Files
libreoffice/vcl/opengl/gdiimpl.cxx

2117 lines
62 KiB
C++
Raw Normal View History

/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
/*
* This file is part of the LibreOffice project.
*
* This Source Code Form is subject to the terms of the Mozilla Public
* License, v. 2.0. If a copy of the MPL was not distributed with this
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
*
* This file incorporates work covered by the following license notice:
*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed
* with this work for additional information regarding copyright
* ownership. The ASF licenses this file to you under the Apache
* License, Version 2.0 (the "License"); you may not use this file
* except in compliance with the License. You may obtain a copy of
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
*/
#include "openglgdiimpl.hxx"
#include <vcl/gradient.hxx>
#include <salframe.hxx>
#include "salvd.hxx"
#include <basegfx/matrix/b2dhommatrixtools.hxx>
#include <basegfx/polygon/b2dlinegeometry.hxx>
#include <basegfx/polygon/b2dpolygontools.hxx>
#include <basegfx/polygon/b2dpolygontriangulator.hxx>
#include <basegfx/polygon/b2dpolypolygoncutter.hxx>
#include <basegfx/polygon/b2dtrapezoid.hxx>
#include <vcl/opengl/OpenGLHelper.hxx>
#include "salgdi.hxx"
#include "svdata.hxx"
#include "opengl/zone.hxx"
#include "opengl/salbmp.hxx"
#include <vector>
#include <stdlib.h>
class OpenGLFlushIdle : public Idle
{
OpenGLSalGraphicsImpl *m_pImpl;
public:
explicit OpenGLFlushIdle( OpenGLSalGraphicsImpl *pImpl )
: Idle( "gl idle swap" )
, m_pImpl( pImpl )
{
// We don't want to be swapping before we've painted.
SetPriority( SchedulerPriority::POST_PAINT );
}
virtual ~OpenGLFlushIdle()
{
}
virtual void Invoke() override
{
m_pImpl->doFlush();
SetPriority( SchedulerPriority::HIGHEST );
Stop();
}
};
OpenGLSalGraphicsImpl::OpenGLSalGraphicsImpl(SalGraphics& rParent, SalGeometryProvider *pProvider)
: mpContext(nullptr)
, mrParent(rParent)
, mpProvider(pProvider)
, mpProgram(nullptr)
, mpFlush(new OpenGLFlushIdle(this))
, mbUseScissor(false)
, mbUseStencil(false)
, mbXORMode(false)
, mnLineColor(SALCOLOR_NONE)
, mnFillColor(SALCOLOR_NONE)
#ifdef DBG_UTIL
, mProgramIsSolidColor(false)
#endif
, mnDrawCount(0)
, mnDrawCountAtFlush(0)
, mProgramSolidColor(SALCOLOR_NONE)
, mProgramSolidTransparency(0.0)
{
}
OpenGLSalGraphicsImpl::~OpenGLSalGraphicsImpl()
{
if( !IsOffscreen() && mnDrawCountAtFlush != mnDrawCount )
VCL_GL_INFO( "Destroying un-flushed on-screen graphics" );
delete mpFlush;
ReleaseContext();
}
rtl::Reference<OpenGLContext> OpenGLSalGraphicsImpl::GetOpenGLContext()
{
if( !AcquireContext(true) )
return nullptr;
return mpContext;
}
bool OpenGLSalGraphicsImpl::AcquireContext( bool bForceCreate )
{
mpContext = OpenGLContext::getVCLContext( false );
if( !mpContext.is() && mpWindowContext.is() )
{
mpContext = mpWindowContext;
}
else if( bForceCreate && !IsOffscreen() )
{
mpWindowContext = CreateWinContext();
mpContext = mpWindowContext;
}
if( !mpContext.is() )
mpContext = OpenGLContext::getVCLContext();
return mpContext.is();
}
bool OpenGLSalGraphicsImpl::ReleaseContext()
{
mpContext.clear();
return true;
}
void OpenGLSalGraphicsImpl::Init()
{
// Our init phase is strange ::Init is called twice for vdevs.
// the first time around with a NULL geometry provider.
if( !mpProvider )
return;
// check if we can simply re-use the same context
if( mpContext.is() )
{
if( !UseContext( mpContext ) )
ReleaseContext();
}
// Always create the offscreen texture
if( maOffscreenTex.GetWidth() != GetWidth() ||
maOffscreenTex.GetHeight() != GetHeight() )
{
if( maOffscreenTex && // don't work to release empty textures
mpContext.is() ) // valid context
{
mpContext->makeCurrent();
mpContext->ReleaseFramebuffer( maOffscreenTex );
}
maOffscreenTex = OpenGLTexture();
VCL_GL_INFO("::Init - re-size offscreen texture");
}
if( mpWindowContext.is() )
{
mpWindowContext->reset();
mpWindowContext.clear();
}
}
// Currently only used to get windows ordering right.
void OpenGLSalGraphicsImpl::DeInit()
{
// tdf#93839:
// Our window handles and resources are being free underneath us.
// These can be bound into a context, which relies on them. So
// let it know. Other eg. VirtualDevice contexts which have
// references on and rely on this context continuing to work will
// get a shiny new context in AcquireContext:: next PreDraw.
if( mpWindowContext.is() )
{
mpWindowContext->reset();
mpWindowContext.clear();
}
mpContext.clear();
}
void OpenGLSalGraphicsImpl::PreDraw(XOROption eOpt)
{
OpenGLZone::enter();
mnDrawCount++;
if( !AcquireContext() )
{
SAL_WARN( "vcl.opengl", "Couldn't acquire context" );
return;
}
mpContext->makeCurrent();
CHECK_GL_ERROR();
CheckOffscreenTexture();
CHECK_GL_ERROR();
glViewport( 0, 0, GetWidth(), GetHeight() );
CHECK_GL_ERROR();
ImplInitClipRegion();
CHECK_GL_ERROR();
if (eOpt == IMPLEMENT_XOR && mbXORMode)
{
glEnable(GL_COLOR_LOGIC_OP);
CHECK_GL_ERROR();
glLogicOp(GL_XOR);
}
}
void OpenGLSalGraphicsImpl::PostDraw()
{
if (mbXORMode)
{
glDisable(GL_COLOR_LOGIC_OP);
CHECK_GL_ERROR();
}
if( mbUseScissor )
{
glDisable( GL_SCISSOR_TEST );
CHECK_GL_ERROR();
}
if( mbUseStencil )
{
glDisable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
}
if( mpProgram )
{
mpProgram->Clean();
mpProgram = nullptr;
#ifdef DBG_UTIL
mProgramIsSolidColor = false;
#endif
}
assert (maOffscreenTex);
// Always queue the flush.
