Files
libreoffice/bridges/source/cpp_uno/gcc3_linux_powerpc/uno2cpp.cxx

657 lines
24 KiB
C++
Raw Normal View History

/*************************************************************************
*
* $RCSfile: uno2cpp.cxx,v $
*
* $Revision: 1.2 $
*
* last change: $Author: khendricks $ $Date: 2002-05-15 13:38:25 $
*
* The Contents of this file are made available subject to the terms of
* either of the following licenses
*
* - GNU Lesser General Public License Version 2.1
* - Sun Industry Standards Source License Version 1.1
*
* Sun Microsystems Inc., October, 2000
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2000 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
*
*
* Sun Industry Standards Source License Version 1.1
* =================================================
* The contents of this file are subject to the Sun Industry Standards
* Source License Version 1.1 (the "License"); You may not use this file
* except in compliance with the License. You may obtain a copy of the
* License at http://www.openoffice.org/license.html.
*
* Software provided under this License is provided on an "AS IS" basis,
* WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
* WITHOUT LIMITATION, WARRANTIES THAT THE SOFTWARE IS FREE OF DEFECTS,
* MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE, OR NON-INFRINGING.
* See the License for the specific provisions governing your rights and
* obligations concerning the Software.
*
* The Initial Developer of the Original Code is: Sun Microsystems, Inc.
*
* Copyright: 2000 by Sun Microsystems, Inc.
*
* All Rights Reserved.
*
* Contributor(s): _______________________________________
*
*
************************************************************************/
#include <malloc.h>
#include <rtl/alloc.h>
#include <uno/data.h>
#include <bridges/cpp_uno/bridge.hxx>
#include <bridges/cpp_uno/type_misc.hxx>
#include "share.hxx"
using namespace ::rtl;
using namespace ::com::sun::star::uno;
namespace CPPU_CURRENT_NAMESPACE
{
void dummy_can_throw_anything( char const * );
//==================================================================================================
static void callVirtualMethod(
void * pThis,
sal_Int32 nVtableIndex,
void * pRegisterReturn,
typelib_TypeClass eReturnType,
char * pPT,
sal_Int32 * pStackLongs,
sal_Int32 nStackLongs)
{
// parameter list is mixed list of * and values
// reference parameters are pointers
// the basic idea here is to use gpr[8] as a storage area for
// the future values of registers r3 to r10 needed for the call,
// and similarly fpr[8] as a storage area for the future values
// of floating point registers f1 to f8
unsigned long * mfunc; // actual function to be invoked
void (*ptr)();
int gpr[8]; // storage for gpregisters, map to r3-r10
int off; // offset used to find function
double fpr[8]; // storage for fpregisters, map to f1-f8
int n; // number of gprs mapped so far
int f; // number of fprs mapped so far
long *p; // pointer to parameter overflow area
int c; // character of parameter type being decoded
double dret; // temporary function return values
int iret, iret2;
// Because of the Power PC calling conventions we could be passing
// parameters in both register types and on the stack. To create the
// stack parameter area we need we now simply allocate local
// variable storage param[] that is at least the size of the parameter stack
// (more than enough space) which we can overwrite the parameters into.
// Note: This keeps us from having to decode the signature twice and
// prevents problems with later local variables.
// Note: could require up to 2*nStackLongs words of parameter stack area
// if the call has many float parameters (i.e. floats take up only 1
// word on the stack but take 2 words in parameter area in the
// stack frame .
