOL& bReflect)
{
double c[6] = {76.18009173, -86.50532033, 24.01409822,
-1.231739516, 0.120858003E-2, -0.536382E-5};
if (x >= 1.0)
{
bReflect = FALSE;
x -= 1.0;
}
else
{
bReflect = TRUE;
x = 1.0 - x;
}
double s, anum;
s = 1.0;
anum = x;
for (USHORT i = 0; i < 6; i++)
{
anum += 1.0;
s += c[i]/anum;
}
s *= 2.506628275; // sqrt(2*PI)
return s;
}
double ScInterpreter::GetGamma(double x)
{
BOOL bReflect;
double G = GammaHelp(x, bReflect);
G = pow(x+5.5,x+0.5)*G/exp(x+5.5);
if (bReflect)
G = F_PI*x/(G*::rtl::math::sin(F_PI*x));
2000-09-18 23:16:46 +00:00
return G;
}
double ScInterpreter::GetLogGamma(double x)
{
BOOL bReflect;
double G = GammaHelp(x, bReflect);
G = (x+0.5)*log(x+5.5)+log(G)-(x+5.5);
if (bReflect)
G = log(F_PI*x)-G-log(::rtl::math::sin(F_PI*x));
2000-09-18 23:16:46 +00:00
return G;
}
double ScInterpreter::GetBetaDist(double x, double alpha, double beta)
{
if (beta == 1.0)
return pow(x, alpha);
else if (alpha == 1.0)
return 1.0 - pow(1.0-x,beta);
double fEps = 1.0E-8;
BOOL bReflect;
double cf, fA, fB;
if (x < (alpha+1.0)/(alpha+beta+1.0))
{
bReflect = FALSE;
fA = alpha;
fB = beta;
}
else
{
bReflect = TRUE;
fA = beta;
fB = alpha;
x = 1.0 - x;
}
if (x < fEps)
cf = 0.0;
else
{
double a1, b1, a2, b2, fnorm, rm, apl2m, d2m, d2m1, cfnew;
a1 = 1.0; b1 = 1.0;
b2 = 1.0 - (fA+fB)*x/(fA+1.0);
if (b2 == 0.0)
{
a2 = b2;
fnorm = 1.0;
cf = 1.0;
}
else
{
a2 = 1.0;
fnorm = 1.0/b2;
cf = a2*fnorm;
}
cfnew = 1.0;
for (USHORT j = 1; j <= 100; j++)
{
rm = (double) j;
apl2m = fA + 2.0*rm;
d2m = rm*(fB-rm)*x/((apl2m-1.0)*apl2m);
d2m1 = -(fA+rm)*(fA+fB+rm)*x/(apl2m*(apl2m+1.0));
a1 = (a2+d2m*a1)*fnorm;
b1 = (b2+d2m*b1)*fnorm;
a2 = a1 + d2m1*a2*fnorm;
b2 = b1 + d2m1*b2*fnorm;
if (b2 != 0.0)
{
fnorm = 1.0/b2;
cfnew = a2*fnorm;
if (fabs(cf-cfnew)/cf < fEps)
j = 101;
else
cf = cfnew;
}
}
if (fB < fEps)
b1 = 69; // ln(1.0E30)
2000-09-18 23:16:46 +00:00
else
b1 = GetLogGamma(fA)+GetLogGamma(fB)-GetLogGamma(fA+fB);
2000-09-18 23:16:46 +00:00
// cf *= pow(x, fA)*pow(1.0-x,fB)/(fA*exp(b1));
// #108995# The formula above has 0 as results for the terms too easily,
// resulting in an error where the equivalent formula below still works:
// (x can't be 0 or 1, this is handled above)
cf *= exp( log(x)*fA + log(1.0-x)*fB - b1 ) / fA;
2000-09-18 23:16:46 +00:00
}
if (bReflect)
return 1.0-cf;
else
return cf;
}
double ScInterpreter::GetFDist(double x, double fF1, double fF2)
{
double arg = fF2/(fF2+fF1*x);
double alpha = fF2/2.0;
double beta = fF1/2.0;
return (GetBetaDist(arg, alpha, beta));
/*
double Z = (pow(fF,1.0/3.0)*(1.0-2.0/(9.0*fF2)) - (1.0-2.0/(9.0*fF1))) /
sqrt(2.0/(9.0*fF1) + pow(fF,2.0/3.0)*2.0/(9.0*fF2));
return (0.5-gauss(Z));
*/
}
double ScInterpreter::GetTDist(double T, double fDF)
{
return 0.5 * GetBetaDist(fDF/(fDF+T*T), fDF/2.0, 0.5);
/*
USHORT DF = (USHORT) fDF;
double A = T / sqrt(DF);
double B = 1.0 + A*A;
double R;
if (DF == 1)
R = 0.5 + atan(A)/F_PI;
else if (DF % 2 == 0)
{
double S0 = A/(2.0 * sqrt(B));
double C0 = S0;
for (USHORT i = 2; i <= DF-2; i+=2)
{
C0 *= (1.0 - 1.0/(double)i)/B;
S0 += C0;
}
R = 0.5 + S0;
}
else
{
double S1 = A / (B * F_PI);
double C1 = S1;
for (USHORT i = 3; i <= DF-2; i+=2)
{
C1 *= (1.0 - 1.0/(double)i)/B;
S1 += C1;
}
R = 0.5 + atan(A)/F_PI + S1;
}
return 1.0 - R;
*/
}
double ScInterpreter::GetChiDist(double fChi, double fDF)
{
return 1.0 - GetGammaDist(fChi/2.0, fDF/2.0, 1.0);
/*
double x = 1.0;
for (double i = fDF; i >= 2.0; i -= 2.0)
x *= fChi/i;
x *= exp(-fChi/2.0);
if (fmod(fDF, 2.0) != 0.0)
x *= sqrt(2.0*fChi/F_PI);
double S = 1.0;
double T = 1.0;
double G = fDF;
BOOL bStop = FALSE;
while (!bStop)
{
G += 2.0;
T *= fChi/G;
if (T < 1.0E-7)
bStop = TRUE;
else
S += T;
}
return 1.0 - x*S;
*/
}
void ScInterpreter::ScLogGamma()
{
double x = GetDouble();
if (x > 0.0)
PushDouble(GetLogGamma(x));
else
SetIllegalArgument();
}
void ScInterpreter::ScBetaDist()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 3, 5 ) )
return;
double fA, fB, alpha, beta, x;
if (nParamCount == 5)
fB = GetDouble();
else
fB = 1.0;
if (nParamCount >= 4)
fA = GetDouble();
else
fA = 0.0;
beta = GetDouble();
alpha = GetDouble();
x = GetDouble();
if (x < fA || x > fB || fA == fB || alpha <= 0.0 || beta <= 0.0)
{
SetIllegalArgument();
return;
}
x = (x-fA)/(fB-fA); // Skalierung auf (0,1)
PushDouble(GetBetaDist(x, alpha, beta));
}
void ScInterpreter::ScPhi()
{
PushDouble(phi(GetDouble()));
}
void ScInterpreter::ScGauss()
{
PushDouble(gauss(GetDouble()));
}
void ScInterpreter::ScFisher()
{
double fVal = GetDouble();
if (fabs(fVal) >= 1.0)
SetIllegalArgument();
else
PushDouble(0.5*log((1.0+fVal)/(1.0-fVal)));
}
void ScInterpreter::ScFisherInv()
{
double fVal = GetDouble();
PushDouble((exp(2.0*fVal)-1.0)/(exp(2.0*fVal)+1.0));
}
void ScInterpreter::ScFact()
{
double nVal = GetDouble();
if (nVal < 0.0)
SetIllegalArgument();
else
PushDouble(Fakultaet(nVal));
}
void ScInterpreter::ScKombin()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
double k = ::rtl::math::approxFloor(GetDouble());
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (k < 0.0 || n < 0.0 || k > n)
SetIllegalArgument();
else
PushDouble(BinomKoeff(n, k));
}
}
void ScInterpreter::ScKombin2()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
double k = ::rtl::math::approxFloor(GetDouble());
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (k < 0.0 || n < 0.0 || k > n)
SetIllegalArgument();
else
PushDouble(BinomKoeff(n + k - 1, k));
}
}
void ScInterpreter::ScVariationen()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
double k = ::rtl::math::approxFloor(GetDouble());
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (n < 0.0 || k < 0.0 || k > n)
SetIllegalArgument();
else if (k == 0.0)
PushInt(1); // (n! / (n - 0)!) == 1
else
{
double nVal = n;
for (ULONG i = (ULONG)k-1; i >= 1; i--)
nVal *= n-(double)i;
PushDouble(nVal);
}
}
}
void ScInterpreter::ScVariationen2()
{
if ( MustHaveParamCount( GetByte(), 2 ) )
{
double k = ::rtl::math::approxFloor(GetDouble());
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (n < 0.0 || k < 0.0 || k > n)
SetIllegalArgument();
else
PushDouble(pow(n,k));
}
}
void ScInterpreter::ScB()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 3, 4 ) )
return ;
if (nParamCount == 3)
{
double x = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double p = GetDouble();
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (n < 0.0 || x < 0.0 || x > n || p < 0.0 || p > 1.0)
SetIllegalArgument();
else
{
double q = 1.0 - p;
double fFactor = pow(q, n);
if (fFactor == 0.0)
{
fFactor = pow(p, n);
if (fFactor == 0.0)
SetNoValue();
else
{
ULONG max = (ULONG) (n - x);
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*q/p;
PushDouble(fFactor);
}
}
else
{
ULONG max = (ULONG) x;
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*p/q;
PushDouble(fFactor);
}
}
}
else if (nParamCount == 4)
{
double xe = GetDouble();
double xs = GetDouble();
double p = GetDouble();
double n = GetDouble();
// alter Stand 300-SC
// if ((xs < n) && (xe < n) && (p < 1.0))
// {
// double Varianz = sqrt(n * p * (1.0 - p));