if( !IsOffscreen() )
flush();
OpenGLZone::leave();
}
void OpenGLSalGraphicsImpl::ApplyProgramMatrices(float fPixelOffset)
{
mpProgram->ApplyMatrix(GetWidth(), GetHeight(), fPixelOffset);
}
void OpenGLSalGraphicsImpl::freeResources()
{
// TODO Delete shaders, programs and textures if not shared
if( mpContext.is() && mpContext->isInitialized() )
{
VCL_GL_INFO( "freeResources" );
mpContext->makeCurrent();
mpContext->ReleaseFramebuffer( maOffscreenTex );
}
ReleaseContext();
}
void OpenGLSalGraphicsImpl::ImplSetClipBit( const vcl::Region& rClip, GLuint nMask )
{
glEnable( GL_STENCIL_TEST );
VCL_GL_INFO( "Adding complex clip / stencil" );
GLuint nStencil = maOffscreenTex.StencilId();
if( nStencil == 0 )
{
nStencil = maOffscreenTex.AddStencil();
glFramebufferRenderbuffer(
GL_FRAMEBUFFER, GL_STENCIL_ATTACHMENT,
GL_RENDERBUFFER, nStencil );
CHECK_GL_ERROR();
}
// else - we associated the stencil in
// AcquireFrameBuffer / AttachTexture
CHECK_GL_ERROR();
glColorMask( GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE );
CHECK_GL_ERROR();
glStencilMask( nMask );
CHECK_GL_ERROR();
glStencilFunc( GL_NEVER, nMask, 0xFF );
CHECK_GL_ERROR();
glStencilOp( GL_REPLACE, GL_KEEP, GL_KEEP );
CHECK_GL_ERROR();
glClear( GL_STENCIL_BUFFER_BIT );
CHECK_GL_ERROR();
if( UseSolid( MAKE_SALCOLOR( 0xFF, 0xFF, 0xFF ) ) )
{
if( rClip.getRegionBand() )
DrawRegionBand( *rClip.getRegionBand() );
else
DrawPolyPolygon( rClip.GetAsB2DPolyPolygon(), true );
}
glColorMask( GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE );
CHECK_GL_ERROR();
glStencilMask( 0x00 );
CHECK_GL_ERROR();
glDisable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
}
void OpenGLSalGraphicsImpl::ImplInitClipRegion()
{
// make sure the context has the right clipping set
if( maClipRegion != mpContext->maClipRegion )
{
mpContext->maClipRegion = maClipRegion;
if( mbUseScissor )
{
Rectangle aRect( maClipRegion.GetBoundRect() );
glScissor( aRect.Left(), GetHeight() - aRect.Bottom() - 1, aRect.GetWidth(), aRect.GetHeight() );
CHECK_GL_ERROR();
}
else if( !maClipRegion.IsEmpty() )
{
ImplSetClipBit( maClipRegion, 0x01 );
}
}
if( mbUseScissor )
{
glEnable( GL_SCISSOR_TEST );
CHECK_GL_ERROR();
}
if( mbUseStencil )
{
glStencilFunc( GL_EQUAL, 1, 0x1 );
CHECK_GL_ERROR();
glEnable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
}
}
const vcl::Region& OpenGLSalGraphicsImpl::getClipRegion() const
{
return maClipRegion;
}
bool OpenGLSalGraphicsImpl::setClipRegion( const vcl::Region& rClip )
{
VCL_GL_INFO( "::setClipRegion " << rClip );
maClipRegion = rClip;
mbUseStencil = false;
mbUseScissor = false;
if( maClipRegion.IsRectangle() )
mbUseScissor = true;
else if ( !maClipRegion.IsEmpty() )
mbUseStencil = true;
return true;
}
// set the clip region to empty
void OpenGLSalGraphicsImpl::ResetClipRegion()
{
VCL_GL_INFO( "::ResetClipRegion" );
maClipRegion.SetEmpty();
mbUseScissor = false;
mbUseStencil = false;
}
// get the depth of the device
sal_uInt16 OpenGLSalGraphicsImpl::GetBitCount() const
{
return 32;
}
// get the width of the device
long OpenGLSalGraphicsImpl::GetGraphicsWidth() const
{
return GetWidth();
}
// set the line color to transparent (= don't draw lines)
void OpenGLSalGraphicsImpl::SetLineColor()
{
if( mnLineColor != SALCOLOR_NONE )
{
mnLineColor = SALCOLOR_NONE;
}
}
// set the line color to a specific color
void OpenGLSalGraphicsImpl::SetLineColor( SalColor nSalColor )
{
if( mnLineColor != nSalColor )
{
mnLineColor = nSalColor;
}
}
// set the fill color to transparent (= don't fill)
void OpenGLSalGraphicsImpl::SetFillColor()
{
if( mnFillColor != SALCOLOR_NONE )
{
mnFillColor = SALCOLOR_NONE;
}
}
// set the fill color to a specific color, shapes will be
// filled accordingly
void OpenGLSalGraphicsImpl::SetFillColor( SalColor nSalColor )
{
if( mnFillColor != nSalColor )
{
mnFillColor = nSalColor;
}
}
// enable/disable XOR drawing
void OpenGLSalGraphicsImpl::SetXORMode( bool bSet, bool )
{
mbXORMode = bSet;
}
// set line color for raster operations
void OpenGLSalGraphicsImpl::SetROPLineColor( SalROPColor /*nROPColor*/ )
{
}
// set fill color for raster operations
void OpenGLSalGraphicsImpl::SetROPFillColor( SalROPColor /*nROPColor*/ )
{
}
bool OpenGLSalGraphicsImpl::CheckOffscreenTexture()
{
bool bClearTexture = false;
VCL_GL_INFO( "Check Offscreen texture" );
// Always create the offscreen texture
if( maOffscreenTex )
{
if( maOffscreenTex.GetWidth() != GetWidth() ||
maOffscreenTex.GetHeight() != GetHeight() )
{
VCL_GL_INFO( "re-size offscreen texture " << maOffscreenTex.Id() );
mpContext->ReleaseFramebuffer( maOffscreenTex );
maOffscreenTex = OpenGLTexture();
}
}
if( !maOffscreenTex )
{
VCL_GL_INFO( "create texture of size "
<< GetWidth() << " x " << GetHeight() );
maOffscreenTex = OpenGLTexture( GetWidth(), GetHeight() );
bClearTexture = true;
}
if( !maOffscreenTex.IsUnique() )
{
GLfloat fWidth = GetWidth();
GLfloat fHeight = GetHeight();
SalTwoRect aPosAry(0, 0, fWidth, fHeight, 0,0, fWidth, fHeight);
// TODO: lfrb: User GL_ARB_copy_image?
OpenGLTexture aNewTex = OpenGLTexture( GetWidth(), GetHeight() );
mpContext->AcquireFramebuffer( aNewTex );
DrawTexture( maOffscreenTex, aPosAry );
maOffscreenTex = aNewTex;
}
else
{
mpContext->AcquireFramebuffer( maOffscreenTex );
CHECK_GL_ERROR();
if( bClearTexture )
{
glDrawBuffer( GL_COLOR_ATTACHMENT0 );
#if OSL_DEBUG_LEVEL > 0 // lets have some red debugging background.
GLfloat clearColor[4] = { 1.0, 0, 0, 0 };
#else
GLfloat clearColor[4] = { 1.0, 1.0, 1.0, 0 };
#endif
glClearBufferfv( GL_COLOR, 0, clearColor );
// FIXME: use glClearTexImage if we have it ?
}
}
assert( maOffscreenTex );
CHECK_GL_ERROR();
return true;
}
bool OpenGLSalGraphicsImpl::UseProgram( const OUString& rVertexShader, const OUString& rFragmentShader, const OString& preamble )
{
if( mpProgram != nullptr )
mpProgram->Clean();
mpProgram = mpContext->UseProgram( rVertexShader, rFragmentShader, preamble );
#ifdef DBG_UTIL
mProgramIsSolidColor = false; // UseSolid() will set to true if needed
#endif
return ( mpProgram != nullptr );
}
bool OpenGLSalGraphicsImpl::UseSolid( SalColor nColor, sal_uInt8 nTransparency )
{
if( nColor == SALCOLOR_NONE )
return false;
if( !UseProgram( "dumbVertexShader", "solidFragmentShader" ) )
return false;
mpProgram->SetColor( "color", nColor, nTransparency );
#ifdef DBG_UTIL
mProgramIsSolidColor = true;
#endif
mProgramSolidColor = nColor;
mProgramSolidTransparency = nTransparency / 100.0;
return true;
}
bool OpenGLSalGraphicsImpl::UseSolid( SalColor nColor, double fTransparency )
{
if( nColor == SALCOLOR_NONE )
return false;
if( !UseProgram( "dumbVertexShader", "solidFragmentShader" ) )
return false;
mpProgram->SetColorf( "color", nColor, fTransparency );
#ifdef DBG_UTIL
mProgramIsSolidColor = true;
#endif
mProgramSolidColor = nColor;
mProgramSolidTransparency = fTransparency;
return true;
}
bool OpenGLSalGraphicsImpl::UseInvert50()
{
if( !UseProgram( "dumbVertexShader", "invert50FragmentShader" ) )
return false;
return true;
}
bool OpenGLSalGraphicsImpl::UseSolid( SalColor nColor )
{
return UseSolid( nColor, 0.0f );
}
// Like UseSolid(), but sets up for AA drawing, which uses gradients to create the AA.
bool OpenGLSalGraphicsImpl::UseSolidAA( SalColor nColor, double fTransparency )
{
if( nColor == SALCOLOR_NONE )
return false;
if( !mrParent.getAntiAliasB2DDraw())
return UseSolid( nColor );
if( !UseProgram( "textureVertexShader", "linearGradientFragmentShader" ) )
return false;
mpProgram->SetColorf( "start_color", nColor, fTransparency );
mpProgram->SetColorf( "end_color", nColor, 1.0f );
return true;
}
bool OpenGLSalGraphicsImpl::UseSolidAA( SalColor nColor )
{
return UseSolidAA( nColor, 0.0 );
}
bool OpenGLSalGraphicsImpl::UseInvert( SalInvert nFlags )
{
OpenGLZone aZone;
if( ( nFlags & SAL_INVERT_50 ) ||
( nFlags & SAL_INVERT_TRACKFRAME ) )
{
// FIXME: Trackframe really should be 2 pix. on/off stipple.
if( !UseInvert50() )
return false;
mpProgram->SetBlendMode( GL_ONE_MINUS_DST_COLOR,
GL_ONE_MINUS_SRC_COLOR );
}
else
{
if( !UseSolid( MAKE_SALCOLOR( 255, 255, 255 ) ) )
return false;
mpProgram->SetBlendMode( GL_ONE_MINUS_DST_COLOR, GL_ZERO );
}
return true;
}
void OpenGLSalGraphicsImpl::DrawPoint( long nX, long nY )
{
OpenGLZone aZone;
GLfloat pPoint[2];
pPoint[0] = GLfloat(nX);
pPoint[1] = GLfloat(nY);
ApplyProgramMatrices(0.5f);
mpProgram->SetVertices( pPoint );
glDrawArrays( GL_POINTS, 0, 1 );
CHECK_GL_ERROR();
}
void OpenGLSalGraphicsImpl::DrawLine( double nX1, double nY1, double nX2, double nY2 )
{
OpenGLZone aZone;
GLfloat pPoints[4];
pPoints[0] = GLfloat(nX1);
pPoints[1] = GLfloat(nY1);
pPoints[2] = GLfloat(nX2);
pPoints[3] = GLfloat(nY2);
ApplyProgramMatrices(0.5f);
mpProgram->SetVertices( pPoints );
glDrawArrays( GL_LINES, 0, 2 );
CHECK_GL_ERROR();
}
void OpenGLSalGraphicsImpl::DrawLineAA( double nX1, double nY1, double nX2, double nY2 )
{
OpenGLZone aZone;
if( !mrParent.getAntiAliasB2DDraw())
return DrawLine( nX1, nY1, nX2, nY2 );
if( nX1 == nX2 || nY1 == nY2 )
{ // Horizontal/vertical, no need for AA, both points have normal color.
