Files
libreoffice/basegfx/source/matrix/b2dhommatrix.cxx

492 lines
13 KiB
C++
Raw Normal View History

2003-10-28 10:26:57 +00:00
/*************************************************************************
*
* OpenOffice.org - a multi-platform office productivity suite
2003-10-28 10:26:57 +00:00
*
* $RCSfile: b2dhommatrix.cxx,v $
2003-10-28 10:26:57 +00:00
*
* $Revision: 1.11 $
2003-10-28 10:26:57 +00:00
*
* last change: $Author: kz $ $Date: 2005-11-02 13:56:26 $
2003-10-28 10:26:57 +00:00
*
* The Contents of this file are made available subject to
* the terms of GNU Lesser General Public License Version 2.1.
2003-10-28 10:26:57 +00:00
*
*
* GNU Lesser General Public License Version 2.1
* =============================================
* Copyright 2005 by Sun Microsystems, Inc.
* 901 San Antonio Road, Palo Alto, CA 94303, USA
2003-10-28 10:26:57 +00:00
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 2.1, as published by the Free Software Foundation.
2003-10-28 10:26:57 +00:00
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
2003-10-28 10:26:57 +00:00
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston,
* MA 02111-1307 USA
2003-10-28 10:26:57 +00:00
*
************************************************************************/
#ifndef _OSL_DIAGNOSE_H_
#include <osl/diagnose.h>
#endif
2003-10-28 10:26:57 +00:00
#ifndef _BGFX_MATRIX_B2DHOMMATRIX_HXX
#include <basegfx/matrix/b2dhommatrix.hxx>
2003-10-28 10:26:57 +00:00
#endif
#ifndef _HOMMATRIX_TEMPLATE_HXX
#include <hommatrixtemplate.hxx>
#endif
#ifndef _BGFX_MATRIX_B3DHOMMATRIX_HXX
#include <basegfx/matrix/b3dhommatrix.hxx>
2003-10-28 10:26:57 +00:00
#endif
#ifndef _BGFX_TUPLE_B3DTUPLE_HXX
#include <basegfx/tuple/b3dtuple.hxx>
2003-10-28 10:26:57 +00:00
#endif
#ifndef _BGFX_TUPLE_B2DTUPLE_HXX
#include <basegfx/tuple/b2dtuple.hxx>
2003-10-28 10:26:57 +00:00
#endif
#ifndef _BGFX_VECTOR_B2DVECTOR_HXX
#include <basegfx/vector/b2dvector.hxx>
#endif
2003-10-28 10:26:57 +00:00
namespace basegfx
{
class Impl2DHomMatrix : public ::basegfx::internal::ImplHomMatrixTemplate< 3 >
2003-10-28 10:26:57 +00:00
{
};
static Impl2DHomMatrix& get2DIdentityMatrix()
{
static Impl2DHomMatrix maStatic2DIdentityHomMatrix;
return maStatic2DIdentityHomMatrix;
}
void B2DHomMatrix::implPrepareChange()
{
if(mpM->getRefCount())
2003-10-28 10:26:57 +00:00
{
mpM->decRefCount();
mpM = new Impl2DHomMatrix(*mpM);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix::B2DHomMatrix()
: mpM(&get2DIdentityMatrix())
{
mpM->incRefCount();
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix::B2DHomMatrix(const B2DHomMatrix& rMat)
: mpM(rMat.mpM)
{
mpM->incRefCount();
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix::~B2DHomMatrix()
{
if(mpM->getRefCount())
mpM->decRefCount();
else
delete mpM;
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator=(const B2DHomMatrix& rMat)
{
if(mpM->getRefCount())
mpM->decRefCount();
else
delete mpM;
2003-10-28 10:26:57 +00:00
mpM = rMat.mpM;
mpM->incRefCount();
2003-10-28 10:26:57 +00:00
return *this;
}
2003-10-28 10:26:57 +00:00
double B2DHomMatrix::get(sal_uInt16 nRow, sal_uInt16 nColumn) const
{
return mpM->get(nRow, nColumn);
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::set(sal_uInt16 nRow, sal_uInt16 nColumn, double fValue)
{
implPrepareChange();
mpM->set(nRow, nColumn, fValue);
}
2003-10-28 10:26:57 +00:00
bool B2DHomMatrix::isLastLineDefault() const
{
return mpM->isLastLineDefault();
}
bool B2DHomMatrix::isIdentity() const
{
if(mpM == &get2DIdentityMatrix())
return true;
2003-10-28 10:26:57 +00:00
return mpM->isIdentity();
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::identity()
{
if(mpM->getRefCount())
mpM->decRefCount();
else
delete mpM;