// xs = fabs(xs - (n * p /* / 2.0 STE */ ));
// xe = fabs(xe - (n * p /* / 2.0 STE */ ));
//// STE double nVal = gauss((xs + 0.5) / Varianz) + gauss((xe + 0.5) / Varianz);
// double nVal = fabs(gauss(xs / Varianz) - gauss(xe / Varianz));
// PushDouble(nVal);
// }
if (xe <= n && xs <= xe &&
p < 1.0 && p > 0.0 && n >= 0.0 && xs >= 0.0 )
{
double q = 1.0 - p;
double fFactor = pow(q, n);
if (fFactor == 0.0)
{
fFactor = pow(p, n);
if (fFactor == 0.0)
SetNoValue();
else
{
double fSum = 0.0;
ULONG max;
if (xe < (ULONG) n)
max = (ULONG) (n-xe)-1;
else
max = 0;
ULONG i;
for (i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*q/p;
if (xs < (ULONG) n)
max = (ULONG) (n-xs);
else
fSum = fFactor;
for (; i < max && fFactor > 0.0; i++)
{
fFactor *= (n-i)/(i+1)*q/p;
fSum += fFactor;
}
PushDouble(fSum);
}
}
else
{
ULONG max;
double fSum;
if ( (ULONG) xs == 0)
{
fSum = fFactor;
max = 0;
}
else
{
max = (ULONG) xs-1;
fSum = 0.0;
}
ULONG i;
for (i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*p/q;
if ((ULONG)xe == 0) // beide 0
fSum = fFactor;
else
max = (ULONG) xe;
for (; i < max && fFactor > 0.0; i++)
{
fFactor *= (n-i)/(i+1)*p/q;
fSum += fFactor;
}
PushDouble(fSum);
}
}
else
SetIllegalArgument();
}
}
void ScInterpreter::ScBinomDist()
{
if ( MustHaveParamCount( GetByte(), 4 ) )
{
double kum = GetDouble(); // 0 oder 1
double p = GetDouble(); // p
double n = ::rtl::math::approxFloor(GetDouble()); // n
double x = ::rtl::math::approxFloor(GetDouble()); // x
2000-09-18 23:16:46 +00:00
double fFactor, q, fSum;
if (n < 0.0 || x < 0.0 || x > n || p < 0.0 || p > 1.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
{
q = 1.0 - p;
fFactor = pow(q, n);
if (fFactor == 0.0)
{
fFactor = pow(p, n);
if (fFactor == 0.0)
SetNoValue();
else
{
ULONG max = (ULONG) (n - x);
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*q/p;
PushDouble(fFactor);
}
}
else
{
ULONG max = (ULONG) x;
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
fFactor *= (n-i)/(i+1)*p/q;
PushDouble(fFactor);
}
}
else // Verteilung
{
if (n == x)
PushDouble(1.0);
else
{
q = 1.0 - p;
fFactor = pow(q, n);
if (fFactor == 0.0)
{
fFactor = pow(p, n);
if (fFactor == 0.0)
SetNoValue();
else
{
fSum = 1.0 - fFactor;
ULONG max = (ULONG) (n - x) - 1;
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
{
fFactor *= (n-i)/(i+1)*q/p;
fSum -= fFactor;
}
if (fSum < 0.0)
PushDouble(0.0);
else
PushDouble(fSum);
}
}
else
{
double fSum = fFactor;
ULONG max = (ULONG) x;
for (ULONG i = 0; i < max && fFactor > 0.0; i++)
{
fFactor *= (n-i)/(i+1)*p/q;
fSum += fFactor;
}
PushDouble(fSum);
}
}
}
}
}
void ScInterpreter::ScCritBinom()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double alpha = GetDouble(); // alpha
double p = GetDouble(); // p
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (n < 0.0 || alpha <= 0.0 || alpha >= 1.0 || p < 0.0 || p > 1.0)
SetIllegalArgument();
else
{
double q = 1.0 - p;
double fFactor = pow(q,n);
if (fFactor == 0.0)
{
fFactor = pow(p, n);
if (fFactor == 0.0)
SetNoValue();
else
{
double fSum = 1.0 - fFactor; ULONG max = (ULONG) n;
ULONG i;
for ( i = 0; i < max && fSum >= alpha; i++)
2000-09-18 23:16:46 +00:00
{
fFactor *= (n-i)/(i+1)*q/p;
fSum -= fFactor;
}
PushDouble(n-i);
}
}
else
{
double fSum = fFactor; ULONG max = (ULONG) n;
ULONG i;
for ( i = 0; i < max && fSum < alpha; i++)
2000-09-18 23:16:46 +00:00
{
fFactor *= (n-i)/(i+1)*p/q;
fSum += fFactor;
}
PushDouble(i);
}
}
}
}
void ScInterpreter::ScNegBinomDist()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double p = GetDouble(); // p
double r = GetDouble(); // r
double x = GetDouble(); // x
if (r < 0.0 || x < 0.0 || p < 0.0 || p > 1.0)
SetIllegalArgument();
else
{
double q = 1.0 - p;
double fFactor = pow(p,r);
for (double i = 0.0; i < x; i++)
fFactor *= (i+r)/(i+1.0)*q;
PushDouble(fFactor);
}
}
}
void ScInterpreter::ScNormDist()
{
if ( MustHaveParamCount( GetByte(), 4 ) )
{
double kum = GetDouble(); // 0 oder 1
double sigma = GetDouble(); // Stdabw
double mue = GetDouble(); // Mittelwert
double x = GetDouble(); // x
if (sigma <= 0.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
PushDouble(phi((x-mue)/sigma)/sigma);
else // Verteilung
PushDouble(0.5 + gauss((x-mue)/sigma));
}
}
void ScInterpreter::ScLogNormDist()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double sigma = GetDouble(); // Stdabw
double mue = GetDouble(); // Mittelwert
double x = GetDouble(); // x
if (sigma <= 0.0 || x <= 0.0)
SetIllegalArgument();
else
PushDouble(0.5 + gauss((log(x)-mue)/sigma));
}
}
void ScInterpreter::ScStdNormDist()
{
PushDouble(0.5 + gauss(GetDouble()));
}
void ScInterpreter::ScExpDist()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double kum = GetDouble(); // 0 oder 1
double lambda = GetDouble(); // lambda
double x = GetDouble(); // x
if (lambda <= 0.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
{
if (x >= 0.0)
PushDouble(lambda * exp(-lambda*x));
else
PushInt(0);
}
else // Verteilung
{
if (x > 0.0)
PushDouble(1.0 - exp(-lambda*x));
else
PushInt(0);
}
}
}
void ScInterpreter::ScTDist()
{
if ( !MustHaveParamCount( GetByte(), 3 ) )
return;
double fFlag = ::rtl::math::approxFloor(GetDouble());
double fDF = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double T = GetDouble();
if (fDF < 1.0 || T < 0.0 || (fFlag != 1.0 && fFlag != 2.0) )
{
SetIllegalArgument();
return;
}
double R = GetTDist(T, fDF);
if (fFlag == 1.0)
PushDouble(R);
else
PushDouble(2.0*R);
}
void ScInterpreter::ScFDist()
{
if ( !MustHaveParamCount( GetByte(), 3 ) )
return;
double fF2 = ::rtl::math::approxFloor(GetDouble());
double fF1 = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double fF = GetDouble();
if (fF < 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10)
{
SetIllegalArgument();
return;
}
PushDouble(GetFDist(fF, fF1, fF2));
}
void ScInterpreter::ScChiDist()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fDF = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double fChi = GetDouble();
if (fDF < 1.0 || fDF >= 1.0E5 || fChi < 0.0 )
{
SetIllegalArgument();
return;
}
PushDouble(GetChiDist(fChi, fDF));
}
void ScInterpreter::ScWeibull()
{
if ( MustHaveParamCount( GetByte(), 4 ) )
{
double kum = GetDouble(); // 0 oder 1
double beta = GetDouble(); // beta
double alpha = GetDouble(); // alpha
double x = GetDouble(); // x
if (alpha <= 0.0 || beta <= 0.0 || x < 0.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
PushDouble(alpha/pow(beta,alpha)*pow(x,alpha-1.0)*
exp(-pow(x/beta,alpha)));
else // Verteilung
PushDouble(1.0 - exp(-pow(x/beta,alpha)));
}
}
void ScInterpreter::ScPoissonDist()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double kum = GetDouble(); // 0 oder 1
double lambda = GetDouble(); // Mittelwert
double x = ::rtl::math::approxFloor(GetDouble()); // x
2000-09-18 23:16:46 +00:00
if (lambda < 0.0 || x < 0.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
{
if (lambda == 0.0)
PushInt(0);
else
PushDouble(exp(-lambda)*pow(lambda,x)/Fakultaet(x));
}
else // Verteilung
{
if (lambda == 0.0)
PushInt(1);
else
{
double sum = 1.0;
double fFak = 1.0;
ULONG nEnd = (ULONG) x;