// Update! floats on the outgoing parameter stack only take up 1 word
// (stfs is used) which is not correct according to the ABI but we
// will match what the compiler does until this is figured out
// this grows the current stack to the appropriate size
// and sets the outgoing stack pointer p to the right place
__asm__ __volatile__ (
"rlwinm %0,%0,3,3,28\n\t"
"addi %0,%0,22\n\t"
"rlwinm %0,%0,0,4,28\n\t"
"lwz 0,0(1)\n\t"
"subf 1,%0,1\n\t"
"stw 0,0(1)\n\t"
"addi %1,1,8\n\t"
: : "r" (nStackLongs), "r" (p) /* no inputs */ : "0" );
// never called
if (! pThis) dummy_can_throw_anything("xxx"); // address something
// now begin to load the C++ function arguments into storage
n = 0;
f = 0;
// now we need to parse the entire signature string */
// until we get the END indicator */
// treat complex return pointer like any other parameter //
#if 0
/* Let's figure out what is really going on here*/
fprintf(stderr,"callVirtualMethod paramters string is %s\n",pPT);
int k = nStackLongs;
long * q = (long *)pStackLongs;
while (k > 0) {
fprintf(stderr,"uno stack is: %x\n",*q);
k--;
q++;
}
#endif
/* parse the argument list up to the ending ) */
while (*pPT != 'X') {
c = *pPT;
switch (c) {
case 'D': /* type is double */
if (f < 8) {
fpr[f++] = *((double *)pStackLongs); /* store in register */
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs; /* or on the parameter stack */
*p++ = *(pStackLongs + 1);
}
pStackLongs += 2;
break;
case 'F': /* type is float */
/* this assumes that floats are stored as 1 32 bit word on param
stack and that if passed in parameter stack to C, should be
as double word.
Whoops: the abi is not actually followed by gcc, need to
store floats as a *single* word on outgoing parameter stack
to match what gcc actually does
*/
if (f < 8) {
fpr[f++] = *((float *)pStackLongs);
} else {
#if 0 /* if abi were followed */
if (((long) p) & 4)
p++;
*((double *)p) = *((float *)pStackLongs);
p += 2;
#else
*((float *)p) = *((float *)pStackLongs);
p += 1;
#endif
}
pStackLongs += 1;
break;
case 'H': /* type is long long */
if (n & 1) n++; /* note even elements gpr[] will map to
odd registers*/
if (n <= 6) {
gpr[n++] = *pStackLongs;
gpr[n++] = *(pStackLongs+1);
} else {
if (((long) p) & 4)
p++;
*p++ = *pStackLongs;
*p++ = *(pStackLongs+1);
}
pStackLongs += 2;
break;
case 'S':
if (n < 8) {
gpr[n++] = *((unsigned short*)pStackLongs);
} else {
*p++ = *((unsigned short *)pStackLongs);
}
pStackLongs += 1;
break;
case 'B':
if (n < 8) {
gpr[n++] = *((char *)pStackLongs);
} else {
*p++ = *((char *)pStackLongs);
}
pStackLongs += 1;
break;
default:
if (n < 8) {
gpr[n++] = *pStackLongs;
} else {
*p++ = *pStackLongs;
}
pStackLongs += 1;
break;
}
pPT++;
}
/* figure out the address of the function we need to invoke */
off = nVtableIndex;
off = off * 4; // 4 bytes per slot
mfunc = *((unsigned long **)pThis); // get the address of the vtable
mfunc = (unsigned long *)((char *)mfunc + off); // get the address from the vtable entry at offset
mfunc = *((unsigned long **)mfunc); // the function is stored at the address
ptr = (void (*)())mfunc;
/* Set up the machine registers and invoke the function */
__asm__ __volatile__ (
"lwz 3, 0(%0)\n\t"
"lwz 4, 4(%0)\n\t"
"lwz 5, 8(%0)\n\t"
"lwz 6, 12(%0)\n\t"
"lwz 7, 16(%0)\n\t"
"lwz 8, 20(%0)\n\t"
"lwz 9, 24(%0)\n\t"
"lwz 10, 28(%0)\n\t"
"lfd 1, 0(%1)\n\t"
"lfd 2, 8(%1)\n\t"
"lfd 3, 16(%1)\n\t"
"lfd 4, 24(%1)\n\t"
"lfd 5, 32(%1)\n\t"
"lfd 6, 40(%1)\n\t"
"lfd 7, 48(%1)\n\t"
"lfd 8, 56(%1)\n\t"
: : "r" (gpr), "r" (fpr)
: "0", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12"
);
(*ptr)();
__asm__ __volatile__ (
"mr %1, 3\n\t"
"mr %2, 4\n\t"
"fmr %0, 1\n\t"
: "=f" (dret), "=r" (iret), "=r" (iret2) : );
switch( eReturnType )
{
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
((long*)pRegisterReturn)[0] = iret;
((long*)pRegisterReturn)[1] = iret2;
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
((long*)pRegisterReturn)[0] = iret;
break;
case typelib_TypeClass_CHAR:
case typelib_TypeClass_SHORT:
case typelib_TypeClass_UNSIGNED_SHORT:
*(unsigned short*)pRegisterReturn = (unsigned short)iret;
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*(unsigned char*)pRegisterReturn = (unsigned char)iret;
break;
case typelib_TypeClass_FLOAT:
*(float*)pRegisterReturn = (float)dret;
break;
case typelib_TypeClass_DOUBLE:
*(double*)pRegisterReturn = dret;
break;
}
}
//==================================================================================================
static void cpp_call(
cppu_unoInterfaceProxy * pThis,
sal_Int32 nVtableCall,
typelib_TypeDescriptionReference * pReturnTypeRef,
sal_Int32 nParams, typelib_MethodParameter * pParams,
void * pUnoReturn, void * pUnoArgs[], uno_Any ** ppUnoExc )
{
// max space for: [complex ret ptr], values|ptr ...