// Still set up for the trivial "gradients", because presumably UseSolidAA() has been called.
GLfloat aTexCoord[4] = { 0, 1, 1, 1 };
mpProgram->SetTextureCoord( aTexCoord );
DrawLine(nX1, nY1, nX2, nY2);
return;
}
ImplDrawLineAA( nX1, nY1, nX2, nY2 );
}
void OpenGLSalGraphicsImpl::ImplDrawLineAA( double nX1, double nY1, double nX2, double nY2, bool edge )
{
// Draw the line anti-aliased. Based on code with the following notice:
/* Drawing nearly perfect 2D line segments in OpenGL
* You can use this code however you want.
* I just hope you to cite my name and the page of this technique:
* http://artgrammer.blogspot.com/2011/05/drawing-nearly-perfect-2d-line-segments.html
* http://www.codeproject.com/KB/openGL/gllinedraw.aspx
*
* Enjoy. Chris Tsang.*/
double x1 = nX1;
double y1 = nY1;
double x2 = nX2;
double y2 = nY2;
// A special hack for drawing lines that are in fact AA edges of a shape. Make the line somewhat
// wider, but (done further below) draw the entire width as a gradient. This would be wrong for a line
// (too wide and seemingly less straight), but it makes the edges look smoother and the width difference
// is almost unnoticeable.
const double w = edge ? 1.4 : 1.0;
double t(0.0);
double R(0.0);
double f = w - static_cast<int>(w);
//determine parameters t,R
if ( w>=0.0 && w<1.0 )
{
t=0.05;
R=0.48+0.32*f;
}
else if ( w>=1.0 && w<2.0 )
{
t=0.05+f*0.33;
R=0.768+0.312*f;
}
else if ( w>=2.0 && w<3.0 )
{
t=0.38+f*0.58;
R=1.08;
}
else if ( w>=3.0 && w<4.0 )
{
t=0.96+f*0.48;
R=1.08;
}
else if ( w>=4.0 && w<5.0 )
{
t=1.44+f*0.46;
R=1.08;
}
else if ( w>=5.0 && w<6.0 )
{
t=1.9+f*0.6;
R=1.08;
}
else if ( w>=6.0 )
{
double ff=w-6.0;
t=2.5+ff*0.50;
R=1.08;
}
//determine angle of the line to horizontal
double tx=0,ty=0; //core thinkness of a line
double Rx=0,Ry=0; //fading edge of a line
double dx=x2-x1;
double dy=y2-y1;
if ( w < 3 )
{ //approximate to make things even faster
double m=dy/dx;
//and calculate tx,ty,Rx,Ry
if ( m>-0.4142 && m<=0.4142)
{
// -22.5< angle <= 22.5, approximate to 0 (degree)
tx=t*0.1; ty=t;
Rx=R*0.6; Ry=R;
}
else if ( m>0.4142 && m<=2.4142)
{
// 22.5< angle <= 67.5, approximate to 45 (degree)
tx=t*-0.7071; ty=t*0.7071;
Rx=R*-0.7071; Ry=R*0.7071;
}
else if ( m>2.4142 || m<=-2.4142)
{
// 67.5 < angle <=112.5, approximate to 90 (degree)
tx=t; ty=t*0.1;
Rx=R; Ry=R*0.6;
}
else if ( m>-2.4142 && m<-0.4142)
{
// 112.5 < angle < 157.5, approximate to 135 (degree)
tx=t*0.7071; ty=t*0.7071;
Rx=R*0.7071; Ry=R*0.7071;
}
else
assert( false );
}
else
{ //calculate to exact
dx=y1-y2;
dy=x2-x1;
double L=sqrt(dx*dx+dy*dy);
dx/=L;
dy/=L;
tx=t*dx; ty=t*dy;
Rx=R*dx; Ry=R*dy;
}
if( edge )
{ // See above.
Rx += tx;
Ry += ty;
tx = ty = 0;
}
GLfloat vertices[]=
{
GLfloat(x1-tx-Rx), GLfloat(y1-ty-Ry), //fading edge1
GLfloat(x2-tx-Rx), GLfloat(y2-ty-Ry),
GLfloat(x1-tx), GLfloat(y1-ty), //core
GLfloat(x2-tx), GLfloat(y2-ty),
GLfloat(x1+tx), GLfloat(y1+ty),
GLfloat(x2+tx), GLfloat(y2+ty),
GLfloat(x1+tx+Rx), GLfloat(y1+ty+Ry), //fading edge2
GLfloat(x2+tx+Rx), GLfloat(y2+ty+Ry)
};
ApplyProgramMatrices(0.0f);
GLfloat aTexCoord[16] = { 0, 0, 1, 0, 2, 1, 3, 1, 4, 1, 5, 1, 6, 0, 7, 0 };
mpProgram->SetTextureCoord( aTexCoord );
mpProgram->SetVertices( vertices );
glDrawArrays(GL_TRIANGLE_STRIP, 0, 8);
CHECK_GL_ERROR();
}
void OpenGLSalGraphicsImpl::DrawLinesAA( sal_uInt32 nPoints, const SalPoint* pPtAry, bool bClose )
{
for( int i = 0; i < int(nPoints) - 1; ++i )
DrawLineAA( pPtAry[ i ].mnX, pPtAry[ i ].mnY, pPtAry[ i + 1 ].mnX, pPtAry[ i + 1 ].mnY );
if( bClose )
DrawLineAA( pPtAry[ nPoints - 1 ].mnX, pPtAry[ nPoints - 1 ].mnY, pPtAry[ 0 ].mnX, pPtAry[ 0 ].mnY );
}
void OpenGLSalGraphicsImpl::DrawEdgeAA( double nX1, double nY1, double nX2, double nY2 )
{
assert( mrParent.getAntiAliasB2DDraw());
if( nX1 == nX2 || nY1 == nY2 )
return; //horizontal/vertical, no need for AA
ImplDrawLineAA( nX1, nY1, nX2, nY2, true );
}
void OpenGLSalGraphicsImpl::DrawConvexPolygon( sal_uInt32 nPoints, const SalPoint* pPtAry, bool blockAA )
{
OpenGLZone aZone;
std::vector<GLfloat> aVertices(nPoints * 2);
sal_uInt32 i, j;
for( i = 0, j = 0; i < nPoints; i++, j += 2 )
{
aVertices[j] = GLfloat(pPtAry[i].mnX);
aVertices[j+1] = GLfloat(pPtAry[i].mnY);
}
ApplyProgramMatrices();
mpProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLE_FAN, 0, nPoints );
CHECK_GL_ERROR();
if( !blockAA && mrParent.getAntiAliasB2DDraw())
{
// Make the edges antialiased by drawing the edge lines again with AA.
// TODO: If transparent drawing is set up, drawing the lines themselves twice
// may be a problem, if that is a real problem, the polygon areas itself needs to be
// masked out for this or something.
#ifdef DBG_UTIL
assert( mProgramIsSolidColor );
#endif
SalColor lastSolidColor = mProgramSolidColor;
double lastSolidTransparency = mProgramSolidTransparency;
if( UseSolidAA( lastSolidColor, lastSolidTransparency ))
{
for( i = 0; i < nPoints; ++i )
{
const SalPoint& rPt1 = pPtAry[ i ];
const SalPoint& rPt2 = pPtAry[ ( i + 1 ) % nPoints ];
DrawEdgeAA( rPt1.mnX, rPt1.mnY, rPt2.mnX, rPt2.mnY );
}
UseSolid( lastSolidColor, lastSolidTransparency );
}
}
}
void OpenGLSalGraphicsImpl::DrawConvexPolygon( const tools::Polygon& rPolygon, bool blockAA )
{
OpenGLZone aZone;
sal_uInt16 nPoints = rPolygon.GetSize() - 1;
std::vector<GLfloat> aVertices(nPoints * 2);
sal_uInt32 i, j;
for( i = 0, j = 0; i < nPoints; i++, j += 2 )
{
const Point& rPt = rPolygon.GetPoint( i );
aVertices[j] = GLfloat(rPt.X());
aVertices[j+1] = GLfloat(rPt.Y());
}
ApplyProgramMatrices();
mpProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLE_FAN, 0, nPoints );
CHECK_GL_ERROR();
if( !blockAA && mrParent.getAntiAliasB2DDraw())
{
// Make the edges antialiased by drawing the edge lines again with AA.