for (ULONG i = 1; i <= nEnd; i++)
{
fFak *= (double)i;
sum += pow( lambda, (double)i ) / fFak;
}
sum *= exp(-lambda);
PushDouble(sum);
}
}
}
}
void ScInterpreter::ScHypGeomDist()
{
if ( MustHaveParamCount( GetByte(), 4 ) )
{
double N = ::rtl::math::approxFloor(GetDouble());
double M = ::rtl::math::approxFloor(GetDouble());
double n = ::rtl::math::approxFloor(GetDouble());
double x = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if( (x < 0.0) || (n < x) || (M < x) || (N < n) || (N < M) || (x < n - N + M) )
{
SetIllegalArgument();
return;
}
double fFactor =
BinomKoeff( n, x ) / BinomKoeff( N, M ) * BinomKoeff( N - n, M - x );
/*
double fFactor;
if (x == n - N + M)
fFactor = BinomKoeff(M,x)/BinomKoeff(N,n);
else
{
double fIndex = N - M - n;
if (fIndex >= 0.0)
{
fFactor = BinomKoeff(N-M,n)/BinomKoeff(N,n);
for (double i = 0; i < x; i++)
fFactor *= (M-i)*(n-i)/((i+1.0)*(N-M-n+i+1.0));
}
else
{
fFactor = BinomKoeff(M,-fIndex)/BinomKoeff(N,n);
for (double i = -fIndex + 1.0; i < x; i++)
fFactor *= (M-i)*(n-i)/((i+1)*(N-M-n+i+1.0));
}
}
*/
PushDouble(fFactor);
}
}
void ScInterpreter::ScGammaDist()
{
if ( !MustHaveParamCount( GetByte(), 4 ) )
return;
double kum = GetDouble(); // 0 oder 1
double beta = GetDouble();
double alpha = GetDouble();
double x = GetDouble(); // x
if (x < 0.0 || alpha <= 0.0 || beta <= 0.0)
SetIllegalArgument();
else if (kum == 0.0) // Dichte
{
double G = GetGamma(alpha);
PushDouble(pow(x,alpha-1.0)/exp(x/beta)/pow(beta,alpha)/G);
}
else // Verteilung
PushDouble(GetGammaDist(x, alpha, beta));
}
void ScInterpreter::ScNormInv()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double sigma = GetDouble();
double mue = GetDouble();
double x = GetDouble();
if (sigma <= 0.0 || x < 0.0 || x > 1.0)
SetIllegalArgument();
else if (x == 0.0 || x == 1.0)
SetNoValue();
else
PushDouble(gaussinv(x)*sigma + mue);
}
}
void ScInterpreter::ScSNormInv()
{
double x = GetDouble();
if (x < 0.0 || x > 1.0)
SetIllegalArgument();
else if (x == 0.0 || x == 1.0)
SetNoValue();
else
PushDouble(gaussinv(x));
}
void ScInterpreter::ScLogNormInv()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double sigma = GetDouble(); // Stdabw
double mue = GetDouble(); // Mittelwert
double y = GetDouble(); // y
if (sigma <= 0.0 || y <= 0.0 || y >= 1.0)
SetIllegalArgument();
else
PushDouble(exp(mue+sigma*gaussinv(y)));
}
}
class ScGammaDistFunction : public ScDistFunc
{
ScInterpreter& rInt;
double fp, fAlpha, fBeta;
public:
ScGammaDistFunction( ScInterpreter& rI, double fpVal, double fAlphaVal, double fBetaVal ) :
rInt(rI), fp(fpVal), fAlpha(fAlphaVal), fBeta(fBetaVal) {}
double GetValue( double x ) const { return fp - rInt.GetGammaDist(x, fAlpha, fBeta); }
};
2000-09-18 23:16:46 +00:00
void ScInterpreter::ScGammaInv()
{
if ( !MustHaveParamCount( GetByte(), 3 ) )
return;
double fBeta = GetDouble();
double fAlpha = GetDouble();
double fP = GetDouble();
if (fAlpha <= 0.0 || fBeta <= 0.0 || fP < 0.0 || fP >= 1.0 )
{
SetIllegalArgument();
return;
}
if (fP == 0.0)
PushInt(0);
else
{
BOOL bConvError;
ScGammaDistFunction aFunc( *this, fP, fAlpha, fBeta );
double fStart = fAlpha * fBeta;
double fVal = lcl_IterateInverse( aFunc, fStart*0.5, fStart, bConvError );
if (bConvError)
2000-09-18 23:16:46 +00:00
SetError(errNoConvergence);
PushDouble(fVal);
2000-09-18 23:16:46 +00:00
}
}
class ScBetaDistFunction : public ScDistFunc
{
ScInterpreter& rInt;
double fp, fAlpha, fBeta;
public:
ScBetaDistFunction( ScInterpreter& rI, double fpVal, double fAlphaVal, double fBetaVal ) :
rInt(rI), fp(fpVal), fAlpha(fAlphaVal), fBeta(fBetaVal) {}
double GetValue( double x ) const { return fp - rInt.GetBetaDist(x, fAlpha, fBeta); }
};
2000-09-18 23:16:46 +00:00
void ScInterpreter::ScBetaInv()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 3, 5 ) )
return;
double fP, fA, fB, fAlpha, fBeta;
if (nParamCount == 5)
fB = GetDouble();
else
fB = 1.0;
if (nParamCount >= 4)
fA = GetDouble();
else
fA = 0.0;
fBeta = GetDouble();
fAlpha = GetDouble();
fP = GetDouble();
if (fP < 0.0 || fP >= 1.0 || fA == fB || fAlpha <= 0.0 || fBeta <= 0.0)
{
SetIllegalArgument();
return;
}
if (fP == 0.0)
PushInt(0);
else
{
BOOL bConvError;
ScBetaDistFunction aFunc( *this, fP, fAlpha, fBeta );
// 0..1 as range for iteration so it isn't extended beyond the valid range
double fVal = lcl_IterateInverse( aFunc, 0.0, 1.0, bConvError );
if (bConvError)
2000-09-18 23:16:46 +00:00
{
SetError(errNoConvergence);
PushInt(0);
}
else
PushDouble(fA + fVal*(fB-fA)); // scale to (A,B)
2000-09-18 23:16:46 +00:00
}
}
2000-09-18 23:16:46 +00:00
// Achtung: T, F und Chi
// sind monoton fallend,
// deshalb 1-Dist als Funktion
class ScTDistFunction : public ScDistFunc
{
ScInterpreter& rInt;
double fp, fDF;
public:
ScTDistFunction( ScInterpreter& rI, double fpVal, double fDFVal ) :
rInt(rI), fp(fpVal), fDF(fDFVal) {}
double GetValue( double x ) const { return fp - 2 * rInt.GetTDist(x, fDF); }
};
2000-09-18 23:16:46 +00:00
void ScInterpreter::ScTInv()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fDF = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double fP = GetDouble();
if (fDF < 1.0 || fDF >= 1.0E5 || fP <= 0.0 || fP > 1.0 )
{
SetIllegalArgument();
return;
}
BOOL bConvError;
ScTDistFunction aFunc( *this, fP, fDF );
double fVal = lcl_IterateInverse( aFunc, fDF*0.5, fDF, bConvError );
if (bConvError)
2000-09-18 23:16:46 +00:00
SetError(errNoConvergence);
PushDouble(fVal);
2000-09-18 23:16:46 +00:00
}
class ScFDistFunction : public ScDistFunc
{
ScInterpreter& rInt;
double fp, fF1, fF2;
public:
ScFDistFunction( ScInterpreter& rI, double fpVal, double fF1Val, double fF2Val ) :
rInt(rI), fp(fpVal), fF1(fF1Val), fF2(fF2Val) {}
double GetValue( double x ) const { return fp - rInt.GetFDist(x, fF1, fF2); }
};
2000-09-18 23:16:46 +00:00
void ScInterpreter::ScFInv()
{
if ( !MustHaveParamCount( GetByte(), 3 ) )
return;
double fF2 = ::rtl::math::approxFloor(GetDouble());
double fF1 = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double fP = GetDouble();
if (fP <= 0.0 || fF1 < 1.0 || fF2 < 1.0 || fF1 >= 1.0E10 || fF2 >= 1.0E10 || fP > 1.0)
{
SetIllegalArgument();
return;
}
BOOL bConvError;
ScFDistFunction aFunc( *this, fP, fF1, fF2 );
double fVal = lcl_IterateInverse( aFunc, fF1*0.5, fF1, bConvError );
if (bConvError)
2000-09-18 23:16:46 +00:00
SetError(errNoConvergence);
PushDouble(fVal);
2000-09-18 23:16:46 +00:00
}
class ScChiDistFunction : public ScDistFunc
{
ScInterpreter& rInt;
double fp, fDF;
public:
ScChiDistFunction( ScInterpreter& rI, double fpVal, double fDFVal ) :
rInt(rI), fp(fpVal), fDF(fDFVal) {}
double GetValue( double x ) const { return fp - rInt.GetChiDist(x, fDF); }
};
2000-09-18 23:16:46 +00:00
void ScInterpreter::ScChiInv()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fDF = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double fP = GetDouble();
if (fDF < 1.0 || fDF >= 1.0E5 || fP <= 0.0 || fP > 1.0 )
{
SetIllegalArgument();
return;
}
BOOL bConvError;
ScChiDistFunction aFunc( *this, fP, fDF );
double fVal = lcl_IterateInverse( aFunc, fDF*0.5, fDF, bConvError );
if (bConvError)
