2010-10-14 08:30:07 +02:00
|
|
|
/* -*- Mode: C++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
|
2012-06-13 14:17:57 +01:00
|
|
|
/*
|
|
|
|
* This file is part of the LibreOffice project.
|
|
|
|
*
|
|
|
|
* This Source Code Form is subject to the terms of the Mozilla Public
|
|
|
|
* License, v. 2.0. If a copy of the MPL was not distributed with this
|
|
|
|
* file, You can obtain one at http://mozilla.org/MPL/2.0/.
|
|
|
|
*
|
|
|
|
* This file incorporates work covered by the following license notice:
|
|
|
|
*
|
|
|
|
* Licensed to the Apache Software Foundation (ASF) under one or more
|
|
|
|
* contributor license agreements. See the NOTICE file distributed
|
|
|
|
* with this work for additional information regarding copyright
|
|
|
|
* ownership. The ASF licenses this file to you under the Apache
|
|
|
|
* License, Version 2.0 (the "License"); you may not use this file
|
|
|
|
* except in compliance with the License. You may obtain a copy of
|
|
|
|
* the License at http://www.apache.org/licenses/LICENSE-2.0 .
|
|
|
|
*/
|
2014-04-18 18:25:29 +02:00
|
|
|
#ifndef INCLUDED_CPPU_SOURCE_THREADPOOL_THREAD_HXX
|
|
|
|
#define INCLUDED_CPPU_SOURCE_THREADPOOL_THREAD_HXX
|
2000-09-18 14:29:57 +00:00
|
|
|
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
#include <osl/thread.hxx>
|
2001-03-20 14:30:39 +00:00
|
|
|
#include <sal/types.h>
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
#include <salhelper/simplereferenceobject.hxx>
|
2000-09-18 14:29:57 +00:00
|
|
|
|
|
|
|
#include "jobqueue.hxx"
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
#include "threadpool.hxx"
|
2000-09-18 14:29:57 +00:00
|
|
|
|
|
|
|
namespace cppu_threadpool {
|
|
|
|
|
|
|
|
class JobQueue;
|
|
|
|
|
2014-02-25 18:01:43 +01:00
|
|
|
|
2000-09-18 14:29:57 +00:00
|
|
|
// private thread class for the threadpool
|
2014-02-25 18:01:43 +01:00
|
|
|
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
class ORequestThread:
|
|
|
|
public salhelper::SimpleReferenceObject, public osl::Thread
|
2000-09-18 14:29:57 +00:00
|
|
|
{
|
|
|
|
public:
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
ORequestThread( ThreadPoolHolder const &aThreadPool,
|
|
|
|
JobQueue * ,
|
2000-09-18 14:29:57 +00:00
|
|
|
const ::rtl::ByteSequence &aThreadId,
|
2014-02-15 17:39:35 +01:00
|
|
|
bool bAsynchron );
|
2016-09-13 13:09:01 +02:00
|
|
|
virtual ~ORequestThread() override;
|
2000-09-18 14:29:57 +00:00
|
|
|
|
2014-02-15 17:39:35 +01:00
|
|
|
void setTask( JobQueue * , const ::rtl::ByteSequence & aThreadId , bool bAsynchron );
|
2000-09-18 14:29:57 +00:00
|
|
|
|
2014-11-14 16:05:37 +01:00
|
|
|
bool launch();
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
|
2017-03-03 20:57:02 +01:00
|
|
|
static void * operator new(std::size_t size)
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
{ return SimpleReferenceObject::operator new(size); }
|
|
|
|
|
2017-03-03 20:57:02 +01:00
|
|
|
static void operator delete(void * pointer)
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
{ SimpleReferenceObject::operator delete(pointer); }
|
2000-09-18 14:29:57 +00:00
|
|
|
|
|
|
|
private:
|
2015-10-12 16:04:04 +02:00
|
|
|
virtual void SAL_CALL run() override;
|
|
|
|
virtual void SAL_CALL onTerminated() override;
|
Better fix for ThreadPool/ORequestThread life cycle
This is a follow up to d015384e1d98fe77fd59339044f58efb1ab9fb25 "Fixed
ThreadPool (and dependent ORequestThread) life cycle" that still had some
problems:
* First, if Bridge::terminate was first entered from the reader or writer
thread, it would not join on that thread, so that thread could still be running
during exit.
That has been addressed by giving Bridge::dispose new semantics: It waits until
both Bridge::terminate has completed (even if that was called from a different
thread) and all spawned threads (reader, writer, ORequestThread workers) have
been joined. (This implies that Bridge::dispose must not be called from such a
thread, to avoid deadlock.)
* Second, if Bridge::terminate was first entered from an ORequestThread, the
call to uno_threadpool_dispose(0) to join on all such worker threads could
deadlock.
That has been addressed by making the last call to uno_threadpool_destroy wait
to join on all worker threads, and by calling uno_threadpool_destroy only from
the final Bridge::terminate (from Bridge::dispose), to avoid deadlock. (The
special semantics of uno_threadpool_dispose(0) are no longer needed and have
been removed, as they conflicted with the fix for the third problem below.)
* Third, once uno_threadpool_destroy had called uno_threadpool_dispose(0), the
ThreadAdmin singleton had been disposed, so no new remote bridges could
successfully be created afterwards.
That has been addressed by making ThreadAdmin a member of ThreadPool, and making
(only) those uno_ThreadPool handles with overlapping life spans share one
ThreadPool instance (which thus is no longer a singleton, either).
Additionally, ORequestThread has been made more robust (in the style of
salhelper::Thread) to avoid races.
Change-Id: I2cbd1b3f9aecc1bf4649e482d2c22b33b471788f
2012-05-23 09:42:37 +02:00
|
|
|
|
|
|
|
ThreadPoolHolder m_aThreadPool;
|
2000-09-18 14:29:57 +00:00
|
|
|
JobQueue *m_pQueue;
|
|
|
|
::rtl::ByteSequence m_aThreadId;
|
2014-02-15 17:39:35 +01:00
|
|
|
bool m_bAsynchron;
|
2000-09-18 14:29:57 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
} // end cppu_threadpool
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
2010-10-14 08:30:07 +02:00
|
|
|
/* vim:set shiftwidth=4 softtabstop=4 expandtab: */
|