// TODO: If transparent drawing is set up, drawing the lines themselves twice
// may be a problem, if that is a real problem, the polygon areas itself needs to be
// masked out for this or something.
#ifdef DBG_UTIL
assert( mProgramIsSolidColor );
#endif
SalColor lastSolidColor = mProgramSolidColor;
double lastSolidTransparency = mProgramSolidTransparency;
if( UseSolidAA( lastSolidColor, lastSolidTransparency ))
{
for( i = 0; i < nPoints; ++i )
{
const Point& rPt1 = rPolygon.GetPoint( i );
const Point& rPt2 = rPolygon.GetPoint(( i + 1 ) % nPoints );
DrawEdgeAA( rPt1.getX(), rPt1.getY(), rPt2.getX(), rPt2.getY());
}
UseSolid( lastSolidColor, lastSolidTransparency );
}
}
}
void OpenGLSalGraphicsImpl::DrawTrapezoid( const basegfx::B2DTrapezoid& trapezoid, bool blockAA )
{
OpenGLZone aZone;
const basegfx::B2DPolygon& rPolygon = trapezoid.getB2DPolygon();
sal_uInt16 nPoints = rPolygon.count();
std::vector<GLfloat> aVertices(nPoints * 2);
sal_uInt32 i, j;
for( i = 0, j = 0; i < nPoints; i++, j += 2 )
{
const basegfx::B2DPoint& rPt = rPolygon.getB2DPoint( i );
aVertices[j] = GLfloat(rPt.getX());
aVertices[j+1] = GLfloat(rPt.getY());
}
if (!mpProgram)
{
SAL_WARN("vcl.opengl", "OpenGLSalGraphicsImpl::DrawTrapezoid: mpProgram is 0");
return;
}
ApplyProgramMatrices();
mpProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLE_FAN, 0, nPoints );
CHECK_GL_ERROR();
if( !blockAA && mrParent.getAntiAliasB2DDraw())
{
// Make the edges antialiased by drawing the edge lines again with AA.
// TODO: If transparent drawing is set up, drawing the lines themselves twice
// may be a problem, if that is a real problem, the polygon areas itself needs to be
// masked out for this or something.
#ifdef DBG_UTIL
assert( mProgramIsSolidColor );
#endif
SalColor lastSolidColor = mProgramSolidColor;
double lastSolidTransparency = mProgramSolidTransparency;
if( UseSolidAA( lastSolidColor, lastSolidTransparency ))
{
for( i = 0; i < nPoints; ++i )
{
const basegfx::B2DPoint& rPt1 = rPolygon.getB2DPoint( i );
const basegfx::B2DPoint& rPt2 = rPolygon.getB2DPoint(( i + 1 ) % nPoints );
DrawEdgeAA( rPt1.getX(), rPt1.getY(), rPt2.getX(), rPt2.getY());
}
UseSolid( lastSolidColor, lastSolidTransparency );
}
}
}
void OpenGLSalGraphicsImpl::DrawRect( long nX, long nY, long nWidth, long nHeight )
{
long nX1( nX );
long nY1( nY );
long nX2( nX + nWidth );
long nY2( nY + nHeight );
const SalPoint aPoints[] = { { nX1, nY2 }, { nX1, nY1 },
{ nX2, nY1 }, { nX2, nY2 }};
DrawConvexPolygon( 4, aPoints, true );
}
void OpenGLSalGraphicsImpl::DrawRect( const Rectangle& rRect )
{
long nX1( rRect.Left() );
long nY1( rRect.Top() );
long nX2( rRect.Right() );
long nY2( rRect.Bottom() );
const SalPoint aPoints[] = { { nX1, nY2 }, { nX1, nY1 },
{ nX2, nY1 }, { nX2, nY2 }};
DrawConvexPolygon( 4, aPoints, true );
}
void OpenGLSalGraphicsImpl::DrawPolygon( sal_uInt32 nPoints, const SalPoint* pPtAry )
{
basegfx::B2DPolygon aPolygon;
for( sal_uInt32 i = 0; i < nPoints; i++ )
aPolygon.append( basegfx::B2DPoint( pPtAry[i].mnX, pPtAry[i].mnY ) );
aPolygon.setClosed( true );
if( basegfx::tools::isConvex( aPolygon ) )
{
if( nPoints > 2L )
DrawConvexPolygon( nPoints, pPtAry );
}
else
{
const basegfx::B2DPolyPolygon aPolyPolygon( aPolygon );
DrawPolyPolygon( aPolyPolygon );
}
}
void OpenGLSalGraphicsImpl::DrawPolyPolygon( const basegfx::B2DPolyPolygon& rPolyPolygon, bool blockAA )
{
const basegfx::B2DPolyPolygon& aSimplePolyPolygon = ::basegfx::tools::solveCrossovers( rPolyPolygon );
basegfx::B2DTrapezoidVector aB2DTrapVector;
basegfx::tools::trapezoidSubdivide( aB2DTrapVector, aSimplePolyPolygon );
// draw tesselation result
if( aB2DTrapVector.size())
{
for( size_t i = 0; i < aB2DTrapVector.size(); ++i )
DrawTrapezoid( aB2DTrapVector[ i ], blockAA );
}
}
void OpenGLSalGraphicsImpl::DrawRegionBand( const RegionBand& rRegion )
{
OpenGLZone aZone;
RectangleVector aRects;
std::vector<GLfloat> aVertices;
rRegion.GetRegionRectangles( aRects );
if( aRects.empty() )
return;
#define ADD_VERTICE(pt) \
aVertices.push_back(GLfloat(pt.X())); \
aVertices.push_back(GLfloat(pt.Y()));
for( size_t i = 0; i < aRects.size(); ++i )
{
aRects[i].Bottom() += 1;
aRects[i].Right() += 1;
ADD_VERTICE( aRects[i].TopLeft() );
ADD_VERTICE( aRects[i].TopRight() );
ADD_VERTICE( aRects[i].BottomLeft() );
ADD_VERTICE( aRects[i].BottomLeft() );
ADD_VERTICE( aRects[i].TopRight() );
ADD_VERTICE( aRects[i].BottomRight() );
}
#undef ADD_VERTICE
ApplyProgramMatrices();
mpProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLES, 0, aVertices.size() / 2 );
CHECK_GL_ERROR();
}
void OpenGLSalGraphicsImpl::DrawTextureRect( OpenGLTexture& rTexture, const SalTwoRect& rPosAry, bool bInverted )
{
OpenGLZone aZone;
SAL_INFO("vcl.opengl", "draw texture rect");
GLfloat aTexCoord[8];
rTexture.GetCoord( aTexCoord, rPosAry, bInverted );
mpProgram->SetTextureCoord( aTexCoord );
DrawRect( rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight );
}
void OpenGLSalGraphicsImpl::DrawTexture( OpenGLTexture& rTexture, const SalTwoRect& pPosAry, bool bInverted )
{
OpenGLZone aZone;
SAL_INFO("vcl.opengl", "draw texture");
if( !UseProgram( "textureVertexShader", "textureFragmentShader" ) )
return;
mpProgram->SetTexture( "sampler", rTexture );
DrawTextureRect( rTexture, pPosAry, bInverted );
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawTransformedTexture(
OpenGLTexture& rTexture,
OpenGLTexture& rMask,
const basegfx::B2DPoint& rNull,
const basegfx::B2DPoint& rX,
const basegfx::B2DPoint& rY )
{
OpenGLZone aZone;
GLfloat aVertices[8] = {
0, (float) rTexture.GetHeight(), 0, 0,
(float) rTexture.GetWidth(), 0, (float) rTexture.GetWidth(), (float) rTexture.GetHeight() };
GLfloat aTexCoord[8];
// If downscaling at a higher scale ratio, use the area scaling algorithm rather
// than plain OpenGL's scaling, for better results.