2000-09-18 23:16:46 +00:00
SetError(errNoConvergence);
PushDouble(fVal);
2000-09-18 23:16:46 +00:00
}
/***********************************************/
void ScInterpreter::ScConfidence()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double n = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
double sigma = GetDouble();
double alpha = GetDouble();
if (sigma <= 0.0 || alpha <= 0.0 || alpha >= 1.0 || n < 1.0)
SetIllegalArgument();
else
PushDouble( gaussinv(1.0-alpha/2.0) * sigma/sqrt(n) );
}
}
void ScInterpreter::ScZTest()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
return;
double sigma, mue, x;
if (nParamCount == 3)
{
sigma = GetDouble();
if (sigma <= 0.0)
{
SetIllegalArgument();
return;
}
}
x = GetDouble();
double fSum = 0.0;
double fSumSqr = 0.0;
double fVal;
double rValCount = 0.0;
switch (GetStackType())
{
case svDouble :
{
fVal = GetDouble();
fSum += fVal;
fSumSqr += fVal*fVal;
rValCount++;
}
break;
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
fVal = GetCellValue( aAdr, pCell );
fSum += fVal;
fSumSqr += fVal*fVal;
rValCount++;
}
}
break;
case svDoubleRef :
{
ScRange aRange;
USHORT nErr = 0;
PopDoubleRef( aRange );
ScValueIterator aValIter(pDok, aRange, glSubTotal);
if (aValIter.GetFirst(fVal, nErr))
{
fSum += fVal;
fSumSqr += fVal*fVal;
rValCount++;
while ((nErr == 0) && aValIter.GetNext(fVal, nErr))
{
fSum += fVal;
fSumSqr += fVal*fVal;
rValCount++;
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for ( SCSIZE i = 0; i < nCount; i++ )
2000-09-18 23:16:46 +00:00
{
fVal= pMat->GetDouble(i);
fSum += fVal;
fSumSqr += fVal * fVal;
rValCount++;
}
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
{
fVal= pMat->GetDouble(i);
fSum += fVal;
fSumSqr += fVal * fVal;
rValCount++;
}
2000-09-18 23:16:46 +00:00
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
if (rValCount <= 1.0)
SetNoValue();
else
{
mue = fSum/rValCount;
if (nParamCount != 3)
sigma = (fSumSqr - fSum*fSum/rValCount)/(rValCount-1.0);
PushDouble(0.5 - gauss((mue-x)/sqrt(sigma/rValCount)));
}
}
void ScInterpreter::ScTTest()
{
if ( !MustHaveParamCount( GetByte(), 4 ) )
return;
double fTyp = ::rtl::math::approxFloor(GetDouble());
double fAnz = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (fAnz != 1.0 && fAnz != 2.0)
{
SetIllegalArgument();
return;
}
ScMatrixRef pMat2 = GetMatrix();
ScMatrixRef pMat1 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
double fT, fF;
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
SCSIZE i, j;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (fTyp == 1.0)
{
if (nC1 != nC2 || nR1 != nR2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSum1 = 0.0;
double fSum2 = 0.0;
double fSumSqrD = 0.0;
double fVal1, fVal2;
for (i = 0; i < nC1; i++)
for (j = 0; j < nR1; j++)
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fVal1 = pMat1->GetDouble(i,j);
fVal2 = pMat2->GetDouble(i,j);
fSum1 += fVal1;
fSum2 += fVal2;
fSumSqrD += (fVal1 - fVal2)*(fVal1 - fVal2);
fCount++;
}
}
if (fCount < 1.0)
{
SetNoValue();
return;
}
fT = sqrt(fCount-1.0) * fabs(fSum1 - fSum2) /
sqrt(fCount * fSumSqrD - (fSum1-fSum2)*(fSum1-fSum2));
fF = fCount - 1.0;
}
else if (fTyp == 2.0)
{
double fCount1 = 0.0;
double fCount2 = 0.0;
double fSum1 = 0.0;
double fSumSqr1 = 0.0;
double fSum2 = 0.0;
double fSumSqr2 = 0.0;
double fVal;
for (i = 0; i < nC1; i++)
for (j = 0; j < nR1; j++)
{
if (!pMat1->IsString(i,j))
{
fVal = pMat1->GetDouble(i,j);
fSum1 += fVal;
fSumSqr1 += fVal * fVal;
fCount1++;
}
}
for (i = 0; i < nC2; i++)
for (j = 0; j < nR2; j++)
{
if (!pMat2->IsString(i,j))
{
fVal = pMat2->GetDouble(i,j);
fSum2 += fVal;
fSumSqr2 += fVal * fVal;
fCount2++;
}
}
if (fCount1 < 2.0 || fCount2 < 2.0)
{
SetNoValue();
return;
}
#if 0
// alter Templin-Code
double fS1 = (fSumSqr1-fSum1*fSum1/fCount1)/(fCount1-1.0)/fCount1;
double fS2 = (fSumSqr2-fSum2*fSum2/fCount2)/(fCount2-1.0)/fCount2;
if (fS1 + fS2 == 0.0)
{
SetNoValue();
return;
}
fT = fabs(fSum1/fCount1 - fSum2/fCount2)/sqrt(fS1+fS2);
fF = fCount1 + fCount2 - 2;
#else
// laut Bronstein-Semendjajew
double fS1 = (fSumSqr1 - fSum1*fSum1/fCount1) / (fCount1 - 1.0); // Varianz
double fS2 = (fSumSqr2 - fSum2*fSum2/fCount2) / (fCount2 - 1.0);
fT = fabs( fSum1/fCount1 - fSum2/fCount2 ) /
sqrt( (fCount1-1.0)*fS1 + (fCount2-1.0)*fS2 ) *
sqrt( fCount1*fCount2*(fCount1+fCount2-2)/(fCount1+fCount2) );
fF = fCount1 + fCount2 - 2;
#endif
}
else if (fTyp == 3.0)
{
double fCount1 = 0.0;
double fCount2 = 0.0;
double fSum1 = 0.0;
double fSumSqr1 = 0.0;
double fSum2 = 0.0;
double fSumSqr2 = 0.0;
double fVal;
for (i = 0; i < nC1; i++)
for (j = 0; j < nR1; j++)
{
if (!pMat1->IsString(i,j))
{
fVal = pMat1->GetDouble(i,j);
fSum1 += fVal;
fSumSqr1 += fVal * fVal;
fCount1++;
}
}
for (i = 0; i < nC2; i++)
for (j = 0; j < nR2; j++)
{
if (!pMat2->IsString(i,j))
{
fVal = pMat2->GetDouble(i,j);
fSum2 += fVal;
fSumSqr2 += fVal * fVal;
fCount2++;
}
}
if (fCount1 < 2.0 || fCount2 < 2.0)
{
SetNoValue();
return;
}
double fS1 = (fSumSqr1-fSum1*fSum1/fCount1)/(fCount1-1.0)/fCount1;
double fS2 = (fSumSqr2-fSum2*fSum2/fCount2)/(fCount2-1.0)/fCount2;
if (fS1 + fS2 == 0.0)
{
SetNoValue();
return;
}
fT = fabs(fSum1/fCount1 - fSum2/fCount2)/sqrt(fS1+fS2);
double c = fS1/(fS1+fS2);
// s.u. fF = ::rtl::math::approxFloor(1.0/(c*c/(fCount1-1.0)+(1.0-c)*(1.0-c)/(fCount2-1.0)));
// fF = ::rtl::math::approxFloor((fS1+fS2)*(fS1+fS2)/(fS1*fS1/(fCount1-1.0) + fS2*fS2/(fCount2-1.0)));
2000-09-18 23:16:46 +00:00
// GetTDist wird mit GetBetaDist berechnet und kommt auch mit nicht ganzzahligen
// Freiheitsgraden klar. Dann stimmt das Ergebnis auch mit Excel ueberein (#52406#):
fF = 1.0/(c*c/(fCount1-1.0)+(1.0-c)*(1.0-c)/(fCount2-1.0));
}
else
{
SetIllegalArgument();
return;
}
if (fAnz == 1.0)
PushDouble(GetTDist(fT, fF));
else
PushDouble(2.0*GetTDist(fT, fF));
}
void ScInterpreter::ScFTest()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat2 = GetMatrix();
ScMatrixRef pMat1 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
SCSIZE i, j;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
double fCount1 = 0.0;
double fCount2 = 0.0;
double fSum1 = 0.0;
double fSumSqr1 = 0.0;
double fSum2 = 0.0;
double fSumSqr2 = 0.0;
double fVal;
for (i = 0; i < nC1; i++)
for (j = 0; j < nR1; j++)
{
if (!pMat1->IsString(i,j))
{
fVal = pMat1->GetDouble(i,j);
fSum1 += fVal;
fSumSqr1 += fVal * fVal;
fCount1++;
}
}
for (i = 0; i < nC2; i++)
for (j = 0; j < nR2; j++)
{
if (!pMat2->IsString(i,j))
{
fVal = pMat2->GetDouble(i,j);
fSum2 += fVal;
fSumSqr2 += fVal * fVal;
fCount2++;
}
}
if (fCount1 < 2.0 || fCount2 < 2.0)
{
SetNoValue();
return;
}
double fS1 = (fSumSqr1-fSum1*fSum1/fCount1)/(fCount1-1.0);
double fS2 = (fSumSqr2-fSum2*fSum2/fCount2)/(fCount2-1.0);
if (fS1 == 0.0 || fS2 == 0.0)
{
SetNoValue();
return;
}
double fF, fF1, fF2;
if (fS1 > fS2)
{
fF = fS1/fS2;
fF1 = fCount1-1.0;
fF2 = fCount2-1.0;
}
else
{
fF = fS2/fS1;
fF1 = fCount2-1.0;
fF2 = fCount1-1.0;
}
PushDouble(2.0*GetFDist(fF, fF1, fF2));
/*
double Z = (pow(fF,1.0/3.0)*(1.0-2.0/(9.0*fF2)) - (1.0-2.0/(9.0*fF1))) /
sqrt(2.0/(9.0*fF1) + pow(fF,2.0/3.0)*2.0/(9.0*fF2));