mpM = &get2DIdentityMatrix();
mpM->incRefCount();
}
bool B2DHomMatrix::isInvertible() const
{
return mpM->isInvertible();
}
bool B2DHomMatrix::invert()
{
Impl2DHomMatrix aWork(*mpM);
sal_uInt16* pIndex = new sal_uInt16[mpM->getEdgeLength()];
sal_Int16 nParity;
if(aWork.ludcmp(pIndex, nParity))
2003-10-28 10:26:57 +00:00
{
implPrepareChange();
mpM->doInvert(aWork, pIndex);
delete[] pIndex;
2003-10-28 10:26:57 +00:00
return true;
2003-10-28 10:26:57 +00:00
}
delete[] pIndex;
return false;
}
bool B2DHomMatrix::isNormalized() const
{
return mpM->isNormalized();
}
void B2DHomMatrix::normalize()
{
if(!mpM->isNormalized())
2003-10-28 10:26:57 +00:00
{
implPrepareChange();
mpM->doNormalize();
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
double B2DHomMatrix::determinant() const
{
return mpM->doDeterminant();
}
2003-10-28 10:26:57 +00:00
double B2DHomMatrix::trace() const
{
return mpM->doTrace();
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::transpose()
{
implPrepareChange();
mpM->doTranspose();
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator+=(const B2DHomMatrix& rMat)
{
implPrepareChange();
mpM->doAddMatrix(*rMat.mpM);
2003-10-28 10:26:57 +00:00
return *this;
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator-=(const B2DHomMatrix& rMat)
{
implPrepareChange();
mpM->doSubMatrix(*rMat.mpM);
2003-10-28 10:26:57 +00:00
return *this;
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator*=(double fValue)
{
const double fOne(1.0);
2003-10-28 10:26:57 +00:00
if(!::basegfx::fTools::equal(fOne, fValue))
2003-10-28 10:26:57 +00:00
{
implPrepareChange();
mpM->doMulMatrix(fValue);
2003-10-28 10:26:57 +00:00
}
return *this;
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator/=(double fValue)
{
const double fOne(1.0);
2003-10-28 10:26:57 +00:00
if(!::basegfx::fTools::equal(fOne, fValue))
2003-10-28 10:26:57 +00:00
{
implPrepareChange();
mpM->doMulMatrix(1.0 / fValue);
2003-10-28 10:26:57 +00:00
}
return *this;
}
2003-10-28 10:26:57 +00:00
B2DHomMatrix& B2DHomMatrix::operator*=(const B2DHomMatrix& rMat)
{
if(!rMat.isIdentity())
2003-10-28 10:26:57 +00:00
{
implPrepareChange();
mpM->doMulMatrix(*rMat.mpM);
2003-10-28 10:26:57 +00:00
}
return *this;
}
2003-10-28 10:26:57 +00:00
bool B2DHomMatrix::operator==(const B2DHomMatrix& rMat) const
{
if(mpM == rMat.mpM)
return true;
2003-10-28 10:26:57 +00:00
return mpM->isEqual(*rMat.mpM);
}
2003-10-28 10:26:57 +00:00
bool B2DHomMatrix::operator!=(const B2DHomMatrix& rMat) const
{
if(mpM == rMat.mpM)
return false;
return !mpM->isEqual(*rMat.mpM);
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::rotate(double fRadiant)
{
if(!::basegfx::fTools::equalZero(fRadiant))
2003-10-28 10:26:57 +00:00
{
double fSin;
double fCos;
// is the rotation angle an approximate multiple of pi/2?
// If yes, force fSin/fCos to -1/0/1, to maintain
// orthogonality (which might also be advantageous for the
// other cases, but: for multiples of pi/2, the exact
// values _can_ be attained. It would be largely
// unintuitive, if a 180 degrees rotation would introduce
// slight roundoff errors, instead of exactly mirroring
// the coordinate system).
if( fTools::equalZero( fmod( fRadiant, F_PI2 ) ) )
{
// determine quadrant
const sal_Int32 nQuad(
(4 + fround( 4/F_2PI*fmod( fRadiant, F_2PI ) )) % 4 );
switch( nQuad )
{
case 0: // -2pi,0,2pi
fSin = 0.0;
fCos = 1.0;
break;
case 1: // -3/2pi,1/2pi
fSin = 1.0;
fCos = 0.0;
break;
case 2: // -pi,pi
fSin = 0.0;
fCos = -1.0;
break;
case 3: // -1/2pi,3/2pi
fSin = -1.0;
fCos = 0.0;
break;
default:
OSL_ENSURE( false,
"B2DHomMatrix::rotate(): Impossible case reached" );
}
}
else
{
// TODO(P1): Maybe use glibc's sincos here (though
// that's kinda non-portable...)