// See OpenGLSalBitmap::ImplScaleArea().
double ixscale = rTexture.GetWidth() / fabs( rX.getX() - rNull.getX());
double iyscale = rTexture.GetHeight() / fabs( rY.getY() - rNull.getY());
bool areaScaling = false;
bool fastAreaScaling = false;
OUString textureFragmentShader;
if( ixscale >= 2 && iyscale >= 2 ) // Downscaling to 50% or less? (inverted scale ratios)
{
areaScaling = true;
fastAreaScaling = ( ixscale == int( ixscale ) && iyscale == int( iyscale ));
// The generic case has arrays only up to 100 ratio downscaling, which is hopefully enough
// in practice, but protect against buffer overflows in case such an extreme case happens
// (and in such case the precision of the generic algorithm probably doesn't matter anyway).
if( ixscale > 100 || iyscale > 100 )
fastAreaScaling = true;
if( fastAreaScaling )
textureFragmentShader = "areaScaleFastFragmentShader";
else
textureFragmentShader = "areaScaleFragmentShader";
}
if( rMask )
{
if( !UseProgram( "transformedTextureVertexShader",
textureFragmentShader.isEmpty() ? "maskedTextureFragmentShader" : textureFragmentShader,
"#define MASKED" ) )
return;
mpProgram->SetTexture( "mask", rMask );
GLfloat aMaskCoord[8];
rMask.GetWholeCoord(aMaskCoord);
mpProgram->SetMaskCoord(aMaskCoord);
rMask.SetFilter( GL_LINEAR );
mpProgram->SetBlendMode( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
}
else
{
if( !UseProgram( "transformedTextureVertexShader",
textureFragmentShader.isEmpty() ? "textureFragmentShader" : textureFragmentShader ) )
return;
}
int mnWidth = rTexture.GetWidth();
int mnHeight = rTexture.GetHeight();
if(areaScaling )
{
// From OpenGLSalBitmap::ImplScaleArea().
if (fastAreaScaling && mnWidth && mnHeight)
{
mpProgram->SetUniform1i( "xscale", ixscale );
mpProgram->SetUniform1i( "yscale", iyscale );
mpProgram->SetUniform1f( "xstep", 1.0 / mnWidth );
mpProgram->SetUniform1f( "ystep", 1.0 / mnHeight );
mpProgram->SetUniform1f( "ratio", 1.0 / ( ixscale * iyscale ));
}
else if (mnHeight > 1 && mnWidth > 1)
{
mpProgram->SetUniform1f( "xscale", ixscale );
mpProgram->SetUniform1f( "yscale", iyscale );
mpProgram->SetUniform1i( "swidth", mnWidth );
mpProgram->SetUniform1i( "sheight", mnHeight );
// For converting between <0,mnWidth-1> and <0.0,1.0> coordinate systems.
mpProgram->SetUniform1f( "xsrcconvert", 1.0 / ( mnWidth - 1 ));
mpProgram->SetUniform1f( "ysrcconvert", 1.0 / ( mnHeight - 1 ));
mpProgram->SetUniform1f( "xdestconvert", 1.0 * (( mnWidth / ixscale ) - 1 ));
mpProgram->SetUniform1f( "ydestconvert", 1.0 * (( mnHeight / iyscale ) - 1 ));
}
}
ApplyProgramMatrices();
mpProgram->SetUniform2f( "viewport", GetWidth(), GetHeight() );
mpProgram->SetTransform( "transform", rTexture, rNull, rX, rY );
rTexture.GetWholeCoord( aTexCoord );
mpProgram->SetTexture( "sampler", rTexture );
rTexture.SetFilter( GL_LINEAR );
mpProgram->SetTextureCoord( aTexCoord );
mpProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLE_FAN, 0, 4 );
CHECK_GL_ERROR();
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawAlphaTexture( OpenGLTexture& rTexture, const SalTwoRect& rPosAry, bool bInverted, bool bPremultiplied )
{
OpenGLZone aZone;
if( !UseProgram( "textureVertexShader", "textureFragmentShader" ) )
return;
mpProgram->SetTexture( "sampler", rTexture );
mpProgram->SetBlendMode( bPremultiplied ? GL_ONE : GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA );
DrawTextureRect( rTexture, rPosAry, bInverted );
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawTextureDiff( OpenGLTexture& rTexture, OpenGLTexture& rMask, const SalTwoRect& rPosAry, bool bInverted )
{
OpenGLZone aZone;
if( !UseProgram( "maskedTextureVertexShader", "diffTextureFragmentShader" ) )
return;
mpProgram->SetTexture( "texture", rTexture );
mpProgram->SetTexture( "mask", rMask );
mpProgram->SetBlendMode( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
GLfloat aMaskCoord[8];
rMask.GetCoord(aMaskCoord, rPosAry, bInverted);
mpProgram->SetMaskCoord(aMaskCoord);
DrawTextureRect( rTexture, rPosAry, bInverted );
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawTextureWithMask( OpenGLTexture& rTexture, OpenGLTexture& rMask, const SalTwoRect& rPosAry )
{
OpenGLZone aZone;
if( !UseProgram( "maskedTextureVertexShader", "maskedTextureFragmentShader" ) )
return;
mpProgram->SetTexture( "sampler", rTexture );
mpProgram->SetTexture( "mask", rMask );
mpProgram->SetBlendMode( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
GLfloat aTexCoord[8];
rTexture.GetCoord(aTexCoord, rPosAry);
mpProgram->SetTextureCoord(aTexCoord);
GLfloat aMaskCoord[8];
rMask.GetCoord(aMaskCoord, rPosAry);
mpProgram->SetMaskCoord(aMaskCoord);
DrawRect(rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnDestWidth, rPosAry.mnDestHeight);
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawBlendedTexture( OpenGLTexture& rTexture, OpenGLTexture& rMask, OpenGLTexture& rAlpha, const SalTwoRect& rPosAry )
{
OpenGLZone aZone;
if( !UseProgram( "blendedTextureVertexShader", "blendedTextureFragmentShader" ) )
return;
mpProgram->SetTexture( "sampler", rTexture );
mpProgram->SetTexture( "mask", rMask );
mpProgram->SetTexture( "alpha", rAlpha );
GLfloat aAlphaCoord[8];
rAlpha.GetCoord(aAlphaCoord, rPosAry);
mpProgram->SetAlphaCoord(aAlphaCoord);
GLfloat aMaskCoord[8];
rMask.GetCoord(aMaskCoord, rPosAry);
mpProgram->SetMaskCoord(aMaskCoord);
mpProgram->SetBlendMode( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
DrawTextureRect( rTexture, rPosAry );
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawMask( OpenGLTexture& rMask, SalColor nMaskColor, const SalTwoRect& pPosAry )
{
OpenGLZone aZone;
if( !UseProgram( "textureVertexShader", "maskFragmentShader" ) )
return;
mpProgram->SetColor( "color", nMaskColor, 0 );
mpProgram->SetTexture( "sampler", rMask );
mpProgram->SetBlendMode( GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA );
DrawTextureRect( rMask, pPosAry );
mpProgram->Clean();
}
void OpenGLSalGraphicsImpl::DrawLinearGradient( const Gradient& rGradient, const Rectangle& rRect )
{
OpenGLZone aZone;
if( !UseProgram( "textureVertexShader", "linearGradientFragmentShader" ) )
return;
Color aStartCol = rGradient.GetStartColor();
Color aEndCol = rGradient.GetEndColor();
long nFactor = rGradient.GetStartIntensity();
mpProgram->SetColorWithIntensity( "start_color", aStartCol, nFactor );
nFactor = rGradient.GetEndIntensity();
mpProgram->SetColorWithIntensity( "end_color", aEndCol, nFactor );
Rectangle aBoundRect;
Point aCenter;
rGradient.GetBoundRect( rRect, aBoundRect, aCenter );
tools::Polygon aPoly( aBoundRect );
aPoly.Rotate( aCenter, rGradient.GetAngle() % 3600 );
GLfloat aTexCoord[8] = { 0, 1, 1, 1, 1, 0, 0, 0 };
GLfloat fMin = 1.0 - 100.0 / (100.0 - rGradient.GetBorder());
aTexCoord[5] = aTexCoord[7] = fMin;
mpProgram->SetTextureCoord( aTexCoord );
DrawConvexPolygon( aPoly, true );
}
void OpenGLSalGraphicsImpl::DrawAxialGradient( const Gradient& rGradient, const Rectangle& rRect )
{
OpenGLZone aZone;
if( !UseProgram( "textureVertexShader", "linearGradientFragmentShader" ) )
return;
Color aStartCol = rGradient.GetStartColor();
Color aEndCol = rGradient.GetEndColor();
long nFactor = rGradient.GetStartIntensity();
mpProgram->SetColorWithIntensity( "start_color", aStartCol, nFactor );
nFactor = rGradient.GetEndIntensity();
mpProgram->SetColorWithIntensity( "end_color", aEndCol, nFactor );
/**
* Draw two rectangles with linear gradient.