PushDouble(1.0-2.0*gauss(Z));
*/
}
void ScInterpreter::ScChiTest()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat2 = GetMatrix();
ScMatrixRef pMat1 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fChi = 0.0;
SCSIZE i, j;
2000-09-18 23:16:46 +00:00
double fValX, fValE;
for (i = 0; i < nC1; i++)
for (j = 0; j < nR1; j++)
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValE = pMat2->GetDouble(i,j);
fChi += (fValX-fValE)*(fValX-fValE)/fValE;
}
else
{
SetIllegalArgument();
return;
}
}
double fDF;
if (nC1 == 1 || nR1 == 1)
{
fDF = (double)(nC1*nR1 - 1);
if (fDF == 0.0)
{
SetNoValue();
return;
}
}
else
fDF = (double)(nC1-1)*(double)(nR1-1);
PushDouble(GetChiDist(fChi, fDF));
/*
double fX, fS, fT, fG;
fX = 1.0;
for (double fi = fDF; fi >= 2.0; fi -= 2.0)
fX *= fChi/fi;
fX *= exp(-fChi/2.0);
if (fmod(fDF, 2.0) != 0.0)
fX *= sqrt(2.0*fChi/F_PI);
fS = 1.0;
fT = 1.0;
fG = fDF;
while (fT >= 1.0E-7)
{
fG += 2.0;
fT *= fChi/fG;
fS += fT;
}
PushDouble(1.0 - fX*fS);
*/
}
void ScInterpreter::ScKurt()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCountMin( nParamCount, 1 ) )
return;
USHORT i;
double fSum = 0.0;
double vSum = 0.0;
std::vector<double> values;
2000-09-18 23:16:46 +00:00
double fCount = 0.0;
double fVal = 0.0;
2000-09-18 23:16:46 +00:00
ScAddress aAdr;
ScRange aRange;
for (i = 0; i < nParamCount; i++)
{
switch (GetStackType())
{
case svDouble :
{
fVal = GetDouble();
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
fVal = GetCellValue( aAdr, pCell );
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
}
break;
case svDoubleRef :
{
PopDoubleRef( aRange );
USHORT nErr = 0;
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(fVal, nErr))
{
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(fVal, nErr))
{
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
fVal = pMat->GetDouble(i);
fSum += fVal;
values.push_back(fVal);
fCount++;
}
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
2000-09-18 23:16:46 +00:00
{
fVal = pMat->GetDouble(i);
2000-09-18 23:16:46 +00:00
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
}
}
}
break;
default :
SetError(errIllegalParameter);
break;
}
}
2000-09-18 23:16:46 +00:00
if (nGlobalError)
{
PushInt(0);
return;
}
2000-09-18 23:16:46 +00:00
double fMean = fSum / fCount;
for (i = 0; i < values.size(); i++)
vSum += (values[i] - fMean) * (values[i] - fMean);
double fStdDev = sqrt(vSum / (fCount - 1.0));
double dx = 0.0;
double xpower4 = 0.0;
if (fStdDev == 0)
2000-09-18 23:16:46 +00:00
{
SetError(errIllegalArgument);
return;
2000-09-18 23:16:46 +00:00
}
for (i = 0; i < values.size(); i++)
{
dx = (values[i] - fMean) / fStdDev;
xpower4 = xpower4 + (dx * dx * dx * dx);
}
double k_d = (fCount - 2.0) * (fCount - 3.0);
double k_l = fCount * (fCount + 1.0) / ((fCount - 1.0) * k_d);
double k_t = 3.0 * (fCount - 1.0) * (fCount - 1.0) / k_d;
PushDouble(xpower4 * k_l - k_t);
2000-09-18 23:16:46 +00:00
}
void ScInterpreter::ScHarMean()
{
BYTE nParamCount = GetByte();
double nVal = 0.0;
double nValCount = 0.0;
2000-09-18 23:16:46 +00:00
ScAddress aAdr;
ScRange aRange;
for (short i = 0; i < nParamCount && (nGlobalError == 0); i++)
{
switch (GetStackType())
{
case svDouble :
{
double x = GetDouble();
if (x > 0.0)
{
nVal += 1.0/x;
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
break;
}
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
double x = GetCellValue( aAdr, pCell );
if (x > 0.0)
{
nVal += 1.0/x;
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
break;
}
case svDoubleRef :
{
USHORT nErr = 0;
PopDoubleRef( aRange );
double nCellVal;
ScValueIterator aValIter(pDok, aRange, glSubTotal);
if (aValIter.GetFirst(nCellVal, nErr))
{
if (nCellVal > 0.0)
{
nVal += 1.0/nCellVal;
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr))
{
if (nCellVal > 0.0)
{
nVal += 1.0/nCellVal;
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
double x = pMat->GetDouble(i);
if (x > 0.0)
{
nVal += 1.0/x;
nValCount++;
}
else
SetError( errIllegalArgument);
}
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
2000-09-18 23:16:46 +00:00
{
double x = pMat->GetDouble(i);
2000-09-18 23:16:46 +00:00
if (x > 0.0)
{
nVal += 1.0/x;
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
}
if (nGlobalError == 0)
PushDouble((double)nValCount/nVal);
else
PushInt(0);
2000-09-18 23:16:46 +00:00
}
void ScInterpreter::ScGeoMean()
{
BYTE nParamCount = GetByte();
double nVal = 0.0;
double nValCount = 0.0;
2000-09-18 23:16:46 +00:00
ScAddress aAdr;
ScRange aRange;
2000-09-18 23:16:46 +00:00
for (short i = 0; i < nParamCount && (nGlobalError == 0); i++)
{
switch (GetStackType())
{
case svDouble :
{
double x = GetDouble();
if (x > 0.0)
{
nVal += log(x);
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
break;
}
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
double x = GetCellValue( aAdr, pCell );
if (x > 0.0)
{
nVal += log(x);
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
break;
}
case svDoubleRef :
{
USHORT nErr = 0;
PopDoubleRef( aRange );
double nCellVal;
ScValueIterator aValIter(pDok, aRange, glSubTotal);
if (aValIter.GetFirst(nCellVal, nErr))
{
if (nCellVal > 0.0)
{
nVal += log(nCellVal);
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr))
{
if (nCellVal > 0.0)
{
nVal += log(nCellVal);
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE ui = 0; ui < nCount; ui++)
{
double x = pMat->GetDouble(ui);
if (x > 0.0)
{
nVal += log(x);
nValCount++;
}
else
SetError( errIllegalArgument);
}
}
else
{
for (SCSIZE ui = 0; ui < nCount; ui++)
if (!pMat->IsString(ui))
2000-09-18 23:16:46 +00:00
{
double x = pMat->GetDouble(ui);
2000-09-18 23:16:46 +00:00
if (x > 0.0)
{
nVal += log(x);
nValCount++;
2000-09-18 23:16:46 +00:00
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
}
if (nGlobalError == 0)
PushDouble(exp(nVal / nValCount));
else
PushInt(0);
2000-09-18 23:16:46 +00:00
}
void ScInterpreter::ScStandard()
{
if ( MustHaveParamCount( GetByte(), 3 ) )
{
double sigma = GetDouble();
double mue = GetDouble();
double x = GetDouble();
if (sigma <= 0.0)
SetIllegalArgument();
else
PushDouble((x-mue)/sigma);
}
}
void ScInterpreter::ScSkew()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCountMin( nParamCount, 1 ) )
return;
USHORT i;
double fSum = 0.0;
double vSum = 0.0;
std::vector<double> values;
2000-09-18 23:16:46 +00:00
double fCount = 0.0;
double fVal = 0.0;
2000-09-18 23:16:46 +00:00
ScAddress aAdr;
ScRange aRange;
for (i = 0; i < nParamCount; i++)
{
switch (GetStackType())
{
case svDouble :
{
fVal = GetDouble();
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
fVal = GetCellValue( aAdr, pCell );
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
}
break;
case svDoubleRef :
{
PopDoubleRef( aRange );
USHORT nErr = 0;
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(fVal, nErr))
{
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(fVal, nErr))
{
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
fVal = pMat->GetDouble(i);
fSum += fVal;
values.push_back(fVal);
fCount++;
}
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