char * pCppStack =
(char *)alloca( sizeof(sal_Int32) + ((nParams+2) * sizeof(sal_Int64)) );
char * pCppStackStart = pCppStack;
// need to know parameter types for callVirtualMethod so generate a signature string
char * pParamType = (char *) alloca(nParams+2);
char * PT = pParamType;
// return
typelib_TypeDescription * pReturnTypeDescr = 0;
TYPELIB_DANGER_GET( &pReturnTypeDescr, pReturnTypeRef );
OSL_ENSURE( pReturnTypeDescr, "### expected return type description!" );
void * pCppReturn = 0; // if != 0 && != pUnoReturn, needs reconversion
if (pReturnTypeDescr)
{
if (cppu_isSimpleType( pReturnTypeDescr ))
{
pCppReturn = pUnoReturn; // direct way for simple types
}
else
{
// complex return via ptr
pCppReturn = *(void **)pCppStack = (cppu_relatesToInterface( pReturnTypeDescr )
? alloca( pReturnTypeDescr->nSize )
: pUnoReturn); // direct way
*pPT++ = 'I'; //signify that a complex return type on stack
pCppStack += sizeof(void *);
}
}
// push this
*(void**)pCppStack = pThis->pCppI;
pCppStack += sizeof( void* );
*pPT++ = 'I';
// stack space
OSL_ENSURE( sizeof(void *) == sizeof(sal_Int32), "### unexpected size!" );
// args
void ** pCppArgs = (void **)alloca( 3 * sizeof(void *) * nParams );
// indizes of values this have to be converted (interface conversion cpp<=>uno)
sal_Int32 * pTempIndizes = (sal_Int32 *)(pCppArgs + nParams);
// type descriptions for reconversions
typelib_TypeDescription ** ppTempParamTypeDescr = (typelib_TypeDescription **)(pCppArgs + (2 * nParams));
sal_Int32 nTempIndizes = 0;
for ( sal_Int32 nPos = 0; nPos < nParams; ++nPos )
{
const typelib_MethodParameter & rParam = pParams[nPos];
typelib_TypeDescription * pParamTypeDescr = 0;
TYPELIB_DANGER_GET( &pParamTypeDescr, rParam.pTypeRef );
if (!rParam.bOut && cppu_isSimpleType( pParamTypeDescr ))
{
uno_copyAndConvertData( pCppArgs[nPos] = pCppStack, pUnoArgs[nPos], pParamTypeDescr,
&pThis->pBridge->aUno2Cpp );
switch (pParamTypeDescr->eTypeClass)
{
// we need to know type of each param so that we know whether to use
// gpr or fpr to pass in parameters:
// Key: I - int, long, pointer, etc means pass in gpr
// B - byte value passed in gpr
// S - short value passed in gpr
// F - float value pass in fpr
// D - double value pass in fpr
// H - long long int pass in proper pairs of gpr (3,4) (5,6), etc
// X - indicates end of parameter description string
case typelib_TypeClass_LONG:
case typelib_TypeClass_UNSIGNED_LONG:
case typelib_TypeClass_ENUM:
*pPT++ = 'I';
break;
case typelib_TypeClass_SHORT:
case typelib_TypeClass_CHAR:
case typelib_TypeClass_UNSIGNED_SHORT:
*pPT++ = 'S';
break;
case typelib_TypeClass_BOOLEAN:
case typelib_TypeClass_BYTE:
*pPT++ = 'B';
break;
case typelib_TypeClass_FLOAT:
*pPT++ = 'F';
break;
case typelib_TypeClass_DOUBLE:
*pPT++ = 'D';
pCppStack += sizeof(sal_Int32); // extra long
break;
case typelib_TypeClass_HYPER:
case typelib_TypeClass_UNSIGNED_HYPER:
*pPT++ = 'H';
pCppStack += sizeof(sal_Int32); // extra long
}
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
else // ptr to complex value | ref
{
if (! rParam.bIn) // is pure out
{
// cpp out is constructed mem, uno out is not!