*
* 1 *---* 2
* | /|
* | / | Points 0 and 3 have start color
* 0 |/__| 3 Points 1, 2, 4 and 5 have end color
* |\ |
* | \ |
* | \|
* 5 *---* 4
*
*/
Rectangle aRect;
Point aCenter;
rGradient.GetBoundRect( rRect, aRect, aCenter );
// determine points 0 and 3
Point aPt0( aRect.Left(), (aRect.Top() + aRect.Bottom() + 1) / 2 );
Point aPt3( aRect.Right(), (aRect.Top() + aRect.Bottom() + 1) / 2 );
tools::Polygon aPoly( 7 );
aPoly.SetPoint( aPt0, 0 );
aPoly.SetPoint( aRect.TopLeft(), 1 );
aPoly.SetPoint( aRect.TopRight(), 2 );
aPoly.SetPoint( aPt3, 3 );
aPoly.SetPoint( aRect.BottomRight(), 4 );
aPoly.SetPoint( aRect.BottomLeft(), 5 );
aPoly.SetPoint( aPt0, 6 );
aPoly.Rotate( aCenter, rGradient.GetAngle() % 3600 );
GLfloat aTexCoord[12] = { 0, 1, 1, 0, 2, 0, 3, 1, 4, 0, 5, 0 };
GLfloat fMin = 1.0 - 100.0 / (100.0 - rGradient.GetBorder());
aTexCoord[3] = aTexCoord[5] = aTexCoord[9] = aTexCoord[11] = fMin;
mpProgram->SetTextureCoord( aTexCoord );
DrawConvexPolygon( aPoly, true );
}
void OpenGLSalGraphicsImpl::DrawRadialGradient( const Gradient& rGradient, const Rectangle& rRect )
{
OpenGLZone aZone;
if( !UseProgram( "textureVertexShader", "radialGradientFragmentShader" ) )
return;
Color aStartCol = rGradient.GetStartColor();
Color aEndCol = rGradient.GetEndColor();
long nFactor = rGradient.GetStartIntensity();
mpProgram->SetColorWithIntensity( "start_color", aStartCol, nFactor );
nFactor = rGradient.GetEndIntensity();
mpProgram->SetColorWithIntensity( "end_color", aEndCol, nFactor );
Rectangle aRect;
Point aCenter;
rGradient.GetBoundRect( rRect, aRect, aCenter );
// adjust coordinates so that radius has distance equals to 1.0
double fRadius = aRect.GetWidth() / 2.0f;
GLfloat fWidth = rRect.GetWidth() / fRadius;
GLfloat fHeight = rRect.GetHeight() / fRadius;
GLfloat aTexCoord[8] = { 0, 0, 0, fHeight, fWidth, fHeight, fWidth, 0 };
mpProgram->SetTextureCoord( aTexCoord );
mpProgram->SetUniform2f( "center", (aCenter.X() - rRect.Left()) / fRadius,
(aCenter.Y() - rRect.Top()) / fRadius );
DrawRect( rRect );
}
// draw --> LineColor and FillColor and RasterOp and ClipRegion
void OpenGLSalGraphicsImpl::drawPixel( long nX, long nY )
{
VCL_GL_INFO( "::drawPixel" );
if( mnLineColor != SALCOLOR_NONE )
{
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnLineColor ) )
DrawPoint( nX, nY );
PostDraw();
}
}
void OpenGLSalGraphicsImpl::drawPixel( long nX, long nY, SalColor nSalColor )
{
VCL_GL_INFO( "::drawPixel" );
if( nSalColor != SALCOLOR_NONE )
{
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( nSalColor ) )
DrawPoint( nX, nY );
PostDraw();
}
}
void OpenGLSalGraphicsImpl::drawLine( long nX1, long nY1, long nX2, long nY2 )
{
VCL_GL_INFO( "::drawLine" );
if( mnLineColor != SALCOLOR_NONE )
{
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolidAA( mnLineColor ) )
DrawLineAA( nX1, nY1, nX2, nY2 );
PostDraw();
}
}
void OpenGLSalGraphicsImpl::drawRect( long nX, long nY, long nWidth, long nHeight )
{
VCL_GL_INFO( "::drawRect" );
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnFillColor ) )
DrawRect( nX, nY, nWidth, nHeight );
if( UseSolid( mnLineColor ) )
{
GLfloat fX1(nX);
GLfloat fY1(nY);
GLfloat fX2(nX + nWidth - 1);
GLfloat fY2(nY + nHeight - 1);
GLfloat pPoints[8];
pPoints[0] = fX1;
pPoints[1] = fY1;
pPoints[2] = fX2;
pPoints[3] = fY1;
pPoints[4] = fX2;
pPoints[5] = fY2;
pPoints[6] = fX1;
pPoints[7] = fY2;
ApplyProgramMatrices(0.5f);
mpProgram->SetVertices(pPoints);
glDrawArrays(GL_LINE_LOOP, 0, 4);
CHECK_GL_ERROR();
}
PostDraw();
}
void OpenGLSalGraphicsImpl::drawPolyLine( sal_uInt32 nPoints, const SalPoint* pPtAry )
{
VCL_GL_INFO( "::drawPolyLine" );
if( mnLineColor != SALCOLOR_NONE && nPoints > 1 )
{
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolidAA( mnLineColor ) )
DrawLinesAA( nPoints, pPtAry, false );
PostDraw();
}
}
void OpenGLSalGraphicsImpl::drawPolygon( sal_uInt32 nPoints, const SalPoint* pPtAry )
{
VCL_GL_INFO( "::drawPolygon" );
if( nPoints == 0 )
return;
if( nPoints == 1 )
{
drawPixel( pPtAry[0].mnX, pPtAry[0].mnY );
return;
}
if( nPoints == 2 )
{
drawLine( pPtAry[0].mnX, pPtAry[0].mnY,
pPtAry[1].mnX, pPtAry[1].mnY );
return;
}
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnFillColor ) )
DrawPolygon( nPoints, pPtAry );
if( UseSolidAA( mnLineColor ) )
DrawLinesAA( nPoints, pPtAry, true );
PostDraw();
}
void OpenGLSalGraphicsImpl::drawPolyPolygon( sal_uInt32 nPoly, const sal_uInt32* pPoints, PCONSTSALPOINT* pPtAry )
{
VCL_GL_INFO( "::drawPolyPolygon" );
if( nPoly <= 0 )
return;
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnFillColor ) )
{
if( nPoly == 1 )
DrawPolygon( pPoints[ 0 ], pPtAry[ 0 ] );
else
{
basegfx::B2DPolyPolygon polyPolygon;
for( sal_uInt32 i = 0; i < nPoly; ++i )
{
basegfx::B2DPolygon polygon;
for( sal_uInt32 j = 0; j < pPoints[ i ]; ++j )
polygon.append( basegfx::B2DPoint( pPtAry[i][j].mnX, pPtAry[i][j].mnY ) );
polygon.setClosed( true );
polyPolygon.append( polygon );
}
DrawPolyPolygon( polyPolygon );
}
}
if( mnLineColor != mnFillColor && UseSolidAA( mnLineColor ) )
{
// TODO Use glMultiDrawElements or primitive restart
for( sal_uInt32 i = 0; i < nPoly; i++ )
DrawLinesAA( pPoints[i], pPtAry[i], true );
}
PostDraw();
}
bool OpenGLSalGraphicsImpl::drawPolyPolygon( const basegfx::B2DPolyPolygon& rPolyPolygon, double fTransparency )
{
VCL_GL_INFO( "::drawPolyPolygon trans " << fTransparency );
if( rPolyPolygon.count() <= 0 )
return true;
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnFillColor, fTransparency ) )
DrawPolyPolygon( rPolyPolygon );
if( mnLineColor != mnFillColor && UseSolid( mnLineColor, fTransparency ))
{
basegfx::B2DTrapezoidVector aB2DTrapVector;
basegfx::tools::createLineTrapezoidFromB2DPolyPolygon( aB2DTrapVector, rPolyPolygon );
for( size_t i = 0; i < aB2DTrapVector.size(); ++i )
DrawTrapezoid( aB2DTrapVector[ i ] );
}
PostDraw();
return true;
}
bool OpenGLSalGraphicsImpl::drawPolyLine(
const basegfx::B2DPolygon& rPolygon,
double fTransparency,
const basegfx::B2DVector& rLineWidth,
basegfx::B2DLineJoin eLineJoin,
css::drawing::LineCap eLineCap)
{
VCL_GL_INFO( "::drawPolyLine trans " << fTransparency );
if( mnLineColor == SALCOLOR_NONE )
return true;
const bool bIsHairline = (rLineWidth.getX() == rLineWidth.getY()) && (rLineWidth.getX() <= 1.2);
// #i101491#
if( !bIsHairline && (rPolygon.count() > 1000) )
{
// the used basegfx::tools::createAreaGeometry is simply too
// expensive with very big polygons; fallback to caller (who
// should use ImplLineConverter normally)
// AW: ImplLineConverter had to be removed since it does not even
// know LineJoins, so the fallback will now prepare the line geometry
// the same way.
return false;
}
// shortcut for hairline drawing to improve performance
if (bIsHairline)
{
// Let's just leave it to OutputDevice to do the bezier subdivision,
// drawPolyLine(sal_uInt32 nPoints, const SalPoint* pPtAry) will be
// called with the result.