2000-09-18 23:16:46 +00:00
{
fVal = pMat->GetDouble(i);
2000-09-18 23:16:46 +00:00
fSum += fVal;
values.push_back(fVal);
2000-09-18 23:16:46 +00:00
fCount++;
}
}
}
}
break;
default :
SetError(errIllegalParameter);
break;
}
}
2000-09-18 23:16:46 +00:00
if (nGlobalError)
{
PushInt(0);
return;
}
2000-09-18 23:16:46 +00:00
double fMean = fSum / fCount;
for (i = 0; i < values.size(); i++)
vSum += (values[i] - fMean) * (values[i] - fMean);
double fStdDev = sqrt(vSum / (fCount - 1.0));
double dx = 0.0;
double xcube = 0.0;
if (fStdDev == 0)
2000-09-18 23:16:46 +00:00
{
SetError(errIllegalArgument);
return;
2000-09-18 23:16:46 +00:00
}
for (i = 0; i < values.size(); i++)
{
dx = (values[i] - fMean) / fStdDev;
xcube = xcube + (dx * dx * dx);
}
PushDouble(((xcube * fCount) / (fCount - 1.0)) / (fCount - 2.0));
2000-09-18 23:16:46 +00:00
}
void ScInterpreter::ScMedian()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCountMin( nParamCount, 1 ) )
return;
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(nParamCount, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
if (nSize % 2 == 0)
PushDouble((pSortArray[nSize/2-1]+pSortArray[nSize/2])/2.0);
2000-09-18 23:16:46 +00:00
else
PushDouble(pSortArray[(nSize-1)/2]);
2000-09-18 23:16:46 +00:00
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScPercentile()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double alpha = GetDouble();
if (alpha < 0.0 || alpha > 1.0)
{
SetIllegalArgument();
return;
}
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
if (nSize == 1)
PushDouble(pSortArray[0]);
2000-09-18 23:16:46 +00:00
else
{
SCSIZE nIndex = (SCSIZE)::rtl::math::approxFloor(alpha*(nSize-1));
double fDiff = alpha*(nSize-1) - ::rtl::math::approxFloor(alpha*(nSize-1));
2000-09-18 23:16:46 +00:00
DBG_ASSERT(nIndex >= 0 && nIndex < nSize, "ScPercentile: falscher Index (1)");
if (fDiff == 0.0)
PushDouble(pSortArray[nIndex]);
2000-09-18 23:16:46 +00:00
else
{
DBG_ASSERT(nIndex < nSize-1, "ScPercentile: falscher Index(2)");
PushDouble(pSortArray[nIndex] +
fDiff*(pSortArray[nIndex+1]-pSortArray[nIndex]));
2000-09-18 23:16:46 +00:00
}
}
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScQuartile()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double fFlag = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (fFlag < 0.0 || fFlag > 4.0)
{
SetIllegalArgument();
return;
}
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
if (nSize == 1)
PushDouble(pSortArray[0]);
2000-09-18 23:16:46 +00:00
else
{
if (fFlag == 0.0)
PushDouble(pSortArray[0]);
2000-09-18 23:16:46 +00:00
else if (fFlag == 1.0)
{
SCSIZE nIndex = (SCSIZE)::rtl::math::approxFloor(0.25*(nSize-1));
double fDiff = 0.25*(nSize-1) - ::rtl::math::approxFloor(0.25*(nSize-1));
2000-09-18 23:16:46 +00:00
DBG_ASSERT(nIndex >= 0 && nIndex < nSize, "ScQuartile: falscher Index (1)");
if (fDiff == 0.0)
PushDouble(pSortArray[nIndex]);
2000-09-18 23:16:46 +00:00
else
{
DBG_ASSERT(nIndex < nSize-1, "ScQuartile: falscher Index(2)");
PushDouble(pSortArray[nIndex] +
fDiff*(pSortArray[nIndex+1]-pSortArray[nIndex]));
2000-09-18 23:16:46 +00:00
}
}
else if (fFlag == 2.0)
{
if (nSize % 2 == 0)
PushDouble((pSortArray[nSize/2-1]+pSortArray[nSize/2])/2.0);
2000-09-18 23:16:46 +00:00
else
PushDouble(pSortArray[(nSize-1)/2]);
2000-09-18 23:16:46 +00:00
}
else if (fFlag == 3.0)
{
SCSIZE nIndex = (SCSIZE)::rtl::math::approxFloor(0.75*(nSize-1));
double fDiff = 0.75*(nSize-1) - ::rtl::math::approxFloor(0.75*(nSize-1));
2000-09-18 23:16:46 +00:00
DBG_ASSERT(nIndex >= 0 && nIndex < nSize, "ScQuartile: falscher Index (3)");
if (fDiff == 0.0)
PushDouble(pSortArray[nIndex]);
2000-09-18 23:16:46 +00:00
else
{
DBG_ASSERT(nIndex < nSize-1, "ScQuartile: falscher Index(4)");
PushDouble(pSortArray[nIndex] +
fDiff*(pSortArray[nIndex+1]-pSortArray[nIndex]));
2000-09-18 23:16:46 +00:00
}
}
else
PushDouble(pSortArray[nSize-1]);
2000-09-18 23:16:46 +00:00
}
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScModalValue()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCountMin( nParamCount, 1 ) )
return;
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(nParamCount, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
SCSIZE nMaxIndex, nMax = 1, nCount = 1;
double nOldVal = pSortArray[0];
SCSIZE i;
for ( i = 1; i < nSize; i++)
2000-09-18 23:16:46 +00:00
{
if (pSortArray[i] == nOldVal)
2000-09-18 23:16:46 +00:00
nCount++;
else
{
nOldVal = pSortArray[i];
2000-09-18 23:16:46 +00:00
if (nCount > nMax)
{
nMax = nCount;
nMaxIndex = i-1;
}
nCount = 1;
}
}
if (nCount > nMax)
{
nMax = nCount;
nMaxIndex = i-1;
}
if (nMax == 1 && nCount == 1)
SetNoValue();
else if (nMax == 1)
PushDouble(nOldVal);
else
PushDouble(pSortArray[nMaxIndex]);
2000-09-18 23:16:46 +00:00
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScLarge()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double f = ::rtl::math::approxFloor(GetDouble());
if (f < 1.0)
2000-09-18 23:16:46 +00:00
{
SetIllegalArgument();
return;
}
SCSIZE k = static_cast<SCSIZE>(f);
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError || nSize < k)
SetNoValue();
else
{
#if 0
2000-09-18 23:16:46 +00:00
/*
SCSIZE nCount = 1;
double nOldVal = pSortArray[nSize-1];
2000-09-18 23:16:46 +00:00
for (long i = nSize-2; i >= 0 && nCount < k; i--)
{
if (pSortArray[i] != nOldVal)
2000-09-18 23:16:46 +00:00
{
nCount++;
nOldVal = pSortArray[i];
2000-09-18 23:16:46 +00:00
}
}
if (nCount < k)
SetNoValue();
else
PushDouble(nOldVal);
*/
#endif
PushDouble( pSortArray[ nSize-k ] );
2000-09-18 23:16:46 +00:00
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScSmall()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double f = ::rtl::math::approxFloor(GetDouble());
if (f < 1.0)
2000-09-18 23:16:46 +00:00
{
SetIllegalArgument();
return;
}
SCSIZE k = static_cast<SCSIZE>(f);
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError || nSize < k)
SetNoValue();
else
{
#if 0
2000-09-18 23:16:46 +00:00
/*
SCSIZE nCount = 1;
double nOldVal = pSortArray[0];
for (SCSIZE i = 1; i < nSize && nCount < k; i++)
2000-09-18 23:16:46 +00:00
{
if (pSortArray[i] != nOldVal)
2000-09-18 23:16:46 +00:00
{
nCount++;
nOldVal = pSortArray[i];
2000-09-18 23:16:46 +00:00
}
}
if (nCount < k)
SetNoValue();
else
PushDouble(nOldVal);
*/
#endif
PushDouble( pSortArray[ k-1 ] );
2000-09-18 23:16:46 +00:00
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScPercentrank()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 2 ) )
return;
#if 0
2000-09-18 23:16:46 +00:00
/* wird nicht unterstuetzt
double fPrec;
if (nParamCount == 3)
{
fPrec = ::rtl::math::approxFloor(GetDouble());
2000-09-18 23:16:46 +00:00
if (fPrec < 1.0)
{
SetIllegalArgument();
return;
}
}
else
fPrec = 3.0;
*/
#endif
2000-09-18 23:16:46 +00:00
double fNum = GetDouble();
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
if (fNum < pSortArray[0] || fNum > pSortArray[nSize-1])
2000-09-18 23:16:46 +00:00
SetNoValue();
else if ( nSize == 1 )
PushDouble(1.0); // fNum == pSortArray[0], see test above
2000-09-18 23:16:46 +00:00
else
{
double fRes;
SCSIZE nOldCount = 0;