fSin = sin(fRadiant);
fCos = cos(fRadiant);
}
Impl2DHomMatrix aRotMat(get2DIdentityMatrix());
2003-10-28 10:26:57 +00:00
aRotMat.set(0, 0, fCos);
aRotMat.set(1, 1, fCos);
aRotMat.set(1, 0, fSin);
aRotMat.set(0, 1, -fSin);
2003-10-28 10:26:57 +00:00
implPrepareChange();
mpM->doMulMatrix(aRotMat);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::translate(double fX, double fY)
{
if(!::basegfx::fTools::equalZero(fX) || !::basegfx::fTools::equalZero(fY))
2003-10-28 10:26:57 +00:00
{
Impl2DHomMatrix aTransMat(get2DIdentityMatrix());
2003-10-28 10:26:57 +00:00
aTransMat.set(0, 2, fX);
aTransMat.set(1, 2, fY);
2003-10-28 10:26:57 +00:00
implPrepareChange();
mpM->doMulMatrix(aTransMat);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::scale(double fX, double fY)
{
const double fOne(1.0);
2003-10-28 10:26:57 +00:00
if(!::basegfx::fTools::equal(fOne, fX) || !::basegfx::fTools::equal(fOne, fY))
{
Impl2DHomMatrix aScaleMat(get2DIdentityMatrix());
2003-10-28 10:26:57 +00:00
aScaleMat.set(0, 0, fX);
aScaleMat.set(1, 1, fY);
2003-10-28 10:26:57 +00:00
implPrepareChange();
mpM->doMulMatrix(aScaleMat);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::shearX(double fSx)
{
const double fOne(1.0);
2003-10-28 10:26:57 +00:00
if(!::basegfx::fTools::equal(fOne, fSx))
{
Impl2DHomMatrix aShearXMat(get2DIdentityMatrix());
2003-10-28 10:26:57 +00:00
aShearXMat.set(0, 1, fSx);
2003-10-28 10:26:57 +00:00
implPrepareChange();
mpM->doMulMatrix(aShearXMat);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
void B2DHomMatrix::shearY(double fSy)
{
const double fOne(1.0);
2003-10-28 10:26:57 +00:00
if(!::basegfx::fTools::equal(fOne, fSy))
{
Impl2DHomMatrix aShearYMat(get2DIdentityMatrix());
2003-10-28 10:26:57 +00:00
aShearYMat.set(1, 0, fSy);
2003-10-28 10:26:57 +00:00
implPrepareChange();
mpM->doMulMatrix(aShearYMat);
2003-10-28 10:26:57 +00:00
}
}
2003-10-28 10:26:57 +00:00
// Decomposition
bool B2DHomMatrix::decompose(B2DTuple& rScale, B2DTuple& rTranslate, double& rRotate, double& rShearX) const
{
// when perspective is used, decompose is not made here
if(!mpM->isLastLineDefault())
return false;
2003-10-28 10:26:57 +00:00
// test for rotation and shear
if(::basegfx::fTools::equalZero(get(0, 1)) && ::basegfx::fTools::equalZero(get(1, 0)))
{
// no rotation and shear, direct value extraction
rRotate = rShearX = 0.0;
2003-10-28 10:26:57 +00:00
// copy scale values
rScale.setX(get(0, 0));
rScale.setY(get(1, 1));
2003-10-28 10:26:57 +00:00
// copy translation values
rTranslate.setX(get(0, 2));
rTranslate.setY(get(1, 2));
2003-10-28 10:26:57 +00:00
return true;
}
else
{
// test if shear is zero. That's the case, if the unit vectors in the matrix
// are perpendicular -> scalar is zero
const ::basegfx::B2DVector aUnitVecX(get(0, 0), get(1, 0));
const ::basegfx::B2DVector aUnitVecY(get(0, 1), get(1, 1));
2003-10-28 10:26:57 +00:00
if(::basegfx::fTools::equalZero(aUnitVecX.scalar(aUnitVecY)))
{
// calculate rotation
rRotate = atan2(aUnitVecX.getY(), aUnitVecX.getX());
2003-10-28 10:26:57 +00:00
// calculate scale values
rScale.setX(aUnitVecX.getLength());
rScale.setY(aUnitVecY.getLength());
2003-10-28 10:26:57 +00:00
// copy translation values
rTranslate.setX(get(0, 2));
rTranslate.setY(get(1, 2));
2003-10-28 10:26:57 +00:00
return true;
}
else
{
// If determinant is zero, decomposition is not possible
if(0.0 == mpM->doDeterminant())
return false;
// copy 2x2 matrix and translate vector to 3x3 matrix
::basegfx::B3DHomMatrix a3DHomMat;
a3DHomMat.set(0, 0, get(0, 0));
a3DHomMat.set(0, 1, get(0, 1));
a3DHomMat.set(1, 0, get(1, 0));
a3DHomMat.set(1, 1, get(1, 1));
a3DHomMat.set(0, 3, get(0, 2));
a3DHomMat.set(1, 3, get(1, 2));
::basegfx::B3DTuple r3DScale, r3DTranslate, r3DRotate, r3DShear;
if(a3DHomMat.decompose(r3DScale, r3DTranslate, r3DRotate, r3DShear))
{
// copy scale values
rScale.setX(r3DScale.getX());
rScale.setY(r3DScale.getY());
// copy shear
rShearX = r3DShear.getX();
// copy rotate
rRotate = r3DRotate.getZ();
// copy translate
rTranslate.setX(r3DTranslate.getX());
rTranslate.setY(r3DTranslate.getY());
return true;
}
}
2003-10-28 10:26:57 +00:00
}
return false;
}
2003-10-28 10:26:57 +00:00
} // end of namespace basegfx
// eof