uno_constructData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pParamTypeDescr );
pTempIndizes[nTempIndizes] = nPos; // default constructed for cpp call
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
// is in/inout
else if (cppu_relatesToInterface( pParamTypeDescr ))
{
uno_copyAndConvertData(
*(void **)pCppStack = pCppArgs[nPos] = alloca( pParamTypeDescr->nSize ),
pUnoArgs[nPos], pParamTypeDescr, &pThis->pBridge->aUno2Cpp );
pTempIndizes[nTempIndizes] = nPos; // has to be reconverted
// will be released at reconversion
ppTempParamTypeDescr[nTempIndizes++] = pParamTypeDescr;
}
else // direct way
{
*(void **)pCppStack = pCppArgs[nPos] = pUnoArgs[nPos];
// no longer needed
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// KBH: FIXME: is this the right way to pass these
*pPT++='I';
}
pCppStack += sizeof(sal_Int32); // standard parameter length
}
// terminate the signature string
*pPT++='X';
*pPT=0;
try
{
OSL_ENSURE( !( (pCppStack - pCppStackStart ) & 3), "UNALIGNED STACK !!! (Please DO panic)" );
callVirtualMethod(
pThis->pCppI, nVtableCall,
pCppReturn, pReturnTypeDescr->eTypeClass, pParamType,
(sal_Int32 *)pCppStackStart, (pCppStack - pCppStackStart) / sizeof(sal_Int32) );
// NO exception occured...
*ppUnoExc = 0;
// reconvert temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
typelib_TypeDescription * pParamTypeDescr = ppTempParamTypeDescr[nTempIndizes];
if (pParams[nIndex].bIn)
{
if (pParams[nIndex].bOut) // inout
{
uno_destructData( pUnoArgs[nIndex], pParamTypeDescr, 0 ); // destroy uno value
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
&pThis->pBridge->aCpp2Uno );
}
}
else // pure out
{
uno_copyAndConvertData( pUnoArgs[nIndex], pCppArgs[nIndex], pParamTypeDescr,
&pThis->pBridge->aCpp2Uno );
}
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], pParamTypeDescr, cpp_release );
TYPELIB_DANGER_RELEASE( pParamTypeDescr );
}
// return value
if (pCppReturn && pUnoReturn != pCppReturn)
{
uno_copyAndConvertData( pUnoReturn, pCppReturn, pReturnTypeDescr,
&pThis->pBridge->aCpp2Uno );
uno_destructData( pCppReturn, pReturnTypeDescr, cpp_release );
}
}
catch (...)