double fOldVal = pSortArray[0];
SCSIZE i;
for (i = 1; i < nSize && pSortArray[i] < fNum; i++)
2000-09-18 23:16:46 +00:00
{
if (pSortArray[i] != fOldVal)
2000-09-18 23:16:46 +00:00
{
nOldCount = i;
fOldVal = pSortArray[i];
2000-09-18 23:16:46 +00:00
}
}
if (pSortArray[i] != fOldVal)
2000-09-18 23:16:46 +00:00
nOldCount = i;
if (fNum == pSortArray[i])
2000-09-18 23:16:46 +00:00
fRes = (double)nOldCount/(double)(nSize-1);
else
{
// #75312# nOldCount is the count of smaller entries
// fNum is between pSortArray[nOldCount-1] and pSortArray[nOldCount]
2000-09-18 23:16:46 +00:00
// use linear interpolation to find a position between the entries
if ( nOldCount == 0 )
{
DBG_ERROR("should not happen");
fRes = 0.0;
}
else
{
double fFract = ( fNum - pSortArray[nOldCount-1] ) /
( pSortArray[nOldCount] - pSortArray[nOldCount-1] );
2000-09-18 23:16:46 +00:00
fRes = ( (double)(nOldCount-1)+fFract )/(double)(nSize-1);
}
}
PushDouble(fRes);
}
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::ScTrimMean()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
double alpha = GetDouble();
if (alpha < 0.0 || alpha >= 1.0)
{
SetIllegalArgument();
return;
}
double* pSortArray = NULL;
SCSIZE nSize = 0;
2000-09-18 23:16:46 +00:00
GetSortArray(1, &pSortArray, nSize);
if (!pSortArray || nSize == 0 || nGlobalError)
SetNoValue();
else
{
ULONG nIndex = (ULONG) ::rtl::math::approxFloor(alpha*(double)nSize);
2000-09-18 23:16:46 +00:00
if (nIndex % 2 != 0)
nIndex--;
nIndex /= 2;
DBG_ASSERT(nIndex >= 0 && nIndex < nSize, "ScTrimMean: falscher Index");
double fSum = 0.0;
for (SCSIZE i = nIndex; i < nSize-nIndex; i++)
fSum += pSortArray[i];
2000-09-18 23:16:46 +00:00
PushDouble(fSum/(double)(nSize-2*nIndex));
}
if (pSortArray)
delete [] pSortArray;
}
void ScInterpreter::GetSortArray(BYTE nParamCount, double** ppSortArray, SCSIZE& nSize)
2000-09-18 23:16:46 +00:00
{
*ppSortArray = NULL;
nSize = 0;
USHORT SaveSP = sp;
SCSIZE rValCount = 0;
2000-09-18 23:16:46 +00:00
ScAddress aAdr;
ScRange aRange;
BYTE nParam;
for (nParam = 0; nParam < nParamCount; nParam++)
2000-09-18 23:16:46 +00:00
{
switch (GetStackType())
{
case svDouble :
PopDouble();
2000-09-18 23:16:46 +00:00
rValCount++;
break;
2000-09-18 23:16:46 +00:00
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
rValCount++;
}
break;
case svDoubleRef :
{
PopDoubleRef( aRange );
USHORT nErr = 0;
double nCellVal;
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(nCellVal, nErr))
{
rValCount++;
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr))
rValCount++;
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
rValCount += nCount;
2000-09-18 23:16:46 +00:00
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
rValCount++;
2000-09-18 23:16:46 +00:00
}
}
}
break;
default :
SetError(errIllegalParameter);
break;
}
}
if (rValCount > MAX_ANZ_DOUBLE_FOR_SORT || nGlobalError)
{
SetError(errStackOverflow);
return;
}
else if (rValCount == 0)
{
SetNoValue();
return;
}
*ppSortArray = new double[rValCount];
double* pSortArray = *ppSortArray;
2000-09-18 23:16:46 +00:00
if (!*ppSortArray)
{
rValCount = 0;
SetError(errStackOverflow);
return;
}
sp = SaveSP;
SCSIZE nIndex = 0;
for (nParam = 0; nParam < nParamCount; nParam++)
2000-09-18 23:16:46 +00:00
{
switch (GetStackType())
{
case svDouble :
pSortArray[nIndex] = GetDouble();
2000-09-18 23:16:46 +00:00
nIndex++;
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
pSortArray[nIndex] = GetCellValue( aAdr, pCell );
2000-09-18 23:16:46 +00:00
nIndex++;
}
}
break;
case svDoubleRef :
{
PopDoubleRef( aRange );
USHORT nErr;
double nCellVal;
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(nCellVal, nErr))
{
pSortArray[nIndex] = nCellVal;
2000-09-18 23:16:46 +00:00
nIndex++;
while (aValIter.GetNext(nCellVal, nErr))
{
pSortArray[nIndex] = nCellVal;
2000-09-18 23:16:46 +00:00
nIndex++;
}
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
pSortArray[nIndex] = pMat->GetDouble(i);
nIndex++;
}
2000-09-18 23:16:46 +00:00
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
2000-09-18 23:16:46 +00:00
{
pSortArray[nIndex] = pMat->GetDouble(i);
2000-09-18 23:16:46 +00:00
nIndex++;
}
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
}
DBG_ASSERT(nIndex == rValCount,"nIndex != rValCount");
if (nGlobalError == 0)
{
double fVal;
SCSIZE nInd;
for (SCSIZE i = 0; (i + 4) <= rValCount-1; i += 4)
2000-09-18 23:16:46 +00:00
{
nInd = rand() % (int) (rValCount-1);
fVal = pSortArray[i];
pSortArray[i] = pSortArray[nInd];
pSortArray[nInd] = fVal;
2000-09-18 23:16:46 +00:00
}
QuickSort(0, static_cast<long>(rValCount)-1, pSortArray);
2000-09-18 23:16:46 +00:00
}
nSize = rValCount;
}
void ScInterpreter::QuickSort(long nLo, long nHi, double* pSortArray)
{
if (nHi - nLo == 1)
{
if (pSortArray[nLo] > pSortArray[nHi])
2000-09-18 23:16:46 +00:00
{
double fVal;
fVal = pSortArray[nLo];
pSortArray[nLo] = pSortArray[nHi];
pSortArray[nHi] = fVal;
2000-09-18 23:16:46 +00:00
}
}
else
{
long ni = nLo;
long nj = nHi;
do
{
while (ni <= nHi && pSortArray[ni] < pSortArray[nLo]) ni++;
while (nj >= nLo && pSortArray[nLo] < pSortArray[nj]) nj--;
2000-09-18 23:16:46 +00:00
if (ni <= nj)
{
if (ni != nj)
{
double fVal;
fVal = pSortArray[ni];
pSortArray[ni] = pSortArray[nj];
pSortArray[nj] = fVal;
2000-09-18 23:16:46 +00:00
}
ni++;
nj--;
}
}
while (ni < nj);
if ((nj - nLo) < (nHi - ni))
{
if (nLo < nj) QuickSort(nLo, nj, pSortArray);
if (ni < nHi) QuickSort(ni, nHi, pSortArray);
}
else
{
if (ni < nHi) QuickSort(ni, nHi, pSortArray);
if (nLo < nj) QuickSort(nLo, nj, pSortArray);
}
}
}
void ScInterpreter::ScRank()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 2, 3 ) )
return;
BOOL bDescending;
if (nParamCount == 3)
bDescending = GetBool();
else
bDescending = FALSE;
double fCount = 1.0;
BOOL bValid = FALSE;
switch (GetStackType())
{
case svDouble :
{
double x = GetDouble();
double fVal = GetDouble();
if (x == fVal)
bValid = TRUE;
break;
}
case svSingleRef :
{
ScAddress aAdr;
PopSingleRef( aAdr );
double fVal = GetDouble();
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
double x = GetCellValue( aAdr, pCell );
if (x == fVal)
bValid = TRUE;
}
break;
}
case svDoubleRef :
{
ScRange aRange;
USHORT nErr = 0;
PopDoubleRef( aRange );
double fVal = GetDouble();
double nCellVal;
ScValueIterator aValIter(pDok, aRange, glSubTotal);
if (aValIter.GetFirst(nCellVal, nErr))
{
if (nCellVal == fVal)
bValid = TRUE;
else if ((!bDescending && nCellVal > fVal) ||
(bDescending && nCellVal < fVal) )
fCount++;
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr))
{
if (nCellVal == fVal)
bValid = TRUE;
else if ((!bDescending && nCellVal > fVal) ||
(bDescending && nCellVal < fVal) )
fCount++;
}
}
SetError(nErr);
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
double fVal = GetDouble();
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
double x = pMat->GetDouble(i);
if (x == fVal)
bValid = TRUE;
else if ((!bDescending && x > fVal) ||
(bDescending && x < fVal) )
fCount++;
}
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
2000-09-18 23:16:46 +00:00
{
double x = pMat->GetDouble(i);
2000-09-18 23:16:46 +00:00
if (x == fVal)
bValid = TRUE;
else if ((!bDescending && x > fVal) ||
(bDescending && x < fVal) )
2000-09-18 23:16:46 +00:00
fCount++;
}
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
if (bValid)
PushDouble(fCount);
else
SetNoValue();
}
void ScInterpreter::ScAveDev()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCountMin( nParamCount, 1 ) )
return;
USHORT SaveSP = sp;
USHORT i;
double nMiddle = 0.0;
double rVal = 0.0;
double rValCount = 0.0;
ScAddress aAdr;
ScRange aRange;
for (i = 0; i < nParamCount; i++)
{
switch (GetStackType())
{
case svDouble :
rVal += GetDouble();
rValCount++;
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
{
rVal += GetCellValue( aAdr, pCell );
rValCount++;
}
}
break;
case svDoubleRef :
{
USHORT nErr = 0;
double nCellVal;
PopDoubleRef( aRange );
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(nCellVal, nErr))
{
rVal += nCellVal;
rValCount++;
SetError(nErr);
while ((nErr == 0) && aValIter.GetNext(nCellVal, nErr))
{
rVal += nCellVal;
rValCount++;
}
SetError(nErr);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
rVal += pMat->GetDouble(i);
rValCount++;
}
2000-09-18 23:16:46 +00:00
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
if (!pMat->IsString(i))
{
rVal += pMat->GetDouble(i);
rValCount++;
}
2000-09-18 23:16:46 +00:00
}
}
}
break;
default :
SetError(errIllegalParameter);
break;
}
}
if (nGlobalError)
{
PushInt(0);
return;
}
nMiddle = rVal / rValCount;
sp = SaveSP;
rVal = 0.0;
for (i = 0; i < nParamCount; i++)
{
switch (GetStackType())
{
case svDouble :
rVal += fabs(GetDouble() - nMiddle);
break;
case svSingleRef :
{
PopSingleRef( aAdr );
ScBaseCell* pCell = GetCell( aAdr );
if (HasCellValueData(pCell))
rVal += fabs(GetCellValue( aAdr, pCell ) - nMiddle);
}
break;
case svDoubleRef :
{
USHORT nErr = 0;
double nCellVal;
PopDoubleRef( aRange );
ScValueIterator aValIter(pDok, aRange);
if (aValIter.GetFirst(nCellVal, nErr))
{
rVal += (fabs(nCellVal - nMiddle));
while (aValIter.GetNext(nCellVal, nErr))
rVal += fabs(nCellVal - nMiddle);
}
}
break;
case svMatrix :
{
ScMatrixRef pMat = PopMatrix();
2000-09-18 23:16:46 +00:00
if (pMat)
{
SCSIZE nCount = pMat->GetElementCount();
2000-09-18 23:16:46 +00:00
if (pMat->IsNumeric())
{
for (SCSIZE i = 0; i < nCount; i++)
{
rVal += fabs(pMat->GetDouble(i) - nMiddle);
}
2000-09-18 23:16:46 +00:00
}
else
{
for (SCSIZE i = 0; i < nCount; i++)
{
if (!pMat->IsString(i))
rVal += fabs(pMat->GetDouble(i) - nMiddle);
}
2000-09-18 23:16:46 +00:00
}
}
}
break;
default : SetError(errIllegalParameter); break;
}
}
PushDouble(rVal / rValCount);
}
void ScInterpreter::ScDevSq()
{
double nVal;
double nValCount;
GetStVarParams(nVal, nValCount);
PushDouble(nVal);
}
void ScInterpreter::ScProbability()
{
BYTE nParamCount = GetByte();
if ( !MustHaveParamCount( nParamCount, 3, 4 ) )
return;
double fUp, fLo;
fUp = GetDouble();
if (nParamCount == 4)
fLo = GetDouble();
else
fLo = fUp;
if (fLo > fUp)
{
double fTemp = fLo;
fLo = fUp;
fUp = fTemp;
}
ScMatrixRef pMatP = GetMatrix();
ScMatrixRef pMatW = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMatP || !pMatW)
SetIllegalParameter();
else
{
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMatP->GetDimensions(nC1, nR1);
pMatW->GetDimensions(nC2, nR2);
if (nC1 != nC2 || nR1 != nR2 || nC1 == 0 || nR1 == 0 ||
nC2 == 0 || nR2 == 0)
SetNV();
else
{
double fSum = 0.0;
double fRes = 0.0;
BOOL bStop = FALSE;
double fP, fW;
SCSIZE nCount1 = nC1 * nR1;
for ( SCSIZE i = 0; i < nCount1 && !bStop; i++ )
2000-09-18 23:16:46 +00:00
{
if (pMatP->IsValue(i) && pMatW->IsValue(i))
{
fP = pMatP->GetDouble(i);
fW = pMatW->GetDouble(i);
if (fP < 0.0 || fP > 1.0)
bStop = TRUE;
else
{
fSum += fP;
if (fW >= fLo && fW <= fUp)
fRes += fP;
}
}
else
SetError( errIllegalArgument);
2000-09-18 23:16:46 +00:00
}
if (bStop || fabs(fSum -1.0) > 1.0E-7)
SetNoValue();
else
PushDouble(fRes);
}
}
}
void ScInterpreter::ScCorrel()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumSqrY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumSqrY += fValY * fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 2.0)
SetNoValue();
else
PushDouble( (fSumXY-fSumX*fSumY/fCount)/
sqrt((fSumSqrX-fSumX*fSumX/fCount)*
(fSumSqrY-fSumY*fSumY/fCount)));
}
void ScInterpreter::ScCovar()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumY += fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 1.0)
SetNoValue();
else
PushDouble( (fSumXY-fSumX*fSumY/fCount)/fCount);
}
void ScInterpreter::ScPearson()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumSqrY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumSqrY += fValY * fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 2.0)
SetNoValue();
else
PushDouble( (fCount*fSumXY-fSumX*fSumY)/
sqrt((fCount*fSumSqrX-fSumX*fSumX)*
(fCount*fSumSqrY-fSumY*fSumY)));
}
void ScInterpreter::ScRSQ()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumSqrY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumSqrY += fValY * fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 2.0)
SetNoValue();
else
PushDouble( (fCount*fSumXY-fSumX*fSumY)*(fCount*fSumXY-fSumX*fSumY)/
(fCount*fSumSqrX-fSumX*fSumX)/(fCount*fSumSqrY-fSumY*fSumY));
}
void ScInterpreter::ScSTEXY()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumSqrY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumSqrY += fValY * fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 3.0)
SetNoValue();
else
PushDouble(sqrt((fCount*fSumSqrY - fSumY*fSumY -
(fCount*fSumXY -fSumX*fSumY)*(fCount*fSumXY -fSumX*fSumY)/
(fCount*fSumSqrX-fSumX*fSumX) )/(fCount*(fCount-2.0))));
}
void ScInterpreter::ScSlope()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 1.0)
SetNoValue();
else
PushDouble( (fCount*fSumXY-fSumX*fSumY)/
(fCount*fSumSqrX-fSumX*fSumX) );
}
void ScInterpreter::ScIntercept()
{
if ( !MustHaveParamCount( GetByte(), 2 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 1.0)
SetNoValue();
else
PushDouble( fSumY/fCount - (fCount*fSumXY-fSumX*fSumY)/
(fCount*fSumSqrX-fSumX*fSumX)*fSumX/fCount );
}
void ScInterpreter::ScForecast()
{
if ( !MustHaveParamCount( GetByte(), 3 ) )
return;
ScMatrixRef pMat1 = GetMatrix();
ScMatrixRef pMat2 = GetMatrix();
2000-09-18 23:16:46 +00:00
if (!pMat1 || !pMat2)
{
SetIllegalParameter();
return;
}
SCSIZE nC1, nC2;
SCSIZE nR1, nR2;
2000-09-18 23:16:46 +00:00
pMat1->GetDimensions(nC1, nR1);
pMat2->GetDimensions(nC2, nR2);
if (nR1 != nR2 || nC1 != nC2)
{
SetIllegalParameter();
return;
}
double fVal = GetDouble();
double fCount = 0.0;
double fSumX = 0.0;
double fSumSqrX = 0.0;
double fSumY = 0.0;
double fSumXY = 0.0;
double fValX, fValY;
for (SCSIZE i = 0; i < nC1; i++)
for (SCSIZE j = 0; j < nR1; j++)
2000-09-18 23:16:46 +00:00
{
if (!pMat1->IsString(i,j) && !pMat2->IsString(i,j))
{
fValX = pMat1->GetDouble(i,j);
fValY = pMat2->GetDouble(i,j);
fSumX += fValX;
fSumSqrX += fValX * fValX;
fSumY += fValY;
fSumXY += fValX*fValY;
fCount++;
}
}
if (fCount < 1.0)
SetNoValue();
else
PushDouble( fSumY/fCount + (fCount*fSumXY-fSumX*fSumY)/
(fCount*fSumSqrX-fSumX*fSumX) * (fVal - fSumX/fCount) );
}