return false;
}
// #i11575#desc5#b adjust B2D tesselation result to raster positions
basegfx::B2DPolygon aPolygon = rPolygon;
const double fHalfWidth = 0.5 * rLineWidth.getX();
// get the area polygon for the line polygon
if( (rLineWidth.getX() != rLineWidth.getY())
&& !basegfx::fTools::equalZero( rLineWidth.getY() ) )
{
// prepare for createAreaGeometry() with anisotropic linewidth
aPolygon.transform( basegfx::tools::createScaleB2DHomMatrix(1.0, rLineWidth.getX() / rLineWidth.getY()));
}
// create the area-polygon for the line
const basegfx::B2DPolyPolygon aAreaPolyPoly( basegfx::tools::createAreaGeometry(aPolygon, fHalfWidth, eLineJoin, eLineCap) );
if( (rLineWidth.getX() != rLineWidth.getY())
&& !basegfx::fTools::equalZero( rLineWidth.getX() ) )
{
// postprocess createAreaGeometry() for anisotropic linewidth
aPolygon.transform(basegfx::tools::createScaleB2DHomMatrix(1.0, rLineWidth.getY() / rLineWidth.getX()));
}
PreDraw( XOROption::IMPLEMENT_XOR );
if( UseSolid( mnLineColor, fTransparency ) )
{
for( sal_uInt32 i = 0; i < aAreaPolyPoly.count(); i++ )
{
const basegfx::B2DPolyPolygon aOnePoly( aAreaPolyPoly.getB2DPolygon( i ) );
DrawPolyPolygon( aOnePoly );
}
}
PostDraw();
return true;
}
bool OpenGLSalGraphicsImpl::drawPolyLineBezier(
sal_uInt32 /*nPoints*/,
const SalPoint* /*pPtAry*/,
const sal_uInt8* /*pFlgAry*/ )
{
return false;
}
bool OpenGLSalGraphicsImpl::drawPolygonBezier(
sal_uInt32 /*nPoints*/,
const SalPoint* /*pPtAry*/,
const sal_uInt8* /*pFlgAry*/ )
{
return false;
}
bool OpenGLSalGraphicsImpl::drawPolyPolygonBezier(
sal_uInt32 /*nPoly*/,
const sal_uInt32* /*pPoints*/,
const SalPoint* const* /*pPtAry*/,
const sal_uInt8* const* /*pFlgAry*/ )
{
return false;
}
// CopyArea --> No RasterOp, but ClipRegion
void OpenGLSalGraphicsImpl::copyArea(
long nDestX, long nDestY,
long nSrcX, long nSrcY,
long nSrcWidth, long nSrcHeight,
sal_uInt16 /*nFlags*/ )
{
VCL_GL_INFO( "::copyArea " << nSrcX << "," << nSrcY << " >> " << nDestX << "," << nDestY << " (" << nSrcWidth << "," << nSrcHeight << ")" );
OpenGLTexture aTexture;
SalTwoRect aPosAry(0, 0, nSrcWidth, nSrcHeight, nDestX, nDestY, nSrcWidth, nSrcHeight);
PreDraw();
// TODO offscreen case
aTexture = OpenGLTexture( nSrcX, GetHeight() - nSrcY - nSrcHeight,
nSrcWidth, nSrcHeight );
DrawTexture( aTexture, aPosAry );
PostDraw();
}
// CopyBits and DrawBitmap --> RasterOp and ClipRegion
// CopyBits() --> pSrcGraphics == NULL, then CopyBits on same Graphics
void OpenGLSalGraphicsImpl::DoCopyBits( const SalTwoRect& rPosAry, OpenGLSalGraphicsImpl& rImpl )
{
VCL_GL_INFO( "::copyBits" );
if( !rImpl.maOffscreenTex )
{
VCL_GL_INFO( "::copyBits - skipping copy of un-initialized framebuffer contents of size "
<< rImpl.GetWidth() << "x" << rImpl.GetHeight() );
return;
}
if( &rImpl == this &&
(rPosAry.mnSrcWidth == rPosAry.mnDestWidth) &&
(rPosAry.mnSrcHeight == rPosAry.mnDestHeight))
{
// short circuit if there is nothing to do
if( (rPosAry.mnSrcX == rPosAry.mnDestX) &&
(rPosAry.mnSrcY == rPosAry.mnDestY))
return;
// use copyArea() if source and destination context are identical
copyArea( rPosAry.mnDestX, rPosAry.mnDestY, rPosAry.mnSrcX, rPosAry.mnSrcY,
rPosAry.mnSrcWidth, rPosAry.mnSrcHeight, 0 );
return;
}
PreDraw();
DrawTexture( rImpl.maOffscreenTex, rPosAry );
PostDraw();
}
void OpenGLSalGraphicsImpl::drawBitmap( const SalTwoRect& rPosAry, const SalBitmap& rSalBitmap )
{
// check that carefully only in the debug mode
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSalBitmap);
OpenGLTexture& rTexture = rBitmap.GetTexture();
VCL_GL_INFO( "::drawBitmap" );
PreDraw();
DrawTexture( rTexture, rPosAry );
PostDraw();
}
void OpenGLSalGraphicsImpl::drawBitmap(
const SalTwoRect& rPosAry,
const SalBitmap& rSalBitmap,
const SalBitmap& rMaskBitmap )
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalBitmap));
assert(dynamic_cast<const OpenGLSalBitmap*>(&rMaskBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSalBitmap);
const OpenGLSalBitmap& rMask = static_cast<const OpenGLSalBitmap&>(rMaskBitmap);
OpenGLTexture& rTexture( rBitmap.GetTexture() );
OpenGLTexture& rMaskTex( rMask.GetTexture() );
VCL_GL_INFO( "::drawBitmap with MASK" );
PreDraw();
DrawTextureWithMask( rTexture, rMaskTex, rPosAry );
PostDraw();
}
void OpenGLSalGraphicsImpl::drawMask(
const SalTwoRect& rPosAry,
const SalBitmap& rSalBitmap,
SalColor nMaskColor )
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSalBitmap);
OpenGLTexture& rTexture( rBitmap.GetTexture() );
VCL_GL_INFO( "::drawMask" );
PreDraw();
DrawMask( rTexture, nMaskColor, rPosAry );
PostDraw();
}
SalBitmap* OpenGLSalGraphicsImpl::getBitmap( long nX, long nY, long nWidth, long nHeight )
{
OpenGLZone aZone;
OpenGLSalBitmap* pBitmap = new OpenGLSalBitmap;
VCL_GL_INFO( "::getBitmap " << nX << "," << nY <<
" " << nWidth << "x" << nHeight );
//TODO really needed?
PreDraw();
if( !pBitmap->Create( maOffscreenTex, nX, nY, nWidth, nHeight ) )
{
delete pBitmap;
pBitmap = nullptr;
}
PostDraw();
return pBitmap;
}
SalColor OpenGLSalGraphicsImpl::getPixel( long nX, long nY )
{
char pixel[3] = { 0, 0, 0 };
PreDraw( XOROption::IMPLEMENT_XOR );
nY = GetHeight() - nY - 1;
glReadPixels( nX, nY, 1, 1, GL_RGB, GL_UNSIGNED_BYTE, pixel);
CHECK_GL_ERROR();
PostDraw();
return MAKE_SALCOLOR( pixel[0], pixel[1], pixel[2] );
}
// invert --> ClipRegion (only Windows or VirDevs)
void OpenGLSalGraphicsImpl::invert(
long nX, long nY,
long nWidth, long nHeight,
SalInvert nFlags)
{
PreDraw();
if( UseInvert( nFlags ) )
{
if( nFlags & SAL_INVERT_TRACKFRAME )
{ // FIXME: could be more efficient.