{
// fill uno exception
fillUnoException( __cxa_get_globals()->caughtExceptions, *ppUnoExc, &pThis->pBridge->aCpp2Uno );
// temporary params
for ( ; nTempIndizes--; )
{
sal_Int32 nIndex = pTempIndizes[nTempIndizes];
// destroy temp cpp param => cpp: every param was constructed
uno_destructData( pCppArgs[nIndex], ppTempParamTypeDescr[nTempIndizes], cpp_release );
TYPELIB_DANGER_RELEASE( ppTempParamTypeDescr[nTempIndizes] );
}
// return type
if (pReturnTypeDescr)
TYPELIB_DANGER_RELEASE( pReturnTypeDescr );
}
}
//==================================================================================================
void SAL_CALL cppu_unoInterfaceProxy_dispatch(
uno_Interface * pUnoI, const typelib_TypeDescription * pMemberDescr,
void * pReturn, void * pArgs[], uno_Any ** ppException ) throw ()
{
// is my surrogate
cppu_unoInterfaceProxy * pThis = (cppu_unoInterfaceProxy *)pUnoI;
typelib_InterfaceTypeDescription * pTypeDescr = pThis->pTypeDescr;
switch (pMemberDescr->eTypeClass)
{
case typelib_TypeClass_INTERFACE_ATTRIBUTE:
{
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
sal_Int32 nVtableCall = pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos];
OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
if (pReturn)
{
// dependent dispatch
cpp_call(
pThis, nVtableCall,
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef,
0, 0, // no params
pReturn, pArgs, ppException );
}
else
{
// is SET
typelib_MethodParameter aParam;
aParam.pTypeRef =
((typelib_InterfaceAttributeTypeDescription *)pMemberDescr)->pAttributeTypeRef;
aParam.bIn = sal_True;
aParam.bOut = sal_False;
typelib_TypeDescriptionReference * pReturnTypeRef = 0;
OUString aVoidName( RTL_CONSTASCII_USTRINGPARAM("void") );
typelib_typedescriptionreference_new(
&pReturnTypeRef, typelib_TypeClass_VOID, aVoidName.pData );
// dependent dispatch
cpp_call(
pThis, nVtableCall +1, // get, then set method
pReturnTypeRef,
1, &aParam,
pReturn, pArgs, ppException );
typelib_typedescriptionreference_release( pReturnTypeRef );
}
break;
}
case typelib_TypeClass_INTERFACE_METHOD:
{
// determine vtable call index
sal_Int32 nMemberPos = ((typelib_InterfaceMemberTypeDescription *)pMemberDescr)->nPosition;
OSL_ENSURE( nMemberPos < pTypeDescr->nAllMembers, "### member pos out of range!" );
sal_Int32 nVtableCall = pTypeDescr->pMapMemberIndexToFunctionIndex[nMemberPos];
OSL_ENSURE( nVtableCall < pTypeDescr->nMapFunctionIndexToMemberIndex, "### illegal vtable index!" );
switch (nVtableCall)
{
// standard calls
case 1: // acquire uno interface
(*pUnoI->acquire)( pUnoI );
*ppException = 0;
break;
case 2: // release uno interface
(*pUnoI->release)( pUnoI );
*ppException = 0;
break;
case 0: // queryInterface() opt
{
typelib_TypeDescription * pTD = 0;
TYPELIB_DANGER_GET( &pTD, reinterpret_cast< Type * >( pArgs[0] )->getTypeLibType() );
if (pTD)
{
uno_Interface * pInterface = 0;
(*pThis->pBridge->pUnoEnv->getRegisteredInterface)(
pThis->pBridge->pUnoEnv,
(void **)&pInterface, pThis->oid.pData, (typelib_InterfaceTypeDescription *)pTD );
if (pInterface)
{
::uno_any_construct(
reinterpret_cast< uno_Any * >( pReturn ),
&pInterface, pTD, 0 );
(*pInterface->release)( pInterface );
TYPELIB_DANGER_RELEASE( pTD );
*ppException = 0;
break;
}
TYPELIB_DANGER_RELEASE( pTD );
}
} // else perform queryInterface()
default:
// dependent dispatch
cpp_call(
pThis, nVtableCall,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pReturnTypeRef,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->nParams,
((typelib_InterfaceMethodTypeDescription *)pMemberDescr)->pParams,
pReturn, pArgs, ppException );
}
break;
}
default:
{
::com::sun::star::uno::RuntimeException aExc(
OUString( RTL_CONSTASCII_USTRINGPARAM("illegal member type description!") ),
::com::sun::star::uno::Reference< ::com::sun::star::uno::XInterface >() );
Type const & rExcType = ::getCppuType( &aExc );
// binary identical null reference
::uno_type_any_construct( *ppException, &aExc, rExcType.getTypeLibType(), 0 );
}
}
}
}