DrawRect( nX, nY, nWidth, 1 );
DrawRect( nX, nY + nHeight, nWidth, 1 );
DrawRect( nX, nY, 1, nHeight );
DrawRect( nX + nWidth, nY, 1, nHeight );
}
else
DrawRect( nX, nY, nWidth, nHeight );
}
PostDraw();
}
void OpenGLSalGraphicsImpl::invert( sal_uInt32 nPoints, const SalPoint* pPtAry, SalInvert nFlags )
{
PreDraw();
if( UseInvert( nFlags ) )
DrawPolygon( nPoints, pPtAry );
PostDraw();
}
bool OpenGLSalGraphicsImpl::drawEPS(
long /*nX*/, long /*nY*/,
long /*nWidth*/, long /*nHeight*/,
void* /*pPtr*/,
sal_uLong /*nSize*/ )
{
return false;
}
bool OpenGLSalGraphicsImpl::blendBitmap(
const SalTwoRect& rPosAry,
const SalBitmap& rSalBitmap )
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSalBitmap);
OpenGLTexture& rTexture( rBitmap.GetTexture() );
VCL_GL_INFO( "::blendBitmap" );
PreDraw();
glEnable( GL_BLEND );
CHECK_GL_ERROR();
glBlendFunc( GL_ZERO, GL_SRC_COLOR );
CHECK_GL_ERROR();
DrawTexture( rTexture, rPosAry );
glDisable( GL_BLEND );
CHECK_GL_ERROR();
PostDraw();
return true;
}
bool OpenGLSalGraphicsImpl::blendAlphaBitmap(
const SalTwoRect& rPosAry,
const SalBitmap& rSalSrcBitmap,
const SalBitmap& rSalMaskBitmap,
const SalBitmap& rSalAlphaBitmap )
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalSrcBitmap));
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalMaskBitmap));
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalAlphaBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rSrcBitmap = static_cast<const OpenGLSalBitmap&>(rSalSrcBitmap);
const OpenGLSalBitmap& rMaskBitmap = static_cast<const OpenGLSalBitmap&>(rSalMaskBitmap);
const OpenGLSalBitmap& rAlphaBitmap = static_cast<const OpenGLSalBitmap&>(rSalAlphaBitmap);
OpenGLTexture& rTexture( rSrcBitmap.GetTexture() );
OpenGLTexture& rMask( rMaskBitmap.GetTexture() );
OpenGLTexture& rAlpha( rAlphaBitmap.GetTexture() );
VCL_GL_INFO( "::blendAlphaBitmap" );
PreDraw();
DrawBlendedTexture( rTexture, rMask, rAlpha, rPosAry );
PostDraw();
return true;
}
/** Render bitmap with alpha channel
@param rSourceBitmap
Source bitmap to blit
@param rAlphaBitmap
Alpha channel to use for blitting
@return true, if the operation succeeded, and false
otherwise. In this case, clients should try to emulate alpha
compositing themselves
*/
bool OpenGLSalGraphicsImpl::drawAlphaBitmap(
const SalTwoRect& rPosAry,
const SalBitmap& rSalBitmap,
const SalBitmap& rAlphaBitmap )
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSalBitmap));
assert(dynamic_cast<const OpenGLSalBitmap*>(&rAlphaBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSalBitmap);
const OpenGLSalBitmap& rAlpha = static_cast<const OpenGLSalBitmap&>(rAlphaBitmap);
OpenGLTexture& rTexture( rBitmap.GetTexture() );
OpenGLTexture& rAlphaTex( rAlpha.GetTexture() );
VCL_GL_INFO( "::drawAlphaBitmap" );
PreDraw();
DrawTextureWithMask( rTexture, rAlphaTex, rPosAry );
PostDraw();
return true;
}
/** draw transformed bitmap (maybe with alpha) where Null, X, Y define the coordinate system */
bool OpenGLSalGraphicsImpl::drawTransformedBitmap(
const basegfx::B2DPoint& rNull,
const basegfx::B2DPoint& rX,
const basegfx::B2DPoint& rY,
const SalBitmap& rSrcBitmap,
const SalBitmap* pAlphaBitmap)
{
assert(dynamic_cast<const OpenGLSalBitmap*>(&rSrcBitmap));
assert(!pAlphaBitmap || dynamic_cast<const OpenGLSalBitmap*>(pAlphaBitmap));
OpenGLZone aZone;
const OpenGLSalBitmap& rBitmap = static_cast<const OpenGLSalBitmap&>(rSrcBitmap);
const OpenGLSalBitmap* pMaskBitmap = static_cast<const OpenGLSalBitmap*>(pAlphaBitmap);
OpenGLTexture& rTexture( rBitmap.GetTexture() );
OpenGLTexture aMask; // no texture
if( pMaskBitmap != nullptr )
aMask = pMaskBitmap->GetTexture();
VCL_GL_INFO( "::drawTransformedBitmap" );
PreDraw();
DrawTransformedTexture( rTexture, aMask, rNull, rX, rY );
PostDraw();
return true;
}
/** Render solid rectangle with given transparency
@param nTransparency
Transparency value (0-255) to use. 0 blits and opaque, 255 a
fully transparent rectangle
*/
bool OpenGLSalGraphicsImpl::drawAlphaRect(
long nX, long nY,
long nWidth, long nHeight,
sal_uInt8 nTransparency )
{
VCL_GL_INFO( "::drawAlphaRect" );
if( mnFillColor != SALCOLOR_NONE && nTransparency < 100 )
{
PreDraw();
UseSolid( mnFillColor, nTransparency );
DrawRect( nX, nY, nWidth, nHeight );
PostDraw();
}
return true;
}
bool OpenGLSalGraphicsImpl::drawGradient(const tools::PolyPolygon& rPolyPoly,
const Gradient& rGradient)
{
Rectangle aBoundRect( rPolyPoly.GetBoundRect() );
VCL_GL_INFO( "::drawGradient" );
if( aBoundRect.IsEmpty() )
return true;
if( rGradient.GetStyle() != GradientStyle_LINEAR &&
rGradient.GetStyle() != GradientStyle_AXIAL &&
rGradient.GetStyle() != GradientStyle_RADIAL )
return false;
aBoundRect.Left()--;
aBoundRect.Top()--;
aBoundRect.Right()++;
aBoundRect.Bottom()++;
PreDraw( XOROption::IMPLEMENT_XOR );
#define FIXME_BROKEN_STENCIL_FOR_GRADIENTS 0
#if FIXME_BROKEN_STENCIL_FOR_GRADIENTS
ImplSetClipBit( vcl::Region( rPolyPoly ), 0x02 );
if( mbUseStencil )
{
glEnable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
glStencilFunc( GL_EQUAL, 3, 0xFF );
CHECK_GL_ERROR();
}
else
{
glEnable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
glStencilFunc( GL_EQUAL, 2, 0xFF );
CHECK_GL_ERROR();
}
#endif
// if border >= 100%, draw solid rectangle with start color
if( rGradient.GetBorder() >= 100.0 )
{
Color aCol = rGradient.GetStartColor();
long nF = rGradient.GetStartIntensity();
if( UseSolid( MAKE_SALCOLOR( aCol.GetRed() * nF / 100,
aCol.GetGreen() * nF / 100,
aCol.GetBlue() * nF / 100 ) ) )
DrawRect( aBoundRect );
}
else if( rGradient.GetStyle() == GradientStyle_LINEAR )
{
DrawLinearGradient( rGradient, aBoundRect );
}
else if( rGradient.GetStyle() == GradientStyle_AXIAL )
{
DrawAxialGradient( rGradient, aBoundRect );
}
else if( rGradient.GetStyle() == GradientStyle_RADIAL )
{
DrawRadialGradient( rGradient, aBoundRect );
}
#if FIXME_BROKEN_STENCIL_FOR_GRADIENTS
if( !mbUseStencil )
{
glDisable( GL_STENCIL_TEST );
CHECK_GL_ERROR();
}
#endif
PostDraw();
return true;
}
void OpenGLSalGraphicsImpl::flush()
{
if( IsOffscreen() )
return;
if( !Application::IsInExecute() )
{
// otherwise nothing would trigger idle rendering
doFlush();
}
else if( !mpFlush->IsActive() )
mpFlush->Start();
}
void OpenGLSalGraphicsImpl::doFlush()
{
if( IsOffscreen() )
return;
if( !maOffscreenTex )
{
VCL_GL_INFO( "flushAndSwap - odd no texture !" );
return;
}
if( mnDrawCountAtFlush == mnDrawCount )
{
VCL_GL_INFO( "eliding redundant flushAndSwap, no drawing since last!" );
return;
}
mnDrawCountAtFlush = mnDrawCount;
OpenGLZone aZone;
VCL_GL_INFO( "flushAndSwap" );
if( !mpWindowContext.is() )
{
// ensure everything is released from the old context.
OpenGLContext::clearCurrent();
mpWindowContext = CreateWinContext();
VCL_GL_INFO( "late creation of window context" );
}
assert( mpWindowContext.is() );
// Interesting ! -> this destroys a context [ somehow ] ...
mpWindowContext->makeCurrent();
CHECK_GL_ERROR();
VCL_GL_INFO( "flushAndSwap - acquire default framebuffer" );
mpWindowContext->AcquireDefaultFramebuffer();
CHECK_GL_ERROR();
glViewport( 0, 0, GetWidth(), GetHeight() );
CHECK_GL_ERROR();
#if OSL_DEBUG_LEVEL > 0 // random background glClear
glClearColor((float)rand()/RAND_MAX, (float)rand()/RAND_MAX,
(float)rand()/RAND_MAX, 1.0);
#else
glClearColor(1.0, 1.0, 1.0, 1.0);
#endif
glClear( GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT | GL_STENCIL_BUFFER_BIT );
CHECK_GL_ERROR();
VCL_GL_INFO( "Texture height " << maOffscreenTex.GetHeight() << " vs. window height " << GetHeight() );
OpenGLProgram *pProgram =
mpWindowContext->UseProgram( "textureVertexShader", "textureFragmentShader", "// flush shader\n" ); // flush helps profiling
if( !pProgram )
VCL_GL_INFO( "Can't compile simple copying shader !" );
else
{
pProgram->SetTexture( "sampler", maOffscreenTex );
SalTwoRect aPosAry( 0, 0, maOffscreenTex.GetWidth(), maOffscreenTex.GetHeight(),
0, 0, maOffscreenTex.GetWidth(), maOffscreenTex.GetHeight() );
GLfloat aTexCoord[8];
maOffscreenTex.GetCoord( aTexCoord, aPosAry );
pProgram->SetTextureCoord( aTexCoord );
GLfloat fWidth( maOffscreenTex.GetWidth() );
GLfloat fHeight( maOffscreenTex.GetHeight() );
const GLfloat aVertices[] = { 0, fHeight,
0, 0,
fWidth, 0,
fWidth, fHeight };
pProgram->ApplyMatrix(GetWidth(), GetHeight(), 0.0);
pProgram->SetVertices( &aVertices[0] );
glDrawArrays( GL_TRIANGLE_FAN, 0, 4 );
pProgram->Clean();
maOffscreenTex.Unbind();
static bool bNoSwap = getenv("SAL_GL_NO_SWAP");
if (!bNoSwap)
mpWindowContext->swapBuffers();
}
VCL_GL_INFO( "flushAndSwap - end." );
